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Abstract. Classical numerical models for the global atmo-
sphere, as used for numerical weather forecasting or cli-
mate research, have been developed for conventional cen-
tral processing unit (CPU) architectures. This hinders the
employment of such models on current top-performing su-
percomputers, which achieve their computing power with
hybrid architectures, mostly using graphics processing units
(GPUs). Thus also scientific applications of such models are
restricted to the lesser computer power of CPUs. Here we
present the development of a GPU-enabled version of the
ICON atmosphere model (ICON-A), motivated by a research
project on the quasi-biennial oscillation (QBO), a global-
scale wind oscillation in the equatorial stratosphere that de-
pends on a broad spectrum of atmospheric waves, which
originates from tropical deep convection. Resolving the rel-
evant scales, from a few kilometers to the size of the globe,
is a formidable computational problem, which can only be
realized now on top-performing supercomputers. This moti-
vated porting ICON-A, in the specific configuration needed

for the research project, in a first step to the GPU architecture
of the Piz Daint computer at the Swiss National Supercom-
puting Centre and in a second step to the JUWELS Booster
computer at the Forschungszentrum Jiilich. On Piz Daint, the
ported code achieves a single-node GPU vs. CPU speedup
factor of 6.4 and allows for global experiments at a horizon-
tal resolution of 5 km on 1024 computing nodes with 1 GPU
per node with a turnover of 48 simulated days per day. On
JUWELS Booster, the more modern hardware in combina-
tion with an upgraded code base allows for simulations at
the same resolution on 128 computing nodes with 4 GPUs
per node and a turnover of 133 simulated days per day. Ad-
ditionally, the code still remains functional on CPUs, as is
demonstrated by additional experiments on the Levante com-
pute system at the German Climate Computing Center. While
the application shows good weak scaling over the tested 16-
fold increase in grid size and node count, making also higher
resolved global simulations possible, the strong scaling on
GPUs is relatively poor, which limits the options to increase
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turnover with more nodes. Initial experiments demonstrate
that the ICON-A model can simulate downward-propagating
QBO jets, which are driven by wave—-mean flow interaction.

1 Introduction

Numerical weather prediction (NWP) and climate research
make use of numerical models which solve discretized equa-
tions for fluid dynamics on the globe. For NWP and many
research applications, the resolution is chosen as high as pos-
sible for the available computing resources. Higher resolu-
tion allows atmospheric processes to be explicitly computed
over a larger range of scales and thus the dynamics of the
global atmosphere to be computed more faithfully. Examples
of small-scale features, which are relevant for NWP or cli-
mate research, are cumulus clouds, gravity waves generated
by orographic obstacles and convective clouds, or turbulent
motions in the boundary layer. The advantages of higher res-
olution, however, come at higher costs and especially longer
time to solution, which practically limits the maximum reso-
lution that can be afforded in specific applications. In climate
research, most global simulations of the atmospheric circula-
tions still use resolutions of a few tens of kilometers to about
200km for simulations over decades to centuries. But the
most ambitious global simulations now already reach reso-
lutions of just a few kilometers (Stevens et al., 2019), which
means that basic structures of tropical deep convection can be
computed explicitly. Such simulations are still the exception
and limited to short time periods, owing to the slow turnover
in terms of simulated time per wall clock time unit. A specific
reason for the limitation of such simulations in resolution or
simulated time is that the computing codes of these numer-
ical models have been developed and optimized for conven-
tional central processing unit (CPU) architectures, while the
most advanced and powerful computer systems now employ
hybrid architectures with graphics processing units (GPUs).
Thus, the most powerful computing systems are effectively
out of reach for most existing computing codes for numeri-
cal weather prediction and climate research.

This also holds for the ICON model system, which has
been developed since the early 2000s for use on either cache-
based or vectorizing CPUs, with components for atmosphere,
land, and ocean. The buildup of the hybrid Piz Daint compute
system at the Swiss National Supercomputing Centre, how-
ever, created a strong motivation to port the ICON model to
GPUs in order to benefit from the immense compute power
of Piz Daint resulting from up to 5704 GPUs. With this moti-
vation, it was decided to port the atmospheric component of
ICON (ICON-A) in two specific configurations to GPUs so
that the development effort can be limited initially to a subset
of the ICON codes. The model configuration in the focus of
the presented work was designed for the “Quasi-biennial os-
cillation in a changing climate” (QUBICC) project, for which
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global simulations at horizontal resolutions of 5 km or better
and vertical resolutions of a few hundred meters up to the
middle stratosphere are planned to investigate the dynamics
of the quasi-biennial oscillation (QBO), a global-scale zonal
wind oscillation in the equatorial stratosphere, for which the
main characteristics are reviewed in Baldwin et al. (2001),
and an overview of the QBO impacts is given in Anstey et al.
(2022). Using this very high resolution is essential for the
QUBICC project so that the dynamical links from small-
scale and quickly evolving tropical deep convection to the
global-scale and slowly varying wind system of the QBO can
be directly computed. This makes a substantial difference to
existing simulations of the QBO in coarser models, where
deep convection and the related gravity wave effects must
be parameterized. The uncertainty in the parameterization of
convection and gravity waves, as necessary in coarser mod-
els, is the main reason for problems in simulating the QBO
(Schirber et al., 2015; Richter et al., 2020).

