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Previous analyses have provided only fragments of the ‘CLL map’, 
each focusing on particular patient populations or different data 
types1–9, but none have built a comprehensive atlas with sufficient 

power and resolution to fully characterize the whole bioclinical spec-
trum of the disease. We set out to assemble, from existing and newly 
generated data, the largest CLL dataset to date. This dataset encom-
passed samples from 1,095 patients with CLL and 54 patients with 
monoclonal B cell lymphocytosis (MBL) from which whole-exome 

sequencing (WES) or whole-genome sequencing (WGS) (n = 1,074), 
RNA-sequencing (RNA-seq) (n = 712) and DNA methylation data 
(n = 999) were analyzed (Extended Data Fig. 1a,b). Samples were col-
lected during active surveillance (n = 680), after treatment (n = 52) or 
upon enrollment in therapeutic clinical trials1–3,10–13 (n = 416; n = 371 
treatment naive; n = 45 relapsed/refractory) (Supplementary Table 1). 
This large dataset enabled more complete delineation of the biologi-
cal underpinnings of CLL and its molecular subtypes.
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Recent advances in cancer characterization have consistently revealed marked heterogeneity, impeding the completion of 
integrated molecular and clinical maps for each malignancy. Here, we focus on chronic lymphocytic leukemia (CLL), a B 
cell neoplasm with variable natural history that is conventionally categorized into two subtypes distinguished by extent of 
somatic mutations in the heavy-chain variable region of immunoglobulin genes (IGHV). To build the ‘CLL map,’ we integrated 
genomic, transcriptomic and epigenomic data from 1,148 patients. We identified 202 candidate genetic drivers of CLL (109 
new) and refined the characterization of IGHV subtypes, which revealed distinct genomic landscapes and leukemogenic 
trajectories. Discovery of new gene expression subtypes further subcategorized this neoplasm and proved to be indepen-
dent prognostic factors. Clinical outcomes were associated with a combination of genetic, epigenetic and gene expres-
sion features, further advancing our prognostic paradigm. Overall, this work reveals fresh insights into CLL oncogenesis  
and prognostication.
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Results
Identification of new CLL drivers. To generate a comprehensive 
catalog of drivers, we first focused on the 984 CLL samples with 
WES. To ensure consistency and highest accuracy of the mutation 
calls, we reprocessed the data with an updated suite of tools, detect-
ing somatic single-nucleotide variants (sSNVs), short insertion/
deletion mutations (indels) and somatic copy-number alterations 
(sCNAs). We also applied specialized tools for detecting recently 
described CLL driver events such as the g.3 A>C mutation of the 
spliceosome-related small nuclear RNA U1 (ref. 14) (U1) and the 
R110 mutation in the IGLV3-21 gene15,16 (IGLV3-21R110) (Methods). 
Our prior power estimates17 suggested that with ~1,000 WES 
samples and somatic background mutation rate of ~1/Mb in CLL, 
we should be able to discover >90% of drivers mutated in 2% of 
patients, whereas with ~500 samples, the power drops to 50%. To 
verify these estimates, we performed a down-sampling analysis and 
confirmed that the number of drivers almost doubled, increasing 
from an average of 38.8 with 500 cases to 74.5 with ~1,000 cases, 
with the majority of new drivers mutated in <2% of patients (Fig. 1a 
and Methods). Likewise, increased cohort size enabled discovery of 
significantly recurrent sCNAs across all frequencies, with the steep-
est increase in lower-frequency drivers (<3%; Fig. 1b).

Our dataset revealed 82 putative CLL driver genes based on 
recurrent sSNV/indel mutations (q < 0.1), of which 37 were not 
previously identified as significantly altered in CLL1,2,18–20 (Methods, 
Fig. 1c and Supplementary Tables 2–4). Beyond the previously 
known CLL drivers, such as SF3B1, NOTCH1, ATM and TP53 
(mutated in 17.5%, 12.3%, 11.2% and 9.1% of patients, respectively), 
as well as mutations in IGLV3-21R110 and U1 (mutated in 9.5% and 
3.8%, respectively), the frequencies of the remaining events form a 
long, gradually decreasing tail (59 of 82 drivers mutated in <2% of 
patients). Although most newly discovered genes were mutated at 
low frequency, 24.2% of patients harbored at least one mutation in 
a new putative driver. Notably, they were also the sole sSNV/indel 
driver in 4% of patients. Six additional putative drivers were discov-
ered through spatial clustering of mutations in 3D protein structures, 
using CLUMPS21, including MAP2K2, DIS3 and DICER1 (Fig. 1d, 
Extended Data Fig. 1c and Supplementary Table 5). Three MAP2K2 
mutations were localized in the kinase domain, which activates ERK 
signaling and is functionally similar to MAP2K1, a previously iden-
tified CLL driver1. DIS3 encodes the catalytic subunit of a critical 
RNA exosome complex22 and is recurrently mutated in multiple 
myeloma23. Two of four altered sites in DIS3 were in cancer hotspots 
(D479 and D48824) and located in the catalytic domain25. Beyond 
sSNV/indels in coding regions, an analysis of 177 WGS did not 
reveal novel noncoding CLL drivers2,14 (Methods, Supplementary 
Table 3 and Supplementary Note).

In support of the newly discovered drivers, we noted that 7 
(18.9%) had mutations clustered in functional domains (Extended 
Data Fig. 1d). For example, mutations were identified in the 

DNA-binding domain of INO80, which encodes the catalytic sub-
unit of a chromatin remodeling complex that regulates genome 
stability26 and is frequently mutated in hepatosplenic T cell lym-
phoma27. Additionally, 7 (18.9%) have a role in other mature B cell 
malignancies, such as the tumor suppressor gene, RFX7, impli-
cated in Burkitt lymphoma28 and diffuse large B cell lymphoma29. 
These candidate drivers were also enriched in biological pathways 
known to contribute to CLL pathogenesis, such as DNA damage 
and chromatin modification1,2,14. However, they also identified 
processes not previously highlighted by driver genes, such as pro-
tein synthesis and stability, as well as regulation of cytoskeletal 
proteins and the extracellular matrix (Extended Data Fig. 2a,b and 
Supplementary Table 6).

A striking finding provided by our increased statistical power 
was the abundance of yet-unreported focal sCNAs associated with 
CLL, including 5 new gains and 30 new losses (of 6 and 53 total, 
respectively)1,2,30–32 (Fig. 1e and Supplementary Table 7). One such 
deletion in 5q32 (11.9% of samples) encompassed ARSI, TCOF1, 
CD74 and RPS14, which is part of the common deleted region in 
5q− syndrome, a low-risk subtype of myelodysplastic syndrome33. 
Two of these genes, RPS14 and TCOF1, are involved in ribosome 
function or biogenesis and have been implicated in inflammatory 
Toll-like receptor signaling in myelodysplastic syndrome mod-
els34 and in maintaining genomic integrity after DNA damage35, 
respectively, suggesting that multiple genes in this region are associ-
ated with pathways involved in CLL oncogenesis. Other deletions 
contain UCP2 and UCP3 in 11q13.4 (3.3%), which encode mito-
chondrial uncoupling proteins that function as tumor suppres-
sors altering redox homeostasis36,37 and multiple other regions that 
include known cancer-associated genes38 (Supplementary Table 
7). We were further enabled to identify rarely reported arm-level 
sCNAs, including 17q gain (1.6%) and 4p loss (1.5%)1,31. Altogether, 
our results vastly expand the map of CLL drivers and reveal con-
vergent mechanisms through which cardinal cellular processes are 
altered in this disease.

Molecular profiles of IGHV subtypes. We leveraged our increased 
cohort size to discover distinct candidate driver genes, sCNAs 
and structural variants (SVs) in 512 CLLs with mutated IGHV 
(M-CLLs) and 459 CLLs with unmutated IGHV (U-CLLs), expand-
ing previous work that identified only a limited number of discrete 
molecular characteristics associated with IGHV status1,2,39 (Methods 
and Supplementary Table 8). The IGHV subtype-specific muta-
tion analyses increased our sensitivity to identify seven additional 
putative drivers that were not identified in the pan-CLL analysis 
(Extended Data Figs. 1e and 3 and Supplementary Table 4 and 5). 
In U-CLL, this included NFKB1, a regulator of NF-κB signaling40, 
and RRM1, which encodes the catalytic subunit of ribonucleotide 
reductase that is critical for DNA replication and repair as well as 
the target of nucleoside analogs, including fludarabine41.

Fig. 1 | Increased power enables CLL driver gene detection. a,b, By down-sampling analysis, driver gene (a) and sCNA (b) discovery increases with 
additional samples. Points represent a random subset of samples with smoothed fit line; analysis separated by frequency. c, Landscape of genetic 
alterations in CLL with frequency of alterations (right, n = 1,063 patients). Header tracks show annotation of cohort, IGHV status, CLL or MBL sample, 
epigenetic subtype (epitype: naive-like (n-CLL), intermediate (i-CLL) and memory-like (m-CLL)), sequencing data type, prior treatment and U1 and IGLV3-
21R110 mutations (black) or new alterations (magenta label). Asterisks indicate discovery by CLUMPS. Bottom tracks show lower-frequency sSNV/indels 
and sCNAs, designated as new (magenta), known events (blue) or both (black). Bottom boxed inset shows candidate driver genes with frequency <1%. 
d, Representative genes identified by CLUMPS (Supplementary Table 5). 3D protein structure of MAP2K2 and DIS3. Mutated residues (red labels) cluster 
in functional regions (purple). e, Recurrent copy-number gains (top) and losses (bottom) by GISTIC analysis showing arm-level (left) and focal events 
(right). Chromosome number - vertical axis; dashed line - significance, q = 0.1. Blacklisted regions are in gray. Arm-level events are labeled with cytoband 
and frequency (n = 984). Focal events denote cytoband, frequency, number of genes encompassed in peak (bracketed) and genes of interest. Red/blue 
font indicates new focal events with frequency >2%. Black font indicates previously known events (Supplementary Table 7). CN, copy number; GCLLSG, 
German CLL Study Group; DFCI, Dana-Farber Cancer Institute; GCLLSG, German CLL Study Group; ICGC, International Cancer Genome Consortium; 
MDACC, MD Anderson Cancer Center; NHLBI, National Heart Lung and Blood Institute; UCSD, University of California San Diego; Mut, mutated; UCSD, 
University of California, San Diego; Unmut, unmutated; UTR, untranslated region.
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Although M-CLL and U-CLL had similar cohort sizes and com-
parable mutational burdens in coding regions (1.14/Mb versus 1.11/
Mb medians, respectively; Wilcoxon rank-sum test P = 0.98; though 

the mean number of clonal mutations genome-wide was increased 
in M-CLL −12.6 versus 9.6, P = 6 × 10−14), the number of significant 
putative drivers was much higher in U-CLL (54 versus 25 genes, 
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respectively; ratio 2.16, binomial test P = 0.0015). To ensure that 
this difference was not due to prior therapy, we compared only 
treatment-naive samples within each cohort (n = 375; M-CLL was 
downsampled) and again found more drivers in U-CLL (ratio 2.82, 
one-sample t-test P = 5 × 10−11). Most drivers were significant in 
either M-CLL (n = 9) or U-CLL (n = 38), whereas only a minority  

were significant in both subgroups (n = 16, 25.4% of total) (Fig. 2a).  
Of these shared drivers, 10 of the 16 were twice as frequent in 
U-CLL, consistent with increased driver frequency in this subtype.

IGHV subtypes were also distinguished by sCNA profiles (70 in 
either M-CLL or U-CLL versus 20 shared) (Fig. 2b, Extended Data 
Fig. 4 and Supplementary Table 7). Trisomy 19 (1.8%) was only 
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observed in M-CLL, consistent with previous studies42. In contrast, 
eight arm-level events including 2p gain (11.1%) and loss of 6q 
(5.6%) were only significant in U-CLL. The majority of focal events 
distinguishing the IGHV subtypes were new1,2,30,31, comprising 18 of 
23 events enriched in M-CLL and 25 of 37 in U-CLL, and some pro-
vided orthogonal evidence for CLL driver genes discovered through 
mutation analysis. For example, loss of 1p36.11 (4.4%) contained 
ARID1A, a known driver gene2, and both this sCNA and sSNV were 
only significant in U-CLL. The sCNAs identified also emphasized 
underlying biology important in CLL leukemogenesis. In M-CLL, 
the region in 7q36.1b loss (2.5%) included KMT2C, a lysine-specific 
methyltransferase involved in epigenetic regulation43 (Fig. 2b and 
Extended Data Fig. 4). A related tumor suppressor, KMT2D, is a 
candidate driver44 also enriched specifically in M-CLL (Fig. 2a and 
Extended Data Fig. 3), demonstrating a convergence of different 
genetic alteration mechanisms on the same biologic pathway in this 
IGHV subtype.

We further identified differences between M-CLL and U-CLL 
on the basis of SVs. From 177 WGS (88 M-CLL, 87 U-CLL and 2 
nonevaluable), we discovered 681 SV breakpoints in 141 (79.7%) 
patients (average of 4.8 per patient; Methods and Supplementary 
Table 9). Approximately 46% of SVs were clonal, supporting a 
potential role for SVs in CLL initiation (Supplementary Table 9 and 
Methods). The most recurrent SVs involving the immunoglobulin 
loci (as identified by IgCaller45; Methods) distinguished M-CLL 
from U-CLL (Extended Data Fig. 5a,b and Supplementary Table 9). 
We confirmed that the most common Ig translocation partner in 
M-CLL was BCL2 (5 of 88 cases, 5.7%)2. Conversely, a large 37-Mb 
deletion in chromosome 14 was identified in U-CLL (4 of 87 cases, 
4.6%), which deletes candidate CLL drivers (DICER1 and TRAF3) 
and directly perturbs ZFP36L1, a tumor suppressor gene that 
down-regulates NOTCH1 (ref. 46). The rearrangement mechanism 
also differed between these events, with aberrant V(D)J recombi-
nation driving the BCL2 events in M-CLL and class-switch recom-
bination facilitating the ZFP36L1-associated deletions in U-CLL 
(Methods and Extended Data Fig. 5b), consistent with class-switch 
recombination events occurring before germinal cell commit-
ment47,48. These different patterns and underlying mechanisms were 
confirmed in the WES cohort where IgCaller detected nine addi-
tional cases with BCL2 translocations in M-CLL and only one in 
U-CLL (Supplementary Table 9 and Extended Data Fig. 5c).

To evaluate possible differences in mechanisms of somatic 
mutation generation in M-CLL and U-CLL, we performed muta-
tion signature analysis on 177 WGS and identified activity of five 
mutational processes (Extended Data Fig. 6a and Supplementary 
Note). In addition to confirming the presence of the aging, 
canonical activation-induced cytidine deaminase (c-AID)- and 
non-canonical AID (nc-AID)-related signatures in both clonal and 
subclonal mutations11, we also found evidence of signature SBS18, 
likely due to damage from reactive oxygen species, and splitting of 
the c-AID signatures (SBS84 and SBS85). Of note, clustered muta-
tions in U-CLL were enriched in SBS84 relative to M-CLL, although 
nonsignificantly (Wilcoxon rank-sum test, P = 0.19), whereas 
SBS85 was more prevalent in M-CLL, likely reflecting unique muta-
tional processes arising from AID in each subtype (P = 1.6 × 10−9; 
Extended Data Fig. 6b,c).

Further highlighting the differences between M-CLL and 
U-CLL, we detected distinct inferred timing of acquired sSNV/
indels and arm-level sCNAs when analyzed by PhylogicNDT49 
(Methods and Fig. 2c). Trisomy 12 was an early event, and shared 
drivers such as TP53 and NOTCH1 were intermediate in both CLL 
subtypes1. In contrast, acquisition of BRAF mutations was an early 
event in M-CLL but occurred late in U-CLL (q < 0.1). Of those driv-
ers specifically enriched per subtype, MYD88 was an early event in 
M-CLL, whereas chromosome 20p loss and FUBP1 alterations may 
be initiating lesions in U-CLL. We separately assessed the temporal 

acquisition of sSNV/indels by analyzing their cancer cell fractions 
(CCFs) (Extended Data Fig. 6d). Only 12 (12.4%) driver genes had 
predominantly clonal events with a median CCF > 85%, and 6 of 
these 12 were new, including MSL3 and USP8 identified in M-CLL 
and U-CLL, respectively. This panoply of genetic differences under-
scores M-CLL and U-CLL as distinct molecular entities and sup-
ports their unique trajectories of leukemogenesis.

Given these differences, we analyzed the clinical impact of puta-
tive genetic drivers from each IGHV subtype (Methods, Fig. 2d,e, 
Table 1 and Supplementary Tables 10 and 11). Relative to M-CLL, 
U-CLL had more genetic changes associated with either failure-free 
survival (FFS) and/or overall survival (OS) (41 in U-CLL versus 
18 in M-CLL, binomial test P = 0.004; Fig. 2d,e). Of these, 18 were 
new events (5 of 18 in M-CLL and 13 of 41 in U-CLL; Fig. 2d,e). 
In M-CLL, ZC3H18 mutations and losses of 5q32 and 15q25.2 
were new alterations associated with risk of short FFS in addition 
to known factors such as TP53 and IGLV3-21R110 mutations. The 
prognostic impact of many of these novel putative drivers was also 
supported when the dataset was restricted to only treatment-naive, 
nontrial samples (n = 393) (Table 1 and Supplementary Table 10). 
Only two features were associated with reduced survival in M-CLL, 
which were age >60 years and gain of 8q, the chromosomal arm 
containing MYC. In U-CLL, RFX7 and NFKB1 were new candi-
date drivers associated with poor FFS and OS, although only FFS 
was shorter in the treatment-naive subset (n = 247;, Supplementary 
Table 10). The prognostic impact of known but less frequent driv-
ers, such as NFKBIE and ASXL1, was also evident in addition to 
verifying the known effects of more common features like 17p 
deletion. Of note, 17p deletion and TP53 mutations significantly 
cooccur1, which partially explains why only one was significant 
in our modeling. Further analysis of either alteration alone or in 
combination demonstrated that TP53 mutation in the absence of 
17p deletion was not associated with adverse outcomes in U-CLL 
(Supplementary Table 10). This observation likely reflects the use 
of contemporary therapies such as ibrutinib and venetoclax where 
TP53 mutation alone has not been shown to influence prognosis50,51.

