Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Self-diffusion in carbon-alloyed CoCrFeMnNi high entropy alloys

MPG-Autoren
/persons/resource/persons228049

Rao,  Ziyuan
De magnete - Designing Magnetism on the atomic scale, MPG Group, Interdepartmental and Partner Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
High-Entropy Alloys, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons195255

Li,  Zhiming
High-Entropy Alloys, Project Groups, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
School of Materials Science and Engineering, Central South University, Changsha 410083, China;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lukianova, O. A., Kulitskiy, V. A., Rao, Z., Li, Z., Wilde, G., & Divinski, S. V. (2022). Self-diffusion in carbon-alloyed CoCrFeMnNi high entropy alloys. Acta Materialia, 237: 118136. doi:10.1016/j.actamat.2022.118136.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-E960-3
Zusammenfassung
Tracer diffusion of the substitutional components in interstitial (CoCrFeNiMn)1-xCx high-entropy alloys with nominally x = 0.002, 0.005 and 0.008 (in at. fractions) is measured at elevated temperatures from 1173 to 1373 K. Two different characteristic effects of interstitial carbon addition on substitutional diffusion in these FCC alloys are distinguished. At the highest temperature of 1373 K, alloying by C with relatively low concentrations (x = 0.002) retards diffusion of the substitutional elements with respect to those in the C-free alloy. At lower temperatures and/or higher C concentrations (x ≥ 0.005), an enhancement of the diffusion rates of all substitutional elements is seen. A model is suggested that relates the self-diffusivities in the CoCrFeMnNi-C alloys with the lattice distortion imposed by interstitially dissolved carbon. The experimental results are interpreted in terms of a decrease of the migration barriers for vacancy-mediated diffusion due to the presence of interstitial C atoms.