Until now, only a few attempts have been made to port
general circulation models for the atmosphere or the ocean to
GPUs, using different methods. Demeshko et al. (2013) pre-
sented an early attempt, in which only the most costly part of
the NICAM model, the horizontal dynamics, was ported to
GPUs, for which these parts were reprogrammed in CUDA
Fortran. Fuhrer et al. (2018) ported the COSMOS5 limited
area model to GPUs by using directives and by rewriting
the dynamical core from Fortran to C++ and employing the
domain-specific language STELLA. Similarly, Wang et al.
(2021) ported their LICOM3 model by rewriting the code in
the time loop from Fortran to C and further to HIP. In the
case of the NIM weather model, Govett et al. (2017), how-
ever, decided to work with directives only so that the same
code can be used on CPU, GPU, and Many Integrated Core
(MIC) processors. Other models have partial GPU imple-
mentations, such as WRF (Huang et al., 2015), in CUDA-
C and MPAS (Kim et al., 2021), with OpenACC. In our at-
tempt, after initial steps described later, it was decided to stay
with the standard ICON Fortran code wherever possible and
thus to work with directives, so that ICON-A works on CPUs
and GPUs. In the CPU case, applications shall continue to
use the proven parallelization by MPI domain decomposition
mixed with OpenMP multi-threading, while in the GPU case,
parallelization should now combine the MPI domain decom-
position with OpenACC directives for the parallelization on
the GPU. OpenACC was chosen because this was the only
practical option on the GPU compute systems used in the pre-
sented work and described below. Specifically OpenMP ver-
sion 5 was not available on these systems. Consequently the
resulting ICON code presented here now includes OpenMP
and OpenACC directives.

In the following, we present the model configuration for
QUBICC experiments, for which the ICON-A model has
been ported to GPUs (Sect. 2), the relevant characteristics of
the compute systems Piz Daint, JUWELS Booster and Lev-
ante used in this study (Sect. 3), the methods used for porting
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ICON codes to GPUs (Sect. 4), the validation methods used
to detect porting errors (Sect. 5), the results from benchmark-
ing on the three compute systems (Sect. 6), selected results
from first QUBICC experiments (Sect. 7), and the conclu-
sions.

2 Model configuration for QUBICC experiments

The QUBICC experiments make use of very high resolution
grids, on which dynamics and transport are explicitly solved.
This means that only a small number of processes need to
be parameterized in comparison to the low-resolution sim-
ulations presented by Giorgetta et al. (2018). This reduced
physics package, which we call Sapphire physics, comprises
parameterizations for radiation, vertical turbulent diffusion,
and cloud microphysics in the atmosphere, and land surface
physics, as detailed in Sect. 2.5. Thus the model components
to be ported to GPU include dynamics, transport, the afore-
mentioned physics parameterizations, and additionally the
essential infrastructure components for memory and commu-
nication. The following subsections provide more details on
the model grids defining the resolution and the components
computed on these grids.

2.1 Horizontal grid

The horizontal resolution needs to be high enough to allow
for the explicit simulation of tropical deep convection, and
at the same time simulation costs must be limited to realistic
amounts, as every doubling of the horizontal resolution mul-
tiplies the computing costs by a factor of 8, resulting from
a factor 2 for each horizontal dimension and a factor 2 for
the necessary shortening of the time step. From earlier work
made with ICON-A, it is understood that Ax = 5km is the
smallest resolution, for which deep convection is simulated
in an acceptable manner (Hohenegger et al., 2020) and for
which realistic gravity wave spectra related to the resolved
convection can be diagnosed (Miiller et al., 2018; Stephan
et al., 2019). As any substantial increase in horizontal res-
olution is considered to exceed the expected compute time
budget, a horizontal mean resolution of Ax = 5km is used,
as available on the R2B9 grid of the ICON model; see Table 1
in Giorgetta et al. (2018). The specific ICON grid ID is 0015,
referring to a north—south symmetric grid, which results from
a 36° longitudinal rotation of the southern hemispheric part
of the ICON grid after the initial R2 root bisection of the
spherical icosahedron. (Older setups as in Giorgetta et al.,
2018 did not yet use the rotation step for a north—south sym-
metric grid.)

2.2 Vertical grid

The vertical grid of the ICON-A model is defined by a gen-
eralized smooth-level vertical coordinate (Leuenberger et al.,
2010) formulated in geometric height above the reference
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ellipsoid, which is assumed to be a sphere. At the height
of 22.5 km, the model levels transition to levels of constant
height, which are levels of constant geopotential as well. For
the QUBICC experiments, a vertical grid is chosen that has
191 levels between the surface and the model top at a height
of 83 km. This vertical extension and resolution is chosen as
a compromise between a number of factors:

— A high vertical resolution is needed to represent the
dynamics of vertically propagating waves, considering
waves which can be resolved horizontally. The resolu-
tion should also be sufficient in the shear layers of the
QBO, where the Doppler shifting shortens the vertical
wavelengths of upward-propagating waves, with phase
speeds similar to the velocity of the mean flow in the
shear layer. Typically, a vertical resolution of a few hun-
dred meters is wanted.