In summary, aggregation of three separate genomic analyses of 
the entire cohort (n = 984), M-CLL (n = 512) and U-CLL (n = 459) 
revealed a total of 97 putative CLL driver genes and 105 sCNAs in 
addition to U1 and IGLV3-21R110 mutations (Fig. 2f). Our previous 
studies demonstrated that 8.9% of patients lacked an identifiable 
driver1,2. In our current analysis, the percentage of patients lacking 
at least one potential driver was reduced to 3.8%. These patients 
without identifiable drivers were predominantly M-CLL (Fisher’s 
exact test P = 1.04 × 10−7; 6.6% relative to 0.6% in U-CLL), confirm-
ing yet another distinction between the IGHV subtypes2.

CLL subtypes based on epigenomic and transcriptomic features. 
In addition to subtypes based on IGHV status, genome-wide DNA 
methylation studies previously identified three epigenetic groups 
(epitypes), defined based on distinct methylation profiles of pre- 
and post-germinal center experienced B cells, including naive-like 
CLL (n-CLL; predominantly U-CLL), intermediate CLL (i-CLL; 
mix of M-CLL and U-CLL) and memory-like CLL (m-CLL; pre-
dominantly M-CLL)6,7. Furthermore, cell division results in epi-
genetic imprints that correlate with the proliferative history of the 
cell. A mitotic clock score called epigenetically determined cumu-
lative mitoses (epiCMIT) has further delineated prognosis within 
epitypes where higher epiCMIT scores corresponded with worse 
prognosis52. Epitypes and epiCMIT were defined previously7,52 using 
450K DNA methylation arrays (n = 490), but we also developed and 
validated new methodologies to incorporate reduced representation 
bisulfite sequencing data (RRBS) (n = 509) (Methods, Extended 
Data Fig. 7a–f and Supplementary Tables 2 and 12). Evaluating 
the entire dataset (n = 999), we found that the two main sources of 
variation in the CLL DNA methylome are explained by components 
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Table 1 | Patient characteristics in clinical analyses

Overalla,  
n (%)

IGHV, 
mutated,  
n (%)

IGHV 
unmutated,  
n (%)

Treatment 
naiveb, n (%)

Treatment 
naiveb, IGHV, 
mutated, n (%)

Treatment naiveb, 
IGHV unmutated, 
n (%)

EC cohort,  
n (%)

Integrated 
analysis,  
n (%)

Number of patients 1,009 518 476 640 393 247 603 506

Site

 UCSD 21 (2) 8 (2) 13 (3) 21 (3) 8 (2) 13 (5) 20 (3) 17 (3)

 DFCI 172 (17) 103 (20) 69 (15) 138 (22) 96 (24) 42 (17) 105 (17) 64 (13)

 GCLLSG 278 (28) 107 (21) 160 (34) 0 (0) 0 (0) 0 (0) 206 (34) 172 (34)

 MDACC 22 (2) 0 (0) 21 (4) 2 (<1) 0 (0) 2 (1) 0 (0) 0 (0)

 NHLBI 68 (7) 23 (4) 45 (9) 46 (7) 19 (5) 27 (11) 11 (2) 10 (2)

 ICGC 448 (44) 277 (53) 168 (35) 433 (68) 270 (69) 163 (66) 261 (43) 243 (48)

Treatment naive 920 (91) 500 (97) 407 (86) 640 (100) 393 (100) 247 (100) 603 (100) 0 (0)

Age at time of 
sample (years), 
median (range)

63 (19, 94) 65 (32, 90) 61 (19, 94) 65 (19, 94) 66 (32, 90) 62 (19, 94) 63 (32, 91) 63 (34, 91)

 <60  375 (37) 163 (31) 208 (44) 227 (35) 118 (30) 109 (44) 226 (37) 189 (37)

 ≥60  634 (63) 355 (69) 268 (56) 413 (65) 275 (70) 138 (56) 377 (63) 317 (63)

Sex

 Male 655 (65) 308 (59) 336 (71) 384 (60) 218 (55) 166 (67) 405 (67) 342 (68)

 Female 354 (35) 210 (41) 140 (29) 256 (40) 175 (45) 81 (33) 198 (33) 164 (32)

Rai stage at diagnosis

 0 368 (36) 250 (48) 115 (24) 347 (54) 241 (61) 106 (43) 222 (37) 185 (37)

 1 192 (19) 74 (14) 113 (24) 105 (16) 53 (13) 52 (21) 122 (20) 101 (20)

 2 114 (11) 47 (9) 65 (14) 30 (5) 13 (3) 17 (7) 67 (11) 56 (11)

 3 15 (1) 4 (1) 11 (2) 7 (1) 1 (<1) 6 (2) 9 (1) 7 (1)

 4 31 (3) 12 (2) 19 (4) 8 (1) 4 (1) 4 (2) 18 (3) 16 (3)

 Unknown 290 (29) 132 (25) 153 (32) 143 (22) 81 (21) 62 (25) 165 (27) 141 (28)

IGHV

 Mutated 518 (51) 518 (0) 0 (0) 394 (61) 393 (100) 0 (0) 319 (53) 272 (54)

 Unmutated 476 (47) 0 (0) 476 (0) 247 (39) 0 (0) 247 (100) 272 (45) 234 (46)

 Unknown 15 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 12 (2) 0 (0)

EC

 EC-m1 — — — — — — 53 (9) 47 (9)

 EC-u1 — — — — — — 188 (31) 152 (30)

 EC-m2 — — — — — — 48 (8) 43 (9)

 EC-o — — — — — — 21 (3) 19 (4)

 EC-u2 — — — — — — 64 (11) 53 (10)

 EC-m3 — — — — — — 54 (9) 47 (9)

 EC-m4 — — — — — — 113 (19) 92 (18)

 EC-i — — — — — — 62 (10) 53 (10)

Epitype (n = 874)c

 Memory 342 (39) — — — — — — 216 (43)

 Intermediate 141 (16) — — — — — — 79 (16)

 Naive 391 (45) — — — — — — 211 (42)

Copy-number alterationsd

 tri(12) 149 (15) 52 (10) 94 (20) 90 (14) 34 (9) 56 (23) — 68 (13)

 del(13q14.3) 488 (48) 293 (56) 188 (40) 306 (48) 219 (56) 87 (35) — 255 (50)

 del(11q) 169 (17) 24 (5) 163 (34) 83 (21) 11 (3) 72 (30) — 87 (17)

 del(17p) 89 (9) 13 (3) 56 (12) 30 (5) 9 (2) 21 (9) — 31 (7)

Em dashes indicate data not analyzed in the cohort. EC, expression cluster. aWith OS and sequencing data. bExcluding patients sampled because they had enrolled on a treatment trial. cEpitype was not included 
in the genetics analyses, but it is included for descriptive purposes. dAll copy-number alterations were defined by GISTIC (Methods). del(17p) and del(11q) includes arm and focal events encompassing TP53 
(del(17p) + del(17p13.1)) and ATM (del(11q) + del(11q22.3)).
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Fig. 3 | CLL subtypes based on epigenetic and transcriptomic features. a, Main sources of variability in the DNA methylome are epitype and epiCMIT 
as determined by unsupervised principal-component (PC) analysis in samples analyzed by 450K methylation array (top, n = 490) or single-end RRBS 
(RRBS-SE, bottom, n = 388). b, Eight gene expression clusters (ECs; columns) were identified by Bayesian non-negative matrix factorization (BNMF) 
method in 603 treatment-naive samples. Heatmap demonstrates associated upregulated (red) and downregulated (blue) marker genes for each cluster 
(rows) with select genes (right; Supplementary Table 13). Right vertical panel demonstrates upregulated (Up, red) or downregulated (Down, blue) 
histone 3 lysine 27 acetylation (H3K27ac) in regulatory regions for each marker gene; EC-o and EC-i H3K27ac was not assessed due to low sample size 
(NA, gray). Header shows the number of samples in ECs, association with IGHV subtype (M-CLL, purple; U-CLL, orange) or epitype (n-CLL, blue; i-CLL, 
yellow; m-CLL, red). Frequency of common CLL alterations is shown for each EC. Significant associations are marked with asterisks (q < 0.1, curveball 
algorithm; Methods). c, Differential gene expression of tri(12)-positive and negative cases in EC-m2 (top) and EC-u2 (bottom) compared to all other 
M-CLL or U-CLLs, respectively (EC marker genes shown in blue). d, Dendrogram of ECs with associated upregulated and downregulated biologic 
pathways determined by gene set enrichment analysis (Extended Data Fig. 9b). e, Cellular proliferative history, represented by epiCMIT, varied in ECs 
enriched with m-CLL epitype. EC-m3 had significantly lower epiCMIT relative to EC-m1, EC-m2 and EC-m4 (P values by two-sided t-test; unadjusted). 
The dashed red line marks the mean epiCMIT in all m-CLLs (n = 404). In boxplots, the center line represents the median; box limits, upper and lower 
quartiles; whiskers, 1.5× interquartile range. IL-10, interleukin-10; IFN, interferon; FC, fold change; OxPhos, oxidative phosphorylation; TNF, tumor 
necrosis factor.
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of cellular memory: the cell of origin (epitype) and the proliferative 
history of the cell (epiCMIT) (Fig. 3a).

