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Temperature dependence of energy loss in gas-filled bouncing balls
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The “coefficient of restitution” € is a measure of the energy which is retained when a ball bounces.
This can be easily and accurately measured in an “at home” experiment. Here, for a gas-filled ball
such as a tennis ball, we construct a simple two-parameter model to describe how € changes as a
function of temperature. A comparison with data shows good agreement.

I. INTRODUCTION

The bouncing of a ball demonstrates important fea-
tures of mechanics, including the conservation of energy
and momentum, the conversion of energy between poten-
tial and kinetic, and the loss of energy to heat. An in-
teresting experiment is to drop a ball from a fixed height
and to measure how high it bounces. The less energy is
lost during the bounce, the closer it returns to the start-
ing height. Accurate measurements are possible by using
a cell-phone to film the bounce, and then examining in-
dividual frames.

We conducted such an experiment with a (not so fresh)
tennis ball, varying the temperature of the ball, and
recording how the bounce height varied. Internet re-
search shows that others have done such experiments
with a variety of balls. Typically, the data is fit to an
ad-hoc model which is not derived from physical laws.
Here, we derive a simple model from physical laws and
compare it to datall

II. BOUNCING BALLS

The Internet offers many slow-motion films of bouncing
balls. Some are remarkable, for example, a (solid rubber)
golf ball moving at 67m/s bouncing off a steel plate?,
filmed at 40000 frames/s and at even higher speeds and
frame rates?. Slow-motion films of gas-filled balls such as
tennis balls, soccer balls, and basketballs exhibit similar
behavior.

These images show that balls are compressed and de-
formed when they bounce. Their kinetic energy is con-
verted into potential energy and stored: the deformed
ball behaves like a compressed spring. It then “springs
back” to a round shape, converting stored potential en-
ergy back into kinetic energy, and jumping into the air.
In this process, some energy is converted into heat, and
consequently each bounce of the ball is lower than the
previous one. A detailed discussion of the mechanisms
at work, and citations to the literature, can be found in
a highly cited paper by Cross®.

How can we model the bounce for a gas-filled ball? In
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FIG. 1. The ball just before the bounce with downwards
velocity v, at the moment of maximum compression, and
just after the bounce with (smaller) upwards velocity ve. The
coefficient of restitution is € = |vqa|/|vs].

this paper, we assume that the energy is stored in the
compressed gas of the ball, and examine how changing
the temperature of that gas, and hence its pressure, af-
fects the bounce.

Related work models how tennis balls grip and are
spun up when they strike the ground at different
angles®’, measures the room-temperature coefficient of
restitution of tennis balls and Superballs®, describes a
testing method for tennis ball bounce quality?, and mod-
els the impact of the coefficient of restitution on ten-
nis racquet collisions and servest?, but does not examine
temperature dependence.

III. COEFFICIENT OF RESTITUTION

Consider a ball of mass m, which is released at rest
from height h;, above a level surface and moves up and
down along a vertical line. Here, and throughout this pa-
per, the subscript b indicates “before the bounce”. After
release, the ball moves downwards under the influence
of gravity, accelerating until it impacts the floor. Just
before that impact, denote its vertical velocity by vy, as
shown in Fig. [l We neglect air resistance, so equating the
potential and kinetic energy gives Ep = %mvf = mghyp,
where g = 9.8 m/s2 is the acceleration of gravity, and
Ey is the ball energy, which is constant until it hits the
ground.

One way to quantify the loss of energy during the
bounce is via the “coefficient of restitution” e. This di-
mensionless number is the ratio of the vertical speed of
the ball just after the bounce |v,| to the vertical speed of



the ball just before the bounce

€ = |val/lvel; (3.1)

where subscript ¢ means “after the bounce”. Since the
speed after the bounce is smaller than before the bounce,
the coefficient of restitution lies in the range 0 < e < 1.

While it is not given this name, the coefficient of resti-
tution is described by Newton in discussing the relative
velocities before and after bouncing impacts (reflexion)
for balls made of wool, steel, cork, and glass. Cook™' pro-
vides a detailed discussion of Newton’s approach, which
is often called “Newton’s experimental law of impacts”.
The literature uses be two symbols to denote the coeffi-
cient of restitution: e and e. We follow the latter con-
vention, to avoid confusion with the base of the natural
logarithm, Euler’s number e = 2.71828 .. ..

The ball’s energy E, after the bounce can be expressed
in terms of € and the energy before the bounce. Just be-
fore and after the bounce, the potential energy vanishes,
and all of the energy is kinetic, given by %va, where v
is the vertical velocity. The ratio of energies is then
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where we have used Eq. in the final step.

The ratio of heights before and after the bounce may
also be expressed in terms of the coefficient of restitution
€. After the bounce, the ball moves upwards, slowing
down, and transforming its kinetic energy into potential
energy. It reaches the maximum height h, at the mo-
ment when the velocity drops to zero, and (neglecting
air resistance) all of the kinetic energy is converted to
potential energy mgh,. Thus

mgha_@_&_ 9
T =€, (3.3)

where in the final step we have used Eq. (3.2)).