— The vertical extent of the model should be high enough
to allow for the simulation of the QBO in the tropical
stratosphere without direct numerical impacts from the
layers near the model top, where numerical damping is
necessary to avoid numerical artifacts. In practice the
ICON model uses the upper boundary condition of zero
vertical wind, w = 0, and applies a Rayleigh damping
on the vertical wind (Klemp et al., 2008). This damp-
ing starts above a given minimum height from where
it is applied up to the top of the model, using a tanh
vertical scaling function that changes from 0 at the min-
imum height to 1 at the top of the model (Zangl et al.,
2015). Based on experience, the depth of the damped
layer should be ca. 30km. Combining this with the
stratopause height of ca. 50km, a top height of ca.
80 km is needed.

— A further constraint is the physical validity of the model
formulation. The key limitation consists in the radiation
scheme RTE+RRTMGP, which is developed and vali-
dated for conditions of local thermal equilibrium (LTE)
between the vibrational levels of the molecules involved
in radiative transitions and the surrounding medium.
This limits the application of this radiation scheme to
levels below atmospheric pressures of 0.01 hPa. The at-
mospheric pressure of 0.01 hPa corresponds to a height
of ca. 80 km with a few kilometers’ variation depend-
ing on season, latitude and weather. Other complica-
tions existing at higher altitudes, besides non-LTE, are
strong tides and processes which are not represented in
the model, for instance, atmospheric chemistry and ef-
fects from the ionized atmosphere. Such complications
shall be avoided in the targeted model setup.

— Computational cost increases approximately linearly

with the number of layers. Thus, fewer layers would al-
low for more or longer simulations at the same costs.

Geosci. Model Dev., 15, 6985-7016, 2022
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Vertical grid: level height vs. layer thickness
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Figure 1. Level height vs. layer thickness from the surface to the
model top for a surface height of O m over ocean (blue) and for the
highest surface point of the R2B9 grid at 7368 m at 27°55'52” N,
87°6/45" E in the Himalayas (red). The lowermost layer has a con-
stant thickness of 40 m and thus is centered at 20 m height above
the surface. The uppermost layer is centered at 82361 m and has an
upper bound at 83000 m. At heights above 22 500 m, the vertical
resolution profile is independent of the surface height.

As a compromise, a vertical grid is chosen that has 191
levels between the surface and the model top at a height of
83 km. The first layer above the surface has a constant thick-
ness of 40 m. Between this layer and a height of 22.5 km,
the height of the model levels and thus the layer thick-
nesses vary following the implemented smooth-level algo-
rithm. Above 22.5km, all remaining model levels are lev-
els of constant height. The resulting profile of layer thick-
ness versus layer height is shown in Fig. 1 for a surface
point at sea level (blue profile) and the highest surface point
on the R2B9 grid, which is in the Himalayas and has a
height of 7368 m (red profile). The vertical resolution ranges
from 300 m at 12 km near the tropopause to 600 m at 50 km
height near the stratopause. Over high terrain, however, a
relatively strong change in vertical resolution appears near
13 km height, which unfortunately cannot be avoided with
the existing implementation of the smooth-level algorithm.
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2.3 Dynamics

The horizontally explicit and only vertically implicit numer-
ics of the ICON-A dynamical core requires generally short
time steps for numerical stability of the dynamics. The neces-
sity to use very short model time steps is however alleviated
by splitting the model time step into a typically small number
of dynamics sub-steps, each solved by a predictor—corrector
method, as detailed in Zingl et al. (2015). The explicit ver-
tical numerics of the tracer transport scheme (Reinert, 2020)
may add further constraints on the model time step if lev-
els are thin or the vertical velocity large. For satisfying both,
the QUBICC experiments operate with five dynamics sub-
steps and a model time step of df =40s =5 - dtqyn, where
dtgyn = 8s is the time step of the dynamics sub-steps. The
model time step is thus slightly shorter than the 45s time
step used for the same horizontal resolution in Hohenegger
et al. (2020). The reason is the increased vertical resolution,
which imposes narrower limits for stability in the vertical
tracer transport.

2.4 Tracer transport

The QUBICC experiments include a total of six tracers for
water vapor, cloud water, cloud ice, rain, snow, and grau-
pel. This enlarged set of tracers compared to Giorgetta et al.
(2018) is related to the more detailed cloud microphysics
scheme that predicts also rain, snow, and graupel; see be-
low. For efficiency reasons, the transport of hydrometeors,
i.e., cloud water, cloud ice, rain, snow and graupel, is lim-
ited to heights below 22.5 km, assuming that none of these
hydrometeors exist in the vicinity of this stratospheric height
level and above. Concerning the configuration of the trans-
port scheme (Reinert, 2020), the horizontal advection for
water vapor has been changed from a combination of a
semi-Lagrangian flux form and a third-order Miura scheme
with sub-cycling to a second-order Miura scheme with sub-
cycling. The choice of the simpler scheme is related to the
difficulty of a GPU implementation for a semi-Lagrangian
flux form scheme. (The GPU port of this scheme is currently
ongoing.) Sub-cycling means that the integration from time
step n to n+-1 is split into three sub-steps to meet the stability
requirements. This sub-cycling is applied only above 22.5 km
height, i.e., in the stratosphere and mesosphere, where strong
winds exist. The other tracers, the hydrometeors, are also
transported with the second-order Miura scheme, though
without sub-cycling because they are not transported above
22.5km.

2.5 Physics
The QUBICC experiments make use of the Sapphire physics
package for storm-resolving simulations. This package devi-

ates from the ECHAM-based physics package described in
Giorgetta et al. (2018) in a number of points. First of all, the
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physics package excludes parameterizations for convection,
atmospheric, and orographic gravity waves and other sub-
grid-scale orographic effects. These processes are mostly re-
solved, though not completely, at the grid resolutions used
in QUBICC experiments. Further, the scientific goal of the
QUBICC experiments includes the investigation of the QBO
forcing based on the resolved dynamics of deep convective
clouds and related waves, which can be granted by excluding
parameterized representations of these processes. As a result,
the Sapphire physics package is considerably smaller and the
model structurally simplified.

The atmospheric processes which still require parameter-
izations are radiation, the vertical diffusion related to unre-
solved eddies, and the cloud microphysics. Additionally, land
processes must be parameterized for the interactive repre-
sentation of the lower atmospheric boundary conditions over
land.

2.5.1 Radiation

From the beginning of the GPU port, it was clear that
the radiation code was a special challenge due to its addi-
tional dimension in spectral space that resolves the short-
wave and longwave spectra. Further, initial work on the orig-
inal PSRAD radiation scheme (Pincus and Stevens, 2013)
showed that a substantial refactoring would have been nec-
essary for a well-performing GPU version of PSRAD, with
an uncertain outcome. Therefore the decision was taken to
replace PSRAD by the new RTE+RRTMGP radiation code
(Pincus et al., 2019), which was designed from the begin-
ning to work efficiently on CPUs and GPUs, with separate
code kernels for each architecture. Thus the ICON code for
QUBICC now employs the RTE+RRTMGP code. From a
modeling point of view RTE+RRTMGP employs the same
spectral discretization methods as PSRAD, namely the k-
distribution method and the correlated-k approximation. Dif-
ferences exist however in using absorption coefficients from
more recent spectroscopic data in RTE+RRTMGP and in the
number and distribution of discretization points, so-called
g-points, in the SW and LW spectra. While PSRAD used
252 g-points (140 in the longwave spectral region and 112
in the shortwave), RTE+RRTMGP versions on Piz Daint
and JUWELS Booster use 480 (256 LW + 224 SW) and
240 (128LW + 112SW) g-points, respectively. Scattering
of longwave radiation by cloud particles is not activated in
RTE+RRTMGTP, so that also in this aspect it is equivalent to
the older PSRAD scheme.

As the calculations for the radiative transfer remain the
most expensive portion of the model system, a reduced call-
ing frequency, as common in climate and numerical weather
prediction models, remains necessary. For QUBICC exper-
iments, the radiation time step is set to Atpg = 12min =
18 - dt, thus a bit shorter and more frequent than in the simu-
lations of Hohenegger et al. (2020), where Afy,q = 15min =
20 - dr was used.
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Concerning the atmospheric composition, the radiative
transfer depends on prognostic fields for water vapor, cloud
water, and cloud ice and on externally specified time-
dependent greenhouse gas concentrations for CO,, CHa,
N>O, CFCl11, and CFC12 and Os, as prepared for the his-
torical simulations of CMIP6 (Meinshausen et al., 2017).

In the spirit of allowing for only explicitly modeled scales,
all tracers used in the radiation are assumed to be homoge-
neous within each cell. Thus no parameterized effect of cloud
inhomogeneities on the optical path of cloud water and cloud
ice is applied in the QUBICC simulations.

Rain, snow, and graupel concentrations are neglected in
the radiative transfer, and for practical reasons no aerosol
forcing has been used in the initial experiments.

2.5.2 Vertical diffusion

For the representation of the vertical turbulent diffusion of
heat, momentum and tracers, the total turbulent energy pa-
rameterization of Mauritsen et al. (2007) is used, which is
implicitly coupled to the land surface scheme; see below.

2.5.3 Land surface physics

Land processes in ICON-A are parameterized in the JS-
BACH land surface model, which provides the lower bound-
ary conditions for the atmosphere and is implicitly coupled to
the atmospheric vertical diffusion parameterization. The in-
frastructure, ICON-Land, for this ICON-A land component
has been newly designed in a Fortran2008 object-oriented,
modular, and flexible way. The specific implementations
of physical, biogeophysical, and biogeochemical processes
constituting the JSBACH model have been ported from the
JSBACH version used with the MPIESM/ECHAM model-
ing framework (Reick et al., 2021; Stevens et al., 2013).

For the experiments described in this study, JSBACH has
been used in a simplified configuration that uses only the
physical processes and in which the sub-grid-scale hetero-
geneity of the land surface properties in each grid box is de-
scribed by lakes, glaciers, and only one single vegetated tile,
as in ICON-A (Giorgetta et al., 2018).

2.5.4 Cloud microphysics

Cloud microphysics is parameterized by the “graupel” mi-
crophysics scheme (Sect. 5.2 and 5.3, Doms et al., 2011),
which is a single-moment microphysics scheme for water va-
por, cloud water, cloud ice, rain, snow, and graupel. All hy-
drometeors are also transported. For efficiency reasons, the
computation of cloud microphysics and the transport of cloud
tracers are limited to heights below 22.5 km height.