While the overall DNA methylome mainly reflects the cel-
lular past of each CLL, the present phenotypic state can be deter-
mined by investigating transcriptomes. By applying Bayesian 
non-negative matrix factorization for unsupervised clustering of 
RNA-seq data from 603 treatment-naive CLL samples, we identi-
fied 8 robust expression clusters (ECs) (Fig. 3b, Extended Data 
Fig. 8a–d, Supplementary Table 13 and Supplementary Note). The 
ECs strongly associated with IGHV mutational status and/or epi-
type, revealing two subtypes of U-CLL/n-CLL (EC-u1 and EC-u2) 
and four subtypes of M-CLL/m-CLL (EC-m1, EC-m2, EC-m3 and 
EC-m4) (Supplementary Table 13). EC-i was best defined by the 
i-CLL epitype whereas EC-o, the smallest cluster (n = 21; 3.5%), 
was not significantly associated with any previously defined CLL 
group. Both EC-i and EC-o displayed borderline identity of somatic 
hypermutations in IGHV with germline, close to the 98% threshold 
distinguishing M-CLL from U-CLL (Extended Data Fig. 8e).

Although most ECs associated with IGHV status and epitype, 
expression-based clustering further refined and defined subsets 
within these conventional distinctions. However, 8% of samples 
had discordant IGHV status and EC assignment (i.e., M-CLLs 
included in EC-u clusters or vice versa). As an example of these dis-
cordant cases, we observed that eight M-CLLs clustered in EC-u2, 
comprising 13% of this EC-u cluster. IGHV mutation rate for dis-
cordant cases was compared to those with concordant expression 
profiles, and although a small difference in mean percent identity 
in U-CLL was detected (t-test P = 0.032, 99.65% versus 99.96% 
means, respectively), no difference was found among M-CLL cases 
(P = 0.24, 93.96% versus 93.25%) (Extended Data Fig. 8f). Although 
correctly classified, some discordant cases had borderline IGHV 
status (97.5–98.5% IGHV identity; n = 7) consistent with enrich-
ment of the i-CLL epitype (17% in discordant versus 8.3% in con-
cordant samples, Fisher’s exact test P = 0.03). Interestingly, CHD2 
alterations were overrepresented in discordant M-CLL cases where  
45% had either CHD2 mutation or loss of 15q26.1 encompassing 
CHD2 (P = 0.002).

We further explored whether the ECs were enriched with spe-
cific drivers. Indeed, EC-u1 was associated with loss of 11q22.3, gain 
2p, and XPO1 and U1 mutations, whereas EC-u2 displayed enrich-
ment of tri(12) (q < 0.1) (Fig. 3b and Supplementary Table 13).  
EC-m2 was also associated with tri(12), occurring in 56%, as well 
as tri(19)53. SF3B1 and IGLV3-21R110 mutations were both enriched 
in EC-i (53% and 77%, respectively), which is consistent with previ-
ous work demonstrating their association with the i-CLL epitype54. 
Conversely, EC-m1 was enriched with driverless patients (24% 
of M-CLLs, Fisher’s exact test q = 0.004, odds ratio 4.9; consider-
ing M-CLLs only). In addition to assessing genetic alterations, we 
analyzed which ECs displayed major stereotyped immunoglobulin 
genes, which are found in 13.5% of CLL and are divided into subsets 
that associate with clinical outcome55. All EC-m clusters had a lower 
proportion of major stereotyped B cell receptors (4-6%), whereas 
there was a higher incidence in the other ECs (14–20%) (Extended 
Data Fig. 8g). EC-i was associated with CLL stereotyped subset 2 
and IGLV3-21 gene expression consistent with IGLV3-21R110 muta-
tions previously described in this subset54 (Extended Data Fig. 8h,i).

Although genetic events were associated with most ECs, they 
cannot fully capture these expression phenotypes, which reflect an 
ensemble of genetic, epigenetic and other biological effects. EC-m2 
and EC-u2, for example, were strongly associated with tri(12) events, 
but these occurred in only 56% and 67% of their samples, respec-
tively. To delineate if a nongenetic unifying phenotype was present, 
we separately compared the tri(12)-positive and negative subsets 
of EC-m2 and EC-u2 to M-CLL or U-CLL samples in other ECs, 
respectively (Fig. 3c). EC-m2 tri(12)-positive and negative cases 
shared overexpression of HES1, MYC and EBF1, which encode a 

regulator of B cell differentiation previously associated with tri(12)9, 
as well as downregulation of Wnt signaling genes (WNT3, WNT9B 
and LEF1). EC-u2 cases shared downregulation of pro-apoptotic 
genes TP73 (ref. 56) and BIK57 and overexpression of MAPK4, 
which activates prosurvival pathways58,59. Thus, non-tri(12) samples  
‘phenocopy’ the tri(12) samples within each of these clusters.

To further explore the biological differences among the ECs, 
we identified marker genes that were significantly upregulated or 
downregulated and were respectively supported by increased or 
decreased histone 3 lysine 27 acetylation levels (H3K27ac, a mark 
of active regulatory elements) (Methods, Fig. 3b, Extended Data 
Fig. 8j,k and Supplementary Table 13). The top upregulated marker 
genes in EC-u1 included SEPT10 and LPL, which have been pre-
viously described in U-CLL and associated with poor prognosis60. 
Another upregulated EC-u1 gene, OSBPL5, was the top expression 
marker predicting shorter time to progression after treatment with 
fludarabine, cyclophosphamide and rituximab59.

Differentially expressed genes in each EC reflected heteroge-
neity in biological pathways that was captured by gene set enrich-
ment analysis (Methods, Fig. 3d, Extended Data Fig. 9a,b and 
Supplementary Table 13). Although EC-o was not associated with 
IGHV status or epitype, it was defined by enrichment in oxida-
tive phosphorylation signaling (q = 4.7 × 10−15). The EC-m clusters 
were distinguished by either upregulated or downregulated inflam-
matory signaling or antigen expression via nonclassical HLA class 
I. The EC-u clusters shared gene expression changes reflecting 
impaired protein translation but differed in TNF-α signaling. EC-i 
was enriched for pathways regulating migration and the humoral 
immune response, possibly reflecting autonomous B cell recep-
tor signaling by IGLV3-21R110. Finally, we compared the epiCMIT 
scores of the ECs within each epitype. In EC-m clusters, EC-m3 had 
the lowest epiCMIT, consistent with a lower proliferative history 
and suggestive of better patient outcomes (Fig. 3e).

To evaluate the robustness of EC classification and its potential 
application for prognostication in new samples, we built an EC clas-
sifier based on differentially expressed genes, which achieved ~80% 
overall accuracy (Methods). Performance was particularly high for 
EC-m3 and EC-i, which had perfect positive predictive value at 
~85% recall (Supplementary Table 13). By computing EC-specific 
precision–recall curves (average area under the curve = 0.88), we 
show that restricting predictions to the higher-confidence cases can 
improve performance (Supplementary Table 13 and Extended Data 
Fig. 9c–f). Importantly, similar performance was achieved when 
training the models with only 26 genes (Extended Data Fig. 9g).  
Applying the classifier to samples that were excluded from the ini-
tial EC discovery (n = 105; 44% were after treatment) and to an 
external CLL cohort (n = 136)61 showed comparable EC distribu-
tions per sample set and similar compositions of IGHV subtypes 
per EC, supporting the generalizability of these ECs (Extended 
Data Fig. 9h,i and Methods). Finally, by analyzing longitudinally 
sampled CLL specimens from 19 patients, we confirmed EC sta-
bility over years of disease in most cases (P < 10−6 by permutation; 
Methods and Extended Data Fig. 9j). This finding provides further 
evidence that the ECs are generally a stable readout, with EC shifts 
potentially reflecting clonal evolution, both of which are useful  
for prognostication.