It’s not easy to measure the speed of the ball just be-
fore and after the bounce to compute € directly from the
definition in Eq. . However, it is straightforward to
measure the release height and the bounce height. So
in an experiment, the coefficient of restitution may be
determined via

hq
hy’
where hy is the height from which the ball is dropped,
and h, is the maximum height which the ball reaches

after the bounce. For a very bouncy ball, € is close to 1,
and for a very “dead” ball, € is close to 0.

(3.4)

€ =

IV. MODELING THE ENERGY STORED
DURING THE BOUNCE

In our model, there is no air resistance, so the energy of
the ball is constant before the bounce, and has a smaller

but constant value after the bounce. The difference be-
tween these is the energy which is lost (converted) to
sound and heat during the bounce. The remaining en-
ergy, which is stored, is F,. Here, we model the energy
stored in the bounce.

For this purpose, we treat the ball as a rubber bag
containing gas under pressure. When the ball hits the
ground and comes to a stop, it is deformed, and its in-
terior volume V' decreases by a small amount AV, as
shown in Fig. [l This decrease in volume does not “come
for free” in the energetic sense, because changing the vol-
ume requires that a force be applied against the pressure
of the gas inside the ball.
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FIG. 2. A box with a sealed right wall which slides in and out
without friction. The net force F' on the wall is the product
of the area of the wall and the difference between the inside
and outside pressures.

To compute the energy needed, consider a “cubical
box” model of a ball, as shown in Figure 2] where one
wall is free to slide in and out, but sealed against gas loss.
This is like a bicycle pump, in which a sliding piston com-
presses air, or an internal combustion engine, where an
air-fuel explosion creates pressure that moves a piston.

Suppose that the box is filled with gas at pressure
P, and surrounded by gas at pressure P,,. The
net outwards force acting on the moving wall is F' =
(P — Pout)A, where A is the area of the wall. To push
the wall in by a small distance d, we must do work
W = Fd = (P — Pout)Ad. This changes the volume
of the box from LA to (L — d)A, so the decrease in the
box volume is AV = Ad. Thus, the work we have done
may be written W = (P, — Pout)AV. This is the same
for any sealed volume containing a gas, regardless of its
shape.

Thus, the amount of work done in compressing the gas
inside the ball, and hence the energy stored, is

Ea = (R

— Pou)AV. (4.1)

Here, Py, is the pressure of the gas inside the ball, and
P,y is the pressure of the air outside the ball (normally
1 atmosphere or 1 bar or 100kPa). Note that because the
fractional change in volume AV/V is small, the interior



pressure does not change by much, and may be treated
as a constant in Eq. (4.1)).

V. MODELING THE ENERGY LOST DURING
THE BOUNCE

Energy is lost when a ball bounces, because the rubber
shell containing the gas gets deformed and “squished”.
This heats up the rubber, and transforms some kinetic
energy into heat. The details of internal friction in com-
pressed rubber are complicated, but for our purposes,
unimportant. Instead, by analogy with Eq. for en-
ergy stored, we assume that the energy lost when the
ball bounces is proportional to the maximum change in
the volume of the ball AV. The idea is that the amount
of energy lost is proportional to the amount that the ball
is deformed, which is in turn proportional to AV.

With this assumption, the energy lost is

Elost = /U,A‘/, (51)
where the constant of proportionality p > 0 is the en-
ergy lost per unit deformation of the volume. Springy
rubber has a small value of u, and very little energy is
lost (converted to heat). Rubber with a large value of u
would generate a lot of heat for a small change in volume,
resulting in a weak bounce.

Beyond internal friction in the rubber, the model of
Eq. could encompass other energy loss mechanisms,
such as vibrations in the ball or heating of the internal
gas from the sudden compression. Each of these different
loss mechanisms contributes to u.

VI. PRESSURE AND TEMPERATURE
DEPENDENCE OF THE COEFFICIENT OF
RESTITUTION

Conservation of energy implies that

Ey = E, + Eipst = (Pin — Pout) AV + pAV, (6.1)

where we have used Egs. and . If we divide
Eq. by Eq., the change in volume AV cancels,
and we obtain a simple expression for the coefficient of
restitution

2 Ea P1 _Pout
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The outside pressure and p are constant. So to test this
relationship, we have to vary the pressure inside the ball.
For a basketball or soccer ball, the internal pressure can
be changed by injecting air under pressure with a ball
pump.