2.5.5 Cloud cover

In the spirit of allowing for only explicitly modeled scales, it
is assumed that all fields controlling cloud condensation and

Geosci. Model Dev., 15, 6985-7016, 2022



6990

thus cloud cover are homogeneous in each cell. Thus the in-
stantaneous cloud cover in a cell is diagnosed as either O % or
100 %, depending on the cloud condensate mass fraction ex-
ceeding a threshold value of 10~® kgkg~'. Total cloud cover
in a column thus is either 0 % or 100 %.

2.6 Coupling of processes

The coupling of the processes described above and the trans-
formations between dynamics variables and physics vari-
ables, as well as the time integration, closely follow the setup
of Giorgetta et al. (2018) described in Sect. 3, also using
the simplified case of their Eq. (8), for which the scheme
is displayed in Fig. 2. However, a difference with respect to
Giorgetta et al. (2018) consists in the coupling between the
physical parameterizations and is shown in Fig. 3. The cou-
pling scheme applied in our study couples radiation, vertical
diffusion with surface land physics, and cloud microphysics
sequentially instead of using a mixed coupling scheme (cf.
Fig. 6 of Giorgetta et al., 2018).

3 The compute systems

In this section the compute systems used for the presented
work are described briefly, with Piz Daint at the Swiss Na-
tional Supercomputing Centre (CSCS) being the main sys-
tem where the GPU port of ICON was developed, and experi-
ments have been carried out during the first year of a PRACE
allocation. The second-year PRACE allocation was shifted
to JUWELS Booster at the Forschungszentrum Jiilich (FZJ),
where the GPU port of ICON was further optimized followed
by new scaling tests and experiments. Last but not least the
same code was used also for additional scaling tests on the
new Levante computer at the German Climate Computing
Center (DKRZ), which is a CPU architecture, thus demon-
strating the portability across a number of platforms. The
maximum sustained throughput Ry,x from the HPL (high-
performance LINPACK) benchmarks is used to normalize
the performance across the machines. Because ICON is often
memory-bandwidth-limited, the HPCG (high-performance
conjugate gradient) benchmarks would be a more informa-
tive norm; however these are not available for Levante.

3.1 The compute system Piz Daint at CSCS

The main work of porting ICON to GPUs including exten-
sive testing, benchmarking, and performing the first set of
experiments for the QUBICC project was carried out on the
Piz Daint computer at CSCS. Piz Daint is a hybrid Cray
XC40/XC50 system with 5704 XC50 nodes and 1813 XC40
dual-socket CPU nodes (CSCS, 2022), with a LINPACK
performance of Ryax = 21.2 PFlops™! (TOP500.org, 2021).
The work presented here is targeting the XC50 nodes of the
machine, which contain an Intel Xeon E5-2690 v3 CPU with

Geosci. Model Dev., 15, 6985-7016, 2022

M. A. Giorgetta et al.: The ICON-A model on GPUs

12 cores and 64 GB memory and a NVIDIA Tesla P100 GPU
with 16 GB memory.

The main software used for compiling the ICON code is
the PGI/NVIDIA compiler, which on Piz Daint is currently
the only option for using OpenACC directives in a large For-
tran code like ICON that makes use of Fortran 2003 con-
structs. Software versions of essential packages used from
Piz Daint for building the ICON executable are listed in Ta-
ble 1.

3.2 The compute system JUWELS Booster at FZ]J

After the first version of ICON-A for GPUs was working on
Piz Daint, the newer JUWELS Booster system at FZJ became
available. This led to a second version of the ICON GPU
code, with model improvements and further optimizations of
the GPU parallelization, both benefiting the computational
performance of the model.

The JUWELS Booster system at FZJ comprises
936 nodes, each with two AMD EPYC Rome CPUs
and 256 GB memory per CPU and four NVIDIA A100
GPUs with 40GB memory per GPU (FZJ, 2021). The
maximum LINPACK-sustained performance of this system
is 44.1 PFlops~! (TOP500.org, 2021). The main software
used for compiling the ICON code on JUWELS Booster is
also shown in Table 1. Also here the PGI/NVIDIA compiler
with OpenACC is the only option to use the model on GPUs.

3.3 The compute system Levante at DKRZ

The third compute system used for scaling tests is the new
CPU system Levante at DKRZ, which is the main provider of
computing resources for MPI-M and other climate research
institutes in Germany. Levante is used here to demonstrate
the portability of the code developed for GPU machines back
to CPUs and also to measure the performance on a CPU ma-
chine for comparison to the GPU machines.

The Levante system entered service in March 2022, con-
sisting of a CPU partition with 2832 nodes, each with
two AMD EPYC Milan x86 processors. A GPU partition
with 60 GPU nodes, each with four NVIDIA A100 GPUs, is
presently being installed. The 2520 standard CPU nodes have
128 GB memory per CPU, while others have more memory
(DKRZ, 2022). When fully operational, Levante is expected
to have a LINPACK Rpax = 9.7 PFlop s~1. Benchmarks dur-
ing the installation phase of Levante arrived at a LINPACK
Rmax of 7PFlop on 2048 CPU nodes (TOP500.org, 2021).
The software used for compiling is listed in Table 1.