Integrative analysis predicts outcome. Multivariable analysis inte-
grating clinical features and IGHV status confirmed independent 
prognostic impact of the ECs on FFS (n = 603, P < 0.001) and OS 
(P = 0.007) (Methods, Table 1 and Supplementary Tables 11 and 14). 
The EC-u clusters had similarly short FFS and EC-i displayed inter-
mediate FFS (Fig. 4a). However, outcomes in EC-m clusters were 
distinct, where EC-m1, EC-m2 and EC-m4 demonstrated shorter 
FFS relative to EC-m3, the cluster with the best prognosis and 
lowest epiCMIT score. Differentiation of EC-m clusters was also 
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evident when evaluating OS (Fig. 4b). This confirmed ECs as an 
independent prognostic factor in CLL, particularly in distinguish-
ing between EC-m clusters.

Focusing on 47 cases for which there was discordance between 
their IGHV status and EC, we asked whether this discordance  

influenced outcome. FFS was shorter in discordant M-CLLs and 
longer in discordant U-CLLs relative to the concordant cases 
(log-rank test P = 0.031 and P = 0.0024, respectively) (Fig. 4c). For 
instance, median FFS of discordant M-CLLs (i.e., M-CLLs in EC-u 
clusters) was 5.3 years compared to 10.7 years in concordant cases 

p < 0.0001
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(M-CLLs in EC-m clusters), thus revealing added prognostic value 
of the ECs relative to traditional classification.

To systematically assess the features contributing to outcome, we 
integrated IGHV subtype, genetic alterations, epitypes, epiCMIT 
and ECs in a multivariable model (Fig. 4d,e and Supplementary 
Table 15). The n-CLL epitype emerged as a strong predictor of 
FFS and OS, emphasizing the known importance of cell of origin. 
IGHV status and epiCMIT also influenced OS to a greater degree 
than FFS. A limited set of previously identified genetic alterations 
were associated with shorter FFS (ZNF292, SF3B1, ASXL1 and 
17p deletion), but 11 adversely affected OS including new events 
such as loss of 5q32. We noted the absence of known alterations, 
such as ATM and NOTCH1, which were significant by univariate 
analysis only. This likely reflects co-occurrence with other prog-
nostic factors, similar to what we observed with TP53 and 17p 
deletion (Supplementary Table 14). Specific ECs were particularly 
informative in the model, with EC-i associated with adverse FFS 
and EC-o, EC-m3 and EC-m4 as protective. Altogether, this inte-
grated model reveals a refined prognostic paradigm where genet-
ics, epigenetics and gene expression classification all contribute to 
clinical outcome.

Discussion
Through integration of harmonized multiomic data, this work 
has expanded the molecular map of CLL and provided additional 
insights into its biological and clinical heterogeneity. The number of 
previously unrecognized putative drivers was doubled, thus achiev-
ing a more complete genetic basis for this cancer. These alterations 
highlight important cellular pathways not previously impacted by 
candidate drivers that may provide opportunities for development 
of new therapies in the future. Beyond cataloging the overall land-
scape, we delineated the distinction between its molecular subtypes 
by comprehensively analyzing the CLL genome, epigenome and 
transcriptome. IGHV subtypes were enriched in unique genetic 
driver alterations leading to divergent clonal trajectories. We found 
a significant increase in genetic heterogeneity in U-CLL with more 
putative drivers relative to M-CLL. Notably, the driverless samples 
were almost exclusively M-CLL2, suggestive of alternative mecha-
nisms of leukemogenesis in this subtype. Despite lower genetic 
complexity, M-CLL displayed increased transcriptional diversity 
segregating mainly into four ECs, which had different proliferative 
histories. Furthermore, the discovery of ECs expands our contem-
porary disease framework. Although specific ECs were associated 
with IGHV status, epitypes and genetic events, none of these previ-
ously defined groups completely captured the phenotypic diversity 
exhibited in the expression profiles. Additionally, identifying dis-
cordant cases with gene expression profiles inconsistent with their 
IGHV status was prognostic, and CHD2 alterations may be contrib-
uting to this changed phenotype in M-CLL. This study reveals the 
complex nature of CLL and provides a comprehensive molecular 
atlas of CLL that forms the basis for further exploration of unique 
mechanisms of pathogenesis.

By integrating these biological insights with patient outcomes, we 
highlighted the prognostic implications of even rare genetic events 
within IGHV subtypes, such as mutations in ZC3H18 and RFX7. 
Incorporating these data in a unified model revealed the importance 
of integrating multiple data layers in this disease. Critical compo-
nents associated with outcome included the ECs, new genetic altera-
tions such as loss of 5q32 in addition to known factors including the 
cell of origin (IGHV status and epitype), proliferative history (epiC-
MIT), 17p deletion and SF3B1 mutations. This study refines our 
current disease paradigm and establishes a new spectrum of events 
contributing to leukemogenesis that may have implications beyond 
prognostication. In the future, this molecular foundation may allow 
for better prediction of response to therapy or provide the basis for 
rational combination of novel agents.
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Methods
Human samples. The characteristics of the 1,154 CLL/MBL samples from 1,148 
patients are described in Supplementary Table 1, and clinical characteristics of the 
1,009 CLL samples used in the clinical analysis are listed in Table 1. These samples 
included tumor and germline samples collected either during active surveillance 
(n = 680), after treatment (n = 52)1–3,11 or at enrollment of a clinical trial before 
first cycle of therapy (n = 416; treatment naive, n = 371; relapsed/refractory, 
n = 45)1,10,12,13,62. Briefly, these trials included (1) comparison of fludarabine and 
cyclophosphamide (FC) to FC-rituximab (FCR) in previously untreated patients 
(CLL8 trial, n = 309)1,62; (2) treatment-naive TP53-mutated patients within phase 
2 CLL20 trial who all received alemtuzumab (n = 31)63; and (3) ibrutinib or 
R-ibrutinib in relapsed/refractory or untreated patients with 17p deletion, TP53 
mutation and/or 11q deletion (n = 76; treatment naive, n = 31; relapsed/refractory, 
n = 45)10,12,13. Written informed consent was obtained from all patients. Samples 
were collected via protocols approved by institutional review boards or ethics and 
policy committees from the ICGC; GCLLSG; DFCI; the CLL Research Consortium 
(CRC); the National Heart, Blood, and Lung Institute; and MDACC. All clinical 
trials were conducted in accordance with the Declaration of Helsinki and 
International Conference on Harmonization Guidelines for Good Clinical Practice. 
If multiple samples were obtained from a patient, then the earliest collected sample 
was selected for analysis. Peripheral blood mononuclear cells were isolated and 
DNA and/or RNA was extracted and prepared with protocols varying between 
the different studies1–3,10–13,62. Briefly, either positive or negative immunomagnetic 
selection of CLL cells was performed in either all samples or those with low white 
blood cell counts, depending on the study. DNA was extracted using Qiagen 
kits, and RNA was obtained either using RNAeasy kit (Qiagen) or Trizol reagent 
(Invitrogen Life Technologies) per the manufacturer’s instructions.

Molecular data retrieval and assembly. We retrieved previously reported 
sequencing data from CLL and MBL samples, including 984 whole-exome 
sequences1–3, 177 whole-genome sequences2,11, 448 RNA-seq2,3,10,13,64, 490 methylation 
450K arrays2 and 547 RRBS65. Additionally, we sequenced 264 RNA-seq samples 
and performed targeted DNA sequencing of the NOTCH1 3′ untranslated region 
for 293 samples (Supplementary Note). Single-nucleotide polymorphism-based 
fingerprinting comparisons within and between these sequencing data types 
were conducted with CrosscheckFingerprints66 for quality control to remove data 
redundancy and verify patient-matched data, where appropriate.

Sequence data processing and analysis. All sequencing data (WES, WGS, 
RNA-seq, RRBS and targeted NOTCH1 sequencing) were processed and analyzed 
using methods implemented in the Broad Institute’s cloud-based Terra platform 
(https://app.terra.bio). The main Terra methods are available at https://app.terra.
bio/#workspaces/broad-firecloud-wupo1/CLLmap_Methods_Apr2021 in addition 
to the detailed descriptions herein.

WES/WGS alignment and quality control. We processed all DNA sequence 
data through the Broad Institute’s data processing pipeline. For each sample, this 
pipeline combines data from multiple libraries and flow cell runs into a single 
BAM file. This file contains reads aligned to the human genome hg19 genome 
assembly (version b37) done by the Picard and Genome Analysis Toolkit (GATK)67 
developed at the Broad Institute, a process that involves marking duplicate reads, 
recalibrating base qualities and realigning around indels. Reads were aligned to the 
hg19 genome assembly (version b37) using BWA-MEM (version 0.7.15-r1140).

