Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Feasibility of functional MRI at ultralow magnetic field via changes in cerebral blood volume

MPG-Autoren
/persons/resource/persons133443

Buckenmaier,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Buckenmaier, K., Pedersen, A., SanGiorgio, P., Scheffler, K., Clarke, J., & Inglis, B. (2019). Feasibility of functional MRI at ultralow magnetic field via changes in cerebral blood volume. Poster presented at 21st ISMAR - 15th EUROMAR Joint Conference (EUROISMAR 2019), Berlin, Germany.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-DF08-A
Zusammenfassung
We investigate the feasibility of performing functional MRI (fMRI) at ultralow field (ULF) with a Superconducting Quantum Interference Device (SQUID), as used for detecting magnetoencephalography (MEG) signals from the human head. While there is negligible magnetic susceptibility variation to produce blood oxygenation level-dependent (BOLD) contrast at ULF, changes in cerebral blood volume (CBV) may be a sensitive mechanism for fMRI given the five-fold spread in spin-lattice relaxation time (T1) values across the constituents of the human brain. We undertook simulations of functional signal strength for a simplified brain model involving activation of a primary cortical region in a manner consistent with a blocked task experiment. Our simulations involve measured values of T1 at ULF (130 μT) and experimental parameters for the performance of an ULFMRI scanner with a noise level of 0.1 fT/Hz-1/2 and a prepolarizing field of 200 mT. Under ideal experimental conditions we predict a functional signal-to-noise ratio of between 3.1 and 7.1 for an imaging time of 30 min, or between 1.5 and 3.5 for a blocked task experiment lasting 7.5 min. Our simulations suggest it may be feasible but challenging to perform fMRI using a ULFMRI system designed to perform MRI and MEG in situ.