4 Porting ICON to GPUs
4.1 General porting strategy

On current supercomputer architectures, GPU and CPU have
separate memories, and the transfer of data between the two
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Figure 2. The model operator M propagates the model state X from time ¢ to ¢ 4 d¢, with X consisting of the variables vy, 6y and p, which
are processed by the dynamics, and tracer mass fractions ¢;, which are processed by the advection scheme A. The dynamics consists of a
sequence of five sub-steps (D), each propagating the dynamics variables by dz/5, followed by horizontal diffusion (D;). The advection
makes use of the air mass flux computed in the dynamics to achieve consistency with continuity. The intermediate state resulting from
dynamics and advection is used for the computation of the forcing, which is applied in the physics update (P) that produces the new state

X(t +dr).

Table 1. System software used for compiling ICON on Piz Daint, JUWELS Booster, and Levante.

Software Piz Daint JUWELS Booster Levante

Compiler pgi/20.1.1 pgi21.5 intel/2022.0.1

MPI communication  cray-mpich/7.7.16 ~ OpenMPI/4.1.1 OpenMPI/4.1.2

CUDA Toolkit cudatoolkit/11.0.2  CUDA/11.3 -

NetCDF cray-netcdf/4.7.4.0  netCDF/4.7.4 netcdf-c/4.8.1,
netcdf-fortran/4.5.3

HDF5 cray-hdf5/1.12.0.0  HDF5/1.10.6 HDF5/1.12.1

goes via a slow connection compared to the direct access of
the local memory of each device. When considering the port
of an application to GPU, the key decision is which part can
be run on CPU or GPU, so that data transfer between them
can be minimized. Since the compute intensity, i.e., ratio of
floating point operations to memory load, of typical compu-
tation patterns in weather and climate models is low, it be-
comes clear that all computations occurring during the time
loop need to be ported to the GPU to avoid data transfers
within it.

ICON-A inherently operates on three-dimensional do-
mains: the horizontal is covered with a space-filling curve,
which is decomposed first between the MPI processes and
then, within each domain, split up into nblocks blocks of
arbitrary size nproma in order to offer flexibility for a vari-
ety of processors. The vertical levels form the other dimen-
sion of size nlev. Most, but not all, of the underlying arrays
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have the index order (nproma, nlev, nblocks), possibly
with additional dimensions of limited size.

The basic idea of the GPU port is to introduce the Ope-
nACC PARALLEL LOOP statements around all the loops
that operate on the grid data. We identify the following main
approaches to improve the performance of such approach:

— employing structured data regions spanning multiple
kernels to avoid any unnecessary CPU-GPU data trans-
fers for the automatic arrays;

— collapsing horizontal and vertical loops where possible
to increase the available parallelism;

— fusing adjacent similar loops when possible by writing
an embracing PARALLEL region with multiple loops
using LOOP GANG (static:1) VECTOR;

— using ASYNC clause to minimize the launch latency;

Geosci. Model Dev., 15, 6985-7016, 2022
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Figure 3. The forcing consists of three sequentially coupled com-
ponents for radiative heating (rad), vertical diffusion (vdf) coupled
implicitly to land surface processes (sfc), and cloud microphysics
(cld). Each component computes its contribution to the forcing from
a provisional state Y expressed in the physics variables T, m, g;, u,
and v.

— “scalarization”, i.e., using scalar temporary variables in-
stead of nproma-sized arrays where possible;

— restructuring and rewriting a few loops that are not di-
rectly amenable to efficient porting, for example, using
CLAVW,; see Sect. 4.4.2.

In the GPU port of ICON, we assume that nproma is cho-
sen as large as possible, ideally such that all cell grid points
of a computational domain including first- and second-level
halo points fit into a single block, thus yielding nblocks =
1. Therefore the nproma dimension is in general the main
direction of parallelism. Considering the data layout with
nproma, with unit stride in memory, this needs to be as-
sociated with the “vector” OpenACC keyword to ensure co-
alesced memory access.

4.2 GPU memory

Due to the 16 GB memory limitation on the P100 GPUs of
Piz Daint, it was crucial to limit the allocation of ICON data
structures on the GPU. To this end, OpenACC’s “selective
deep copy” was used, in which all relevant arrays are al-
located only if needed and then copied individually to the
GPU just before the main time loop. At its end, the data
structures are deleted on GPU because all subsequently re-
quired data have been updated on the host within the loop.
The selective deep copy required a new Fortran module
mo_nonhydro_gpu_types, which is inactive for CPU
compilation.

Within the time loop, all calculation (dynamics, physics)
is performed on the device, except for minor computa-
tion whose results (at most one-dimensional arrays) can
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be copied to the device with minimal overhead with
UPDATE (DEVICE) clauses.

ICON uses an unstructured grid formulation, meaning that
accesses to cell, edge, and vertex neighbors go through in-
dexing arrays, i.e., indirect addressing. Therefore, within the
time loop, all graph information also has to reside on the de-
vice memory.

4.3 Porting the dynamical core

The ICON non-hydrostatic dynamical core algorithms have
been extensively documented in Zangl et al. (2015). In this
section, the dynamical core, or “dycore”, is defined as (1) the
non-hydrostatic solver, (2) tracer advection, (3) horizontal
diffusion, (4) operators such as interpolations, divergence,
gradient, and other stencil computations, and finally (5) all
infrastructure called by these — not necessarily exclusively
— such as communication. Only the accelerator implemen-
tation of the dynamical core is discussed in this section. The
validation of the accelerator execution is discussed in Sect. 5.