Mutation calling. Before variant calling, the impact of oxidative damage (oxoG) 
to DNA during sequencing was quantified using DeToxoG68. The cross-sample 
contamination was measured with ContEst based on the allele fraction of 
homozygous single-nucleotide polymorphisms69, and this measurement was 
used in the downstream mutation calling pipeline. From the aligned BAM files, 
somatic alterations were identified using a set of tools developed at the Broad 
Institute (www.broadinstitute.org/cancer/cga). The details of our sequencing data 
processing have been described elsewhere23,70. Briefly, for sSNVs/indel detection, 
high-confidence somatic mutation calls were made by applying MuTect71, 
MuTect272 and Strelka273 to WES/WGS sequencing data. Given that normal blood 
samples might also contain CLL cells, we used DeTiN74 to estimate tumor in 
normal contamination to recover falsely rejected sSNVs/indels. Next, we applied 
four types of filters: (1) a realignment-based filter, which removes variants that 
can be attributed entirely to ambiguously mapped reads; (2) an orientation bias 
filter, which removes possible oxoG and FFPE artifacts68; (3) a ContEst filter, which 
removes variants that might come from other samples due to contamination; and 
(4) an allele fraction specific panel-of-normals filter, which compares the detected 
variants to a large panel of normal exomes or genomes and removes variants that 
were observed in the two panel-of-normals; one consists of 8,334 normal samples 
in The Cancer Genome Atlas, whereas the other consists of 481 CLL-matched 
normal samples with tumor in normal estimates of 0. All four filters together 
contributed to the exclusion of potential false-positive events (e.g., commonly 
occurring germline variants or sequencing artifacts), which ultimately yielded the 
final list of mutations. All filtered events in candidate CLL driver genes were also 
manually reviewed using the Integrated Genomics Viewer (IGV)75.

To increase the sensitivity and precision of mutation calls in candidate driver 
genes, an additional variant calling step was performed for the candidate driver 
gene loci using RFcaller (https://github.com/xa-lab/RFcaller), a pipeline that uses 
read-level features and extra trees/random forest algorithms for the detection of 
somatic mutations. This pipeline was run with default parameters for WES or 
WGS data, as well as for RNA-seq data for NOTCH1, which has low coverage in 
hotspot regions in some samples due to high GC content. All candidate mutations 
that passed filters and were detected by both pipelines were considered positives. 
Mutations detected by only one of the callers were visually inspected by a set of 
at least four expert curators, considering the following exclusion criteria: (1) low 
evidence due to limited number of reads supporting the mutation in the tumor 
sample or excessive mutant reads in the normal sample, (2) low depth of coverage 
to rule out germline variant, (3) low base quality region, (4) low mapping quality 
region leading to multimapped reads and (5) calls supported by reads with a strong 
strand bias.

Identification of significantly mutated genes. To identify candidate cancer genes 
using our mutation calls from WES, we first used SignatureAnalyzer76 to identify 
mutational processes and potential artifact signatures. We discovered a signature 
likely due to the bleedthrough sequencing artifact and then filtered mutations with 
greater than 95% chance attributed to that bleedthrough signature. Next, we ran 
MutSig2CV77 to identify driver genes from the filtered WES mutation annotation 
format file. A stringent manual review was conducted using the IGV75 to review 
the mutations in the driver genes and further exclude low-evidence calls. Then, 
we reran MutSig2CV on the filtered set of mutation calls from WES to identify the 
final candidate driver genes. In addition, we also used CLUMPS21 (https://github.
com/getzlab/getzlab-CLUMPS2) to identify driver genes based on clustering of 
mutations in the 3D structure of the protein product (Supplementary Table 5). For 
CLUMPS, we applied two false discovery rate corrections, one for all candidates 
and a second restricted hypothesis testing focused on genes in the COSMIC 
Cancer Gene Census38. Finally, for further stringency and to exclude candidates 
irrelevant to CLL biology, we discarded candidate genes that were not expressed in 
RNA-seq of 603 treatment-naive CLL samples using a one-sided t-test testing for 
difference from 0 in transcripts per million (TPM) space. This process discarded 
15 candidate genes (Supplementary Table 4).

Copy-number analysis. For detecting sCNAs, we used the GATK4 CNV pipeline 
(http://github.com/gatk-workflows/gatk4-somatic-cnvs), which involves the 
CalculateTargetCoverage, NormalizeSomaticReadCounts and Circular Binary 
Segmentation algorithms78 for genome segmentation. To identify candidate 
sCNA drivers (genomic regions that are significantly amplified or deleted), we 
then applied GISTIC 2.0 (ref. 79). To exclude potential germline CNAs, we first 
ran GISTIC 2.0 on the matched normal samples and then concatenated the 
recurrent CNAs this outputted (q < 0.1) to the blacklisted regions. Then, we ran 
GISTIC 2.0 on the tumor samples to produce a list of candidate sCNA driver 
regions. A force-calling process was applied to identify the presence/absence 
of each sCNA driver event across tumor samples (https://github.com/getzlab/
GISTIC2_postprocessing). To further filter the potential false-positive drivers, we 
only accepted sCNA drivers with population frequency greater than 1%. Finally, 
all filtered sCNA drivers were manually reviewed using IGV75 to exclude drivers 
that are based on sCNA events with low supporting evidence or that were localized 
close to centromeres. sCNA drivers were annotated by intersection with our list of 
CLL mutation driver genes and with genes in the COSMIC Cancer Gene Census38 
(v90; Supplementary Table 7).

SV calling. For SV detection, our pipeline (the Broad Institute’s Cancer Genome 
Analysis (CGA) SV pipeline)80 integrates evidence from three structural variation 
detection algorithms (Manta81, SvABA82 and dRanger23,70,83) to generate a list 
of structural variation events with high confidence. We followed the three SV 
detection tools with BreakPointer84 to pinpoint the exact breakpoint at base-level 
resolution. SVs calls were filtered if called by less than two tools or if they 
were identified in a panel of normal samples80. Next, breakpoint information 
was aggregated per sample to identify (1) balanced translocations, which were 
defined as those with breakpoints on reverse strands within 1 kb of each other; 
(2) inversions supported on both ends; and (3) complex events, based on the 
number of clustered events within 50 kb of each other (Supplementary Table 9). 
Breakpoints were annotated by intersection with our lists of CLL driver genes 
and significant sCNA regions, as well as with genes in the COSMIC Cancer Gene 
Census (v90)38 (Supplementary Table 9). These SV calls were compared to SVs 
called in Puente et al.2, from which an additional 90 SVs were added after manual 
review. Clonal events were defined as those with CCF ≥ 0.75 and identified using 
the CGA SV pipeline algorithm (https://github.com/getzlab/REBC_tools; v1.1.3)80. 
This method could be applied to the 569 SVs detected by the CGA SV pipeline, 
which provides the required information for CCF calculation, out of which we 
could successfully estimate CCF for 558 (98%)80. IgCaller45 (v1.1) was used to 
identify additional SVs involving immunoglobulin genes (Supplementary Note).

Immunoglobulin gene characterization. The immunoglobulin heavy (IGH) 
and light (IGL) chain gene rearrangements and mutational status were obtained 
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from WGS/WES and RNA-seq using IgCaller (v1.1)45 and MiXCR (v.3.0.10)85, 
respectively. The rearrangements obtained were visually inspected in IGV75. The 
obtained sequences were used as input in IMGT/V-QUEST (v3.5.18; release 
202018-4)86 to confirm gene annotations and mutational status. IGH gene 
rearrangements were complemented with Sanger sequencing available for 1,076 
cases. IGH and IGL characterization from the different sources were integrated and 
compared and used to infer IGLV3-21 R110 mutation status. See Supplementary 
Note and Supplementary Table 8 for more information.

RNA-seq analysis. RNA-seq data were processed in Terra using the GTEx 
V7 pipeline (https://github.com/broadinstitute/gtex-pipeline). Briefly, reads 
were aligned with STAR (v2.6.1d)87 to hg19 (b37) using the GENCODE v19 
annotation, and quality control metrics and gene expression were computed with 
RNA-SeQC v2.3.6 (https://github.com/getzlab/rnaseqc)88. A collapsed version of 
the GENCODE annotation was used to quantify gene-level expression (available 
at gs://gtex-resources/GENCODE/gencode.v19.genes.v7.collapsed_only.patched_
contigs.gtf). TPMs were used for sample clustering, whereas gene counts were 
used for differential gene expression, as required. See Supplementary Table 2 for 
sequencing and quality metrics.

RNA EC detection. Gene-level TPMs were estimated with RNA-SeQC (v2.3.6) 
for RNA-seq from 603 treatment-naive CLL samples (https://github.com/getzlab/
rnaseqc)88. Genes expressed at less than 0.1 TPM in 10% of samples were discarded, 
retaining 11,119 genes, which were batch corrected (as described below), followed 
by selection of the top 2,500 most varying genes. The clustering methodology 
combines consensus hierarchical clustering and Bayesian non-negative matrix 
factorization, as previously described89. Further details about the methodology and 
machine learning classifier are provided in Supplementary Note.

