日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Swimming by reciprocal motion at low Reynolds number

MPS-Authors
/persons/resource/persons75462

Fischer,  Peer       
Max Planck Institute for Medical Research, Max Planck Society;

External Resource

https://www.nature.com/articles/ncomms6119
(全文テキスト(全般))

https://www.nature.com/articles/ncomms6119.pdf
(全文テキスト(全般))

https://static-content.springer.com/esm/art%3A10.1038%2Fncomms6119/MediaObjects/41467_2014_BFncomms6119_MOESM163_ESM.pdf
(付録資料)

https://static-content.springer.com/esm/art%3A10.1038%2Fncomms6119/MediaObjects/41467_2014_BFncomms6119_MOESM164_ESM.avi
(付録資料)

https://static-content.springer.com/esm/art%3A10.1038%2Fncomms6119/MediaObjects/41467_2014_BFncomms6119_MOESM165_ESM.avi
(付録資料)

https://static-content.springer.com/esm/art%3A10.1038%2Fncomms6119/MediaObjects/41467_2014_BFncomms6119_MOESM166_ESM.avi
(付録資料)

https://static-content.springer.com/esm/art%3A10.1038%2Fncomms6119/MediaObjects/41467_2014_BFncomms6119_MOESM167_ESM.mov
(付録資料)

https://static-content.springer.com/esm/art%3A10.1038%2Fncomms6119/MediaObjects/41467_2014_BFncomms6119_MOESM168_ESM.avi
(付録資料)

https://static-content.springer.com/esm/art%3A10.1038%2Fncomms6119/MediaObjects/41467_2014_BFncomms6119_MOESM169_ESM.avi
(付録資料)

https://static-content.springer.com/esm/art%3A10.1038%2Fncomms6119/MediaObjects/41467_2014_BFncomms6119_MOESM170_ESM.avi
(付録資料)

https://static-content.springer.com/esm/art%3A10.1038%2Fncomms6119/MediaObjects/41467_2014_BFncomms6119_MOESM171_ESM.avi
(付録資料)

https://static-content.springer.com/esm/art%3A10.1038%2Fncomms6119/MediaObjects/41467_2014_BFncomms6119_MOESM172_ESM.avi
(付録資料)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Qiu, T., Lee, T.-C., Mark, A. G., Morozov, K. I., Muenster, R., Mierka, O., Turek, S., Leshansky, A. M., & Fischer, P. (2014). Swimming by reciprocal motion at low Reynolds number. Nature Communications, 5:, pp. 1-8. doi:10.1038/ncomms6119.


引用: https://hdl.handle.net/21.11116/0000-000B-04A1-A
要旨
Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell’s scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric ‘micro-scallop’, a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids.