Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Determining surface phase diagrams including anharmonic effects

MPG-Autoren
/persons/resource/persons188973

Zhou,  Yuanyuan
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22064

Scheffler,  Matthias
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21549

Ghiringhelli,  Luca M.
NOMAD, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1908.11118.pdf
(Preprint), 3MB

PhysRevB.100.174106.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

supplementary_information.pdf
(Ergänzendes Material), 2MB

Zitation

Zhou, Y., Scheffler, M., & Ghiringhelli, L. M. (2019). Determining surface phase diagrams including anharmonic effects. Physical Review B, 100(17): 174106. doi:10.1103/PhysRevB.100.174106.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-AA7E-0
Zusammenfassung
We introduce a massively parallel replica-exchange grand-canonical sampling algorithm to simulate materials at realistic conditions, in particular surfaces and clusters in reactive atmospheres. Its purpose is to determine in an automated fashion equilibrium phase diagrams for a given potential-energy surface (PES) and for any observable sampled in the grand-canonical ensemble. The approach enables an unbiased sampling of the phase space and is embarrassingly parallel. It is demonstrated for a model of Lennard-Jones system describing a surface in contact with a gas phase. Furthermore, the algorithm is applied to SiM clusters (M=2, 4) in contact with an H2 atmosphere, with all interactions described at the ab initio level, i.e., via density-functional theory, with the PBE gradient-corrected exchange-correlation functional. We identify the most thermodynamically stable phases at finite T, p(H2) conditions.