DNA methylation data processing. We analyzed DNA methylome data for a 
total of 1,037 samples, including 490 samples profiled with Illumina 450K array 
previously analyzed52 (European Genome-phenome Archive (EGA) accession 
EGAD00010001975), and 547 samples profiled using RRBS with either single-end 
or paired-end approaches (Supplementary Table 2)65. We developed a pipeline in 
Terra to obtain the CpG methylation estimates from RRBS data (Supplementary 
Note). The epitype classifier and the epiCMIT mitotic clock were previously 
developed for Illumina 450K and EPIC array data52, and we therefore adapted the 
methods for the RRBS data (Supplementary Note).

Statistical methods. Unless otherwise stated, two-sided t-test was used for mean 
comparison and multiple testing was corrected to compute false discovery rate (q) 
by the Benjamini–Hochberg procedure90. Categorical enrichments were computed 
using a two-sided Fisher’s exact test unless otherwise stated.

Clinical outcome modeling. FFS was calculated for treatment-naive patients 
as the time from the date of the sequenced sample to the date of first treatment 
(‘natural progression’), progression (if the patient was sampled at the time of 
enrollment on a clinical trial) or death, and censored at the last known event-free 
date. In the genetics-focused analysis (Supplementary Table 10), the first event 
was defined as time to next treatment in patients who received therapy within 30 
days. Subset analysis included patients who were treatment-naïve at the time of the 
sequenced sample and not enrolled on a therapeutic clinical trial; in this analysis, 
time between sample and date of first treatment was used. Overall survival was 
calculated as the time from the date of the sequenced sample to the date of death 
and censored at the date last known alive. Patient characteristics and number 
included in each clinical outcome analysis are defined in Table 1. Univariate 
and multivariable Cox regression models were constructed for each subset of 
data. Final models were selected using the glmnet function for regularized Cox 
regression using an elastic net penalty within the Coxnet package in R. Tenfold 
cross-validation using the cv.glmnet function with a partial-likelihood deviance 
metric to minimize λ was performed and the minimum CV-error model was used. 
The alpha was set to 1 corresponding to a Lasso penalty. The maximum iterations 
(maxit) parameter was set to 1,000. Features identified as having non-zero 
coefficient values using elastic net and selected in the final model were then 
included in a Cox regression model to obtain the hazard ratios. These hazard ratios 
estimate the magnitude of effect, but P values and confidence intervals are not 
readily interpretable in the elastic net model and are therefore not reported. For the 
integrated analysis of all available data types (Supplementary Table 14), variables 
including EC and epitype categories were dummy coded. Prognostic significance 
of EC and IGHV status were also considered using a chi-squared test with the 
difference in −2 log likelihood (−2logL) between models including sSNVs and 
sCNAs. The Breslow approximation was used for handling ties in survival time.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The molecular data used in this study are publicly available and are included 
in the following patient cohorts (Table 1, Supplementary Tables 1 and 2 and 

Extended Data Fig. 1a): DFCI, Dana-Farber Cancer Institute; GCLLSG, German 
CLL Study Group; ICGC, International Cancer Genome Consortium; MDACC, 
MD Anderson Cancer Center; NHLBI, National Heart Lung and Blood Institute; 
UCSD, University of California San Diego. Sequencing, expression, and genotyping 
is available at EGA (http://www.ebi.ac.uk/ega/), which is hosted at the European 
Bioinformatics Institute, under accession number EGAS00000000092 (ICGC 
cohort) and in dbGaP under accession numbers phs001473.v2.p1 (MDACC, 
NHLBI), phs000922.v2.p1 (GCLLSG), phs001431.v2.p1 (DFCI, UCSD), 
phs001091.v1.p1 (MDACC), phs000435.v3.p1 (DFCI), phs002297.v2.p1 (NHLBI) 
and phs000879.v1.p1 (DFCI) and GEO accession number GSE143673 (GCLLSG). 
450K array data are available at EGA under accession number EGAD00010001975 
(ICGC). The project data portal is available at https://cllmap.org.

Code availability
Terra methods used in the study can be found at https://app.terra.bio/#workspaces/
broad-firecloud-wupo1/CLLmap_Methods_Apr2021. Source code used in the 
study can be found at https://github.com/getzlab/CLLmap. The RFcaller pipeline 
is available at https://github.com/xa-lab/RFcaller. The new epiCMIT suitable for 
Illumina arrays and NGS approaches as well as the CLL epitype classifier can be 
found at https://github.com/Duran-FerrerM/CLLmap-epigenetics.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Dataset description and representative driver gene maps. a. Full dataset (n = 1148), with contributions by cohort and data 
type delineated (see Supplementary Table 1). b. Numbers of samples with genomic, epigenomic, and transcriptomic data. c. 3D protein structures of 
representative genes identified by CLUMPS in pan-CLL analysis (n = 984, see Supplementary Table 5). Mutated residues - red labels. A peptide from RAF1 
(designated at bottom-center, in complex with 14-3-3 zeta) shows clustered mutations around S259, whose phosphorylation regulates RAF1 activity and 
is a cancer mutational hotspot91 that, when mutated, perturbs the interaction with the 14-3-3 zeta and upregulates RAF1 kinase activity92,93. In DICER1, 
mutations occur in the RNase III domain (purple), including the cancer hotspot residue E181321,94. This region is critical for Mg2+ binding and is required 
for ribonuclease activity to process microRNAs and mediate post-transcriptional gene regulation95. RPS23 mutations are clustered in a conserved loop 
of the ribosomal decoding center, surrounding P62, whose post-translational hydroxylation affects translation termination accuracy96. These RPS23 
mutations have a median CCF > 80% (Extended Data Fig. 6d; Supplementary Table 3). d. Individual mutations maps of selected novel, putative driver 
genes. Mutation subtype and position are shown. e. Selected genes identified by CLUMPS in IGHV subtypes; mutated residues - red. Although BRAF was 
not identified as a potential M-CLL driver via MutSig2CV (see Extended Data Fig. 3, Methods), CLUMPS revealed three mutated sites clustered in the 
kinase domain (purple) that are cancer hotspots25, thus confirming BRAF as a shared driver (left). Mutated residues in BRAF in U-CLL (bottom) are shown 
for comparison, revealing a greater number of clustered mutations relative to M-CLL. In U-CLL, novel mutations were found in RRM1 (right). Somatic 
alterations were clustered in the N-terminal ATP-binding site (purple) and therefore have potential to impact enzymatic activity97.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | CLL biological pathways affected by candidate driver genes. a. Schema of CLL pathways containing previously identified (black) 
and novel (magenta) putative driver genes (see Supplementary Table 6). Novel drivers cluster in central processes driving CLL (for example, DNA damage, 
chromatin modification, RNA processing)1,2, but also highlight new pathways not previously implicated by driver genes (for example, cytoskeleton and 
extracellular matrix, proteostasis, metabolism). Asterisks - mutated genes discovered by CLUMPs. b. Stacked barplot ranked by the number of candidate 
driver genes per CLL pathway. Magenta bars show the number of newly identified drivers in each pathway.
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Extended Data Fig. 3 | Candidate driver alterations discovered in IGHV subtypes. a-b. Landscape of putative driver genes and sCNAs in M-CLL  
(a, n = 512) and U-CLL (b, n = 459) with associated frequencies (rows, barplots). Header tracks annotate cohort, IGHV status (purple, M-CLL; orange, 
U-CLL), disease type (blue, CLL; yellow, MBL), epitype (blue, n-CLL; yellow, i-CLL; red, m-CLL), datatype (white, WES; yellow, WGS; blue, both); prior 
treatment, U1 and IGLV3-21R110 mutations are annotated in black; magenta label - novel alterations; asterisks - discovery by CLUMPS.
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Extended Data Fig. 4 | Chromosomal gains and losses identified in IGHV subtypes. a-b. Recurrent copy-number gains (left) and losses (right) by GISTIC 
analysis showing arm-level (left per plot) and focal events (right per plot) in M-CLL (a, n = 512) and U-CLL (b, n = 459). Chromosomes are labeled along 
the vertical axis; dashed line - significance at q = 0.1. Blacklisted regions are colored gray. All arm-level events are labeled with cytoband arm and frequency 
in cohort. Focal events are annotated by cytoband, frequency, number of genes encompassed in peak (bracketed), and genes of interest. Red/blue font: 
novel focal events with frequency >2%. Black font: previously identified events (see Supplementary Table 7).

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ArticlesNaTuRE GEnETICS

Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Landscape of driver alterations and chromosomal aberrations in IGHV subtypes. a. The genomic landscape of CLL IGHV 
subtypes. Driver genes, U1 and IGLV3-21R110 mutations are labeled according to their genomic location (outside ring, numbered by chromosome). The 
tracks show the frequency and locations of driver genes in M-CLL (purple) vs. U-CLL (orange) (track 1; outermost), focal sCNAs (track 2; gains, red; 
losses, blue), and density of SV breakpoints of deletions (track 3) and translocations (track 4) (M-CLL n = 88; U-CLL n = 87; WGS, windows of 1-Mb). 
Innermost plot highlights translocations in which either one or both breakpoints are recurrent in at least 3 cases (windows of 1-Mb considered to define 
recurrence) in M-CLL (purple) and U-CLL (orange). Deletions, inversions, and tandem duplications where both breakpoints were found in at least 2 cases 
and did not overlap with a driver sCNA are shown (Note: only focal deletion in SP140 in two U-CLL cases met this criterion. b. Schema of recurrent IG-
BCL2 translocation and IGH-ZFP36L1 deletion in the WGS cohort. All 5 BCL2 translocations were in M-CLL with immunoglobulin (IG) breakpoints in J or D 
genes, suggesting mediation by aberrant V(D)J recombination. In contrast, 4 U-CLL cases carried IGH-ZFP36L1 truncating deletions, which were all clonal 
(CCF = 1). Breakpoints in IGH class-switch regions suggested mediation by aberrant class-switch recombination (CSR). c. Immunoglobulin (IG) SVs in 
177 WGS and 984 WES. In WES, 9 of 10 BCL2 translocations were in M-CLL and mediated by aberrant V(D)J recombination in IGH (n = 7) or IGK (n = 2). 
The sole BCL2 translocation in U-CLL was due to aberrant CSR. One CSR-mediated IGH-ZFP36L1 deletion was observed in a case with unclassified IGHV 
status due to presence of two populations (one M-CLL, one U-CLL; the latter was more prevalent). Of note, in WES, U-CLLs carry a higher number of non-
recurrent IG events than M-CLL.

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ArticlesNaTuRE GEnETICS

Extended Data Fig. 6 | Mutational mechanisms and cancer cell fractions of candidate drivers. a. Eight mutational signatures were identified in 177 WGS, 
but 3 signatures corresponded to known artifacts and were therefore excluded (see Supplementary Note 2). Boxplots demonstrating mutation contribution 
for each of the 5 signatures are labeled with single-base substitution (SBS) number and identity (per COSMIC v3.1). b. Comparison of the normalized 
signature intensity of the mutational signatures in U-CLL (orange, n = 87) vs. M-CLL (purple, n = 88). The nc-AID and c-AID 1 signatures were enriched 
in M-CLL, whereas the aging signature was more prevalent in U-CLL. Although not significant, there was a trend of increased mutations due to the c-AID 
2 signature in U-CLL. All p-values were calculated with Wilcoxon rank-sum test, two-sided. Boxplots: center line, median; box limits, upper and lower 
quartiles; whiskers, 1.5x interquartile range; points, outliers. c. Proportions of clustered mutations contributed by the two c-AID related signatures (SBS84, 
c-AID 1 vs. SBS85, c-AID 2) for each IGHV subtype (M-CLL, purple; U-CLL, orange) d. Mean cancer cell fraction (CCF) for each non-silent mutation across 
all candidate driver genes identified in WES samples (n = 984). Color of dots depicts the IGHV subtype (M-CLL, purple; U-CLL, orange). The horizontal 
red line is the threshold for clonality (CCF > 85%). Magenta labels - newly identified putative driver genes. The number of non-silent mutations per driver 
gene is shown at the bottom. Boxplots: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Development and validation of epitype assignment and epiCMIT in RRBS data. a. Consensus clustering matrices for K = 3 groups for 
paired-end (n = 136; 153 CpGs in consensus matrix) and single-end (n = 388; 32 CpGs) RRBS data. (d). b. Empirical cumulative distribution functions (CDFs) 
for consensus matrices with K = 2 to K = 7. c. Relative change under the CDF for K = 2 to K = 7. d. Heatmaps of the CpGs used for consensus clustering in (a). 
Each sample (columns) is annotated by tracks: epitype max probability, IGHV status (M-CLL, purple; U-CLL, orange), IGHV percent identity, and presence 
of IGLV3-21R110 mutation (black). e. The development of the new epiCMIT methodology for RRBS data. The genome was segmented into Chromatin Hidden 
Markov Model (CHMM)24 states using ChIP-seq data to get repressed chromatin regions, where differential DNA methylation analyses was performed 
in high coverage whole-genome bisulfite sequencing (WGBS) data between the cells with the lowest and highest accumulated cell divisions in the B cell 
lineage, namely the hematopoietic precursor cells (HPC) and bone-marrow plasma cells (bmPC). Only CPGs showing extensive differences were retained 
and constituted the epiCMIT-hyper CpGs or epiCMIT-hypo CpGs depending whether they gain or lose DNA methylation from <0.1 to ≥0.5 and from >0.9 
to ≤0.5 from HPC to bmPC, respectively. EpiCMIT-hyper and epiCMIT-hypo scores were calculated according to the available epiCMIT-CpGs per sample, 
and the higher score in each sample was then selected. f. epiCMIT values on the same samples profiled twice with different platforms. Approach 1 - profiled 
with Illumina-450K (green); approach 2 - profiled with RRBS-PE (violet). In samples profiled with Illumina 450K, the original epiCMIT-CpGs were used52. In 
samples profiled with RRBS, epiCMIT was calculated with all available epiCMIT-CpGs for the new catalog (e, Methods). P-value by Pearson correlation test, 
two-sided; Error band − 95% confidence intervals of the Pearson correlation coefficient.
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Extended Data Fig. 8 | Identification of expression clusters with associated biologic features. a. Cohort representation in each expression cluster.  
b. Consensus matrix for RNA expression profiles of 603 treatment-naive CLLs by repeated hierarchical clustering with 80% resampling and varying cutoffs 
for number of clusters, which is inputted to the BayesNMF procedure (Methods). c. Uniform manifold approximation and projection (UMAP) showing 
clustering of ECs (n = 603; EC-u clusters (top), EC-m and EC-o (middle), EC-i (bottom)). Analysis was performed using the marker genes identified by 
BayesNMF. d. UMAP of H3K27ac profiles (n = 104)8 denoting EC designation where available (colored points, n = 73) and IGHV status. e. Comparison of 
the percent IGHV identity among ECs. Dotted line: 98% threshold defining M-CLL and U-CLL. P-values by two-sided t-tests. Boxplots: center line, median; 
box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. f. Comparison of the percent IGHV identity between those samples with concordant 
IGHV status and ECs (for example, M-CLLs in EC-m clusters) versus the discordant samples (for example, M-CLLs in EC-u clusters). IGHV-mutated cases 
- left; IGHV unmutated samples - right. P-values by two-sided t-tests. Boxplots: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 
interquartile range. g. Percentage of cases carrying stereotyped immunoglobulin genes within each EC. Red horizontal line: percentage of stereotyped cases 
in the whole cohort. h. Fraction of cases classified in each CLL stereotype subset according to their EC. i. Percentage of IGHV (left) and IG(K/L)V (right) 
gene usage within each EC. IGKV genes from proximal and distal clusters were merged for simplification. All p-values were calculated using Chi-squared 
tests corrected by the Benjamini–Hochberg procedure (q-values, q). q < 0.1; *, q < 0.05; **, q < 0.001; ***, q < 0.0001. j-k. Heatmaps showing upregulated  
(j) and downregulated (k) H3K27ac levels of EC marker genes and 2,000 bp upstream to capture regulatory regions (Methods).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | EC differential gene expression, pathway activity, and classifier. a. Differentially expressed genes per EC (red) using discovery 
set (n = 603); EC marker genes by BayesNMF (blue). Significant up- or downregulation of H3K27ac levels are directionally marked with triangles (ChIP-
seq available for n = 73; n = 1 for EC-o and EC-i, thus unevaluable). b. EC gene set enrichment analysis (GSEA). Diamond denotes the EC compared to all 
others (circles). c. Confusion matrix for the EC classifier on the test set (“Dominance” defined in Methods). d. Confidence in correctly classified samples 
(n = 95) is greater than for incorrectly classified samples (n = 25; two-sided t-test). “Prediction margin” defined in Methods. Boxplots: center line, median; 
box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. e. Receiver-operator curve (ROC) showing the tradeoff between sensitivity and 
specificity for the range of cutoffs that can be applied based on the “prediction margin”, where samples under the cutoff are excluded from performance 
evaluation. AUC, area under curve. f. Precision-recall (PR) curves for EC classification performance on the test set (n = 120), using the selected model 
(see Methods). The weighted average of AUC is 0.88. g. Performance metrics for models trained with differing amounts of input genes, demonstrating 
accuracy even with smaller gene sets. Metrics: Accuracy, overall; Average, weighted average across ECs (Methods). Nc, Ntot - number of genes (see 
Methods). h. EC distributions by BayesNMF compared to classifier predictions on the discovery cohort (n = 603), an extension cohort not included 
discovery (n = 105), and an external CLL cohort (n = 136)61. i. IGHV status distributions per EC in discovery (n = 603) and external (n = 136) cohorts.  
The difference in IGHV-mutated samples per EC is 2-10% (p > 0.05, Fisher’s Exact, Methods). j. Stability of the ECs over time in longitudinally sampled 
CLL samples3. Sample timepoints (x-axis); years between first and last sample (above curve).
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