日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

CbrA is a flavin adenine dinucleotide protein that modifies the Escherichia coli outer membrane and confers specific resistance to Colicin M

MPS-Authors
/persons/resource/persons275400

Helbig,  S
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272285

Ammelburg,  M
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271640

Braun,  V
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Helbig, S., Hantke, K., Ammelburg, M., & Braun, V. (2012). CbrA is a flavin adenine dinucleotide protein that modifies the Escherichia coli outer membrane and confers specific resistance to Colicin M. Journal of Bacteriology, 194(18), 4894-4903. doi:10.1128/JB.00782-12.


引用: https://hdl.handle.net/21.11116/0000-000A-B6E0-B
要旨
Colicin M (Cma) is a protein toxin produced by Escherichia coli that kills sensitive E. coli cells by inhibiting murein biosynthesis in the periplasm. Recombinant plasmids carrying cbrA (formerly yidS) strongly increased resistance of cells to Cma, whereas deletion of cbrA increased Cma sensitivity. Transcription of cbrA is positively controlled by the two-component CreBC system. A ΔcreB mutant was highly Cma sensitive because little CbrA was synthesized. Treatment of CbrA-overproducing cells by osmotic shock failed to render cells Cma sensitive because the cells were resistant to osmotic shock. In a natural environment with a growth-limiting nutrient supply, cells producing CbrA defend themselves against colicin M synthesized by competing cells. Isolated CbrA is a protein with noncovalently bound flavin adenine dinucleotide. Sequence comparison and structure prediction assign the closest relative of CbrA with a known crystal structure as digeranylgeranyl-glycerophospholipid reductase of Thermoplasma acidophilum. CbrA is found in Escherichia coli, Citrobacter, and Salmonella bongori but not in other enterobacteria. The next homologs with the highest identity (over 50%) are found in the anaerobic Clostridium botulinum group 1 and a few other Firmicutes.