Our experiment uses a tennis ball, which has no valve
for injecting air. Fortunately, there is another way to
change the internal pressure: by heating or cooling. The
ideal gas law states that the pressure of a fixed number

T (Kelvin) | Coefficient of restitution ¢ | Ae
251 0.447 0.019
274 0.621 0.012
278 0.629 0.005
293 0.704 0.008
323 0.766 0.007
343 0.801 0.018
353 0.813 0.004

TABLE 1. The coefficient of restitution € for a tennis ball at
different temperatures, and the estimated uncertainty Ae.

of gas molecules (i.e. those in the tennis ball) is propor-
tional to the absolute gas temperature. Thus, changing
the temperature of the gas inside the ball changes P,,.

In our model, it’s easy to see how the coefficient of
restitution e depends upon the temperature 7' (in Kelvin)
of the gas in the ball. From the ideal gas law, P, = kT,
where k is a constant. Substitute this into Eq. ,
divide numerator and denominator by k, and take the
square root of both sides. One obtains the functional de-
pendence of the coefficient of restitution € on temperature
T:

T—T1

e(T) = —

(6.3)

Here 1 = Pout/k and 70 = (Pout — p)/k are constants
with units of Kelvin. These constants depend upon the
outside pressure, k, and pu. But even if we don’t know
these values, we can measure the coefficient of restitution
€ experimentally at several different temperatures and fit
the data to Eq. to obtain the values of 7 and 5.

VII. EXPERIMENTAL TESTING

To test Eq. 7 we drop a tennis ball at different
temperatures from the top of a door (h;, = 2.05m) and
video the bounce with a cell phone. This is repeated
three times for each of seven different temperature values
spanning a 100K range from -20°C to 80°C. A storage
freezer, a refrigerator and an oven are used to cool and
heat the ball.

The data is shown in Table[l We determine the bounce
height by measuring the images with a vernier caliper,
then infer € using Eq. and estimate its uncertainty
Ae. For simplicity, we treat the temperature values as
exact.

The data of Tableis then fit to the model of Eq. .
We determine the values of the two unknown constants 7
and 7, by employing a standard y? statistic to measure
the deviation between the model and data. x?2 is the sum
of the squared differences between the model and data,
weighted by the uncertainty in the measurements,

2= Z(Ei — e(T,-))Q/Ae?,

%

(7.1)
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FIG. 3. The data and best-fit model. The model predicts
that the coefficient of restitution € asymptotes to unity at
large temperatures, and vanishes at 7' = 7 = 237.1K, for
which the pressure inside and outside the ball should be equal.

where the sum is over the seven measured data points in
Table [ We wrote a short python program to find the
values 71 and 7o which minimized x2. This computes
X2 on a dense rectangular grid of 7; and 7 values. The
minimum is at 7 = 237.1K and 7, = 176.9K, for which
x? = 4.5.

The data and the best-fit model are plotted in Fig.
and are in good agreement. If the model were exact and
the experimental errors were distributed as independent
Gaussian random variables, then with 90% confidence a
x? value (five degrees of freedom) of less than 9.2 would
be obtained.

VIII. CONCLUSION

The two-parameter model fits our tennis ball data well.
We expect that it would also apply to other types of gas-
filled balls such as soccer balls or basketballs, but this
would have to be tested experimentally.

The coefficient of restitution vanishes when no energy
is stored. Our model, specifically Eq. (4.1]), predicts that
this will occur if the inside and outside pressures of the
ball are equal. Eq. shows that this would be at
temperature 71, where the pressure inside the ball equals

the atmospheric pressure P, = 100kPa. Hence, the
ideal gas law implies that at room temperature 293K the
pressure inside our tennis ball should be (293K /71) Patm-
This could be tested by puncturing the ball with a hy-
podermic needle and measuring the internal pressure, or
experimenting with a ball containing an air valve.

Our experiment used an old and rather “dead” ten-
nis ball. The same logic implies that a fresh tennis ball
(which has a higher internal pressure) should have a lower
value of 77.

Our model, specifically Eq. , could also be tested
with inflatable balls at fixed temperature, using a bicycle
pump with a pressure gauge to vary the internal pressure
P,,. The assumption in Eq. (5.1)), that the energy loss
is proportional to the maximum change in the volume of
the ball during the bounce, could be tested by dropping
a ball from different heights.

All physical models are approximate and deviate to
some degree from the system which they are attempting
to describe. Here, we suspect that the least accurate
assumption is that the loss coefficient p is a temperature
independent constant: everyday experience shows that
rubber gets stiffer and less elastic when it is cold. Perhaps
this temperature dependence can also be modeled and
compared to data.

Feynman remarks that simple models sometimes work
better and apply more broadly than expected. In that
vein, it would be interesting to see if our model, which
was developed for gas-filled balls, also applies to other
types of balls such as solid rubber Superballs. We antici-
pate that the model won’t work well, because these balls
store energy in the compression of their rubber bodies
rather than in the compression of gas. Thus, the tem-
perature dependent behavior of the rubber, rather than
the ideal gas law, would govern the balance between en-
ergy stored and energy lost.
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