4.3.1 Non-hydrostatic solver

In a preliminary phase, OpenCL and CUDAFortran versions
of a prototype non-hydrostatic dycore were created as a proof
of concept. ICON developers were not willing to include
these paradigms into their code base and insisted on an im-
plementation with only compiler directives.

This methodology was explored first in the ICON dy-
core, and the underlying infrastructure was ported to GPUs
using OpenACC directives. These improvements were also
incorporated into the ICON development code base, and
this work was documented in Gheller (2014). In this dy-
core version, kernels operated on the full three-dimensional
(nproma, nlev, nblocks) domain, in other words over
three nested DO loops. Due to this approach, the optimal
block size nproma was in the range 500-2000.

However, this approach turned out to be a considerable
limitation: in the physical parameterizations, the loop over
all blocks is many subroutine levels above the loops over
the block and the levels. Although it is in theory possible
to construct an OpenACC parallel region with a complex and
deep subroutine call tree, in practice it proves not to be a vi-
able approach with the available OpenACC compilers (PGI
and Cray). In order to avoid a complex programming tech-
nique, it was decided to refactor the dynamical core to par-
allelize only over the two inner dimensions, nproma and
nlev, when possible; see Listing 1. With this approach the
optimal nproma is chosen as large as possible, i.e., having
effectively one block per MPI subdomain and thus a single
iteration in the Jb loop in Listing 1.

Generally kernels are denoted with the ACC PARALLEL
directive, which allows the user to be more prescriptive than
the higher-level descriptive ACC KERNELS directive, which
is used in ICON only for operations using Fortran array syn-
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CALL get_indices_c (p_patch, jb, i_startblk , i_endblk, &

i_startidx , i_endidx, rl_start, rl_end)

1$ACC PARALLEL IF( i_am_accel_node

.AND. acc_on ) DEFAULT(NONE) ASYNC(1)

!$ACC LOOP GANG VECTOR COLLAPSE(2)

DO jk = 1, nlev

DO jc = i_startidx , i_endidx

ENDDO
ENDDO
!$ACC END PARALLEL

ENDDO

Listing 1. Most common loop structure in the dynamical core with asynchronous execution.

tax. Usage of KERNELS for more complicated tasks tended
to reduce performance.

There are code differences between CPU and GPU in the
non-hydrostatic solver. On the accelerator it is advantageous
to use scalars within loops, while for the CPU, frequently
two-dimensional arrays perform better; see Listing 2.

After extensive refactoring and optimizations, such as
asynchronous kernel execution and strategically placed ACC
WAIT directives, the resulting dycore version performed at
least as well on GPUs as the original GPU version with
triple-nested parallelism, with the former operating with
nblocks =1 or a very small integer and thus the largest
possible nproma. See Sect. 6 for complete performance
comparisons, in particular between CPU and GPU.

4.3.2 Tracer transport

There are several different variants of horizontal and verti-
cal advection, depending on whether the scheme is Eulerian
or semi-Lagrangian, what sort of reconstructions (second- or
third-order), and which type of time stepping is employed.
All of these variants ultimately can be considered stencil op-
erations on a limited number of neighboring cells, i.e., phys-
ical quantities defined in cell centers, vertices, or edges. As
such, the structure of the corresponding kernels is usually
similar to Listing 1.

In several parts of the code-specific optimization, so-called
“index lists” as shown in Listing 3 are employed for better
performance on CPUs, in particular for vector machines. The
advantage of an index list is that the subsequent calculation
can be limited only to the points which fulfill a certain crite-
rion, which is generally quite rare, meaning the list is sparse
and thus quite small. In addition, such an implementation
avoids the use of “if”” statements, which makes it easier for
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the compiler to auto-vectorize this code section. For the GPU
parallelization, such index list implementation unfortunately
has a negative impact on performance as the list creation is a
sequential operation.

On an accelerator, numerous execution threads will be
competing to increment counter_7ji and insert indices
into i_indlist, i_levlist. We overcame this by us-
ing OpenACC atomics or parallel algorithms based on ex-
clusive scan techniques. However, in some cases the proper
GPU algorithm is to operate over the full loop. The GPU
executes both code paths of the IF statement, only to
throw the results of one path away. The algorithm for
vflux_ppmidgpu is functionally equivalent (Listing 4).

Some horizontal advection schemes and their flux limiters
require halo exchanges in order to make all points in the sten-
cil available on a given process. The communication routines
are described in Sect. 4.3.5.

4.3.3 Horizontal diffusion

The dynamical core contains several variants of horizontal
diffusion. The default approach is a more physically moti-
vated second-order Smagorinsky diffusion of velocity and
potential temperature combined with a fourth-order back-
ground diffusion of velocity, using a different discretization
for velocity that is formally second-order accurate on equi-
lateral triangles.

Most of the horizontal diffusion contains kernels in the
style of Listing 1, but again there are index lists for the nor-
mal CPU calculation. Listing 5 illustrates how the index lists
are avoided at the cost of a temporary 3-D array.

Geosci. Model Dev., 15, 6985-7016, 2022
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!$ACC PARALLEL IF( i_am_accel_node .AND.
!$ACC LOOP GANG VECTOR COLLAPSE(2)

DO jk =

DO jc =

nflatlev (jg)+1, nlev

i_startidx , i_endidx

acc_on )

M. A. Giorgetta et al.: The ICON-A model on GPUs

DEFAULT(NONE) ASYNC(1)

!'Original code had advantages with older vector compilers,

& !

z_w_concorr_mc_ml =

original :

z_w_concorr (jc ,jk—1)

p_int%e_bln_c_s(jc,1,jb)*z_w_concorr_me(ieidx (jc,jb,1),jk—1,ieblk (jc,jb,1)) + &

p_int%e_bln_c_s(jc ,2,jb)*z_w_concorr_me(ieidx (jc,jb,2),jk—1,ieblk (jc,jb,2)) + &

p_int%e_bln_c_s(jc ,3,jb)*z_w_concorr_me(ieidx (jc,jb,3),jk—1,ieblk (jc,jb,3))

z_w_concorr_mc_m0 = & !

original:

z_w_concorr (jc ,jk)

p_int%e_bln_c_s(jc,1,jb)*z_w_concorr_me(ieidx (jc,jb,1),jk,ieblk(jc,jb,1)) + &

p_int%e_bln_c_s(jc ,2,jb)*z_w_concorr_me(ieidx (jc,jb,2),jk,ieblk(jc,jb,2)) + &

p_int%e_bln_c_s(jc ,3,jb)*z_w_concorr_me (ieidx (jc,jb,3),jk,ieblk (jc,jb,3))

p_nh%diag%w_concorr_c(jc ,jk,jb) =

p_nh%metrics%wgtfac_c(jc ,jk,jb)*z_w_concorr_mc_m0 +

&
&

(1._vp — p_nh%metrics%wgtfac_c (jc,jk,jb))*z_w_concorr_mc_ml

!'Original :
ENDDO

ENDDO
!$ACC END PARALLEL

#z_w_concorr(jc ,jk—=1) + (1._vp — p_nh%metrics%wgtfac_c(jc,jk,jb))*z_w_concorr(jc,jk)

Listing 2. Register variables outperform arrays on GPU. One of roughly 10 code divergences in the dynamical core.

DO jc = i_startidx , i_endidx
! jk_shifted must fall
! to pass the following

! the sign of w.

within the range

if condition.

bot_bound] in order

the range depends on

[top_bound,
Unfortunately ,

IF ( z_aux(jc) > p_cellmass_now (jc,jk_shifted (jc,jk,jb),jb) &
& AND. jk_shifted(jc,jk,jb) <= bot_bound &
& .AND. jk_shifted(jc,jk,jb) >= slevpl_ti ) THEN
! Fill index lists with those points that need index shifts

! Note that we have to use a
! i_listdim (nlist ,jb).

counter_ji = counter_ji + 1

i_indlist (counter_ji ,nlist ,jb)

i_levlist(counter_ji ,nlist ,jb)

ENDIF

END DO ! end loop over cells

scalar counter

Otherwise this

jc
jk

instead of a vector, like

loop will not vectorize.

Listing 3. Index lists used in vertical flux calculation with reconstruction by the piece-wise parabolic method.

4.3.4 Dynamical core operators

The dynamical core also calls horizontal operators such as
averaged divergence or cell-to-vertex interpolation. These
operators, along with numerous related stencil operations re-
quired in other parts of the model, were also ported with Ope-
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nACC. These almost always adhere to the style of Listing 1
and are thus straightforward to port to OpenACC.

4.3.5 Dynamical core infrastructure

Essentially all of the halo exchanges occur in the dynamical
core, the horizontal flux calculation of advection, or in the
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!$ACC PARALLEL DEFAULT(NONE) PRESENT(z_cfl) ASYNC(1) IF( i_am_accel_node .AND. acc_on )
!$ACC LOOP GANG VECTOR PRIVATE( z_mass, jks ) COLLAPSE(2)

DO jk = slevpl_ti, elev

DO jc = i_startidx , i_endidx

z_mass = p_dtimesp_mflx_contra_v(jc,jk,jb) ! total mass crossing jk’th edge

IF (z_mass > 0._wp) THEN

jks = jk ! initialize shifted index
DO WHILE( (z_mass > p_cellmass_now (jc,jks,jb)) .AND. (jks <= nlev—1) )

! update Courant number
ENDDO

! now we add the fractional Courant number

z_cfl(jc,jk,jb) = z_cfl(jc,jk,jb) + MIN(1._wp,z_mass/p_cellmass_now (jc,jks ,jb))

ELSE

! update Courant number

! now we add the fractional Courant number

z_cfl(jc,jk,jb) = z_cfl(jc,jk,jb) + MAX(—1._wp,z_mass/p_cellmass_now (jc ,jks ,jb))

ENDIF
ENDDO ! jc
ENDDO ! jk

Listing 4. Index list-free implementation adapted for accelerator execution.

dynamics—physics interface. During the exchange, the lateral
boundary cells of a vertical prism residing on a given process
are written into the lateral halo cells of vertical prisms resid-
ing on its neighboring processes. Since these halo exchanges
are performed within the time loop, the halo regions are in
device memory. Two mechanisms are available to perform
the exchange:

— Update the prism surface on the CPU, post the corre-
sponding MPI_Isend and Irecv with a temporary (host)
buffer, and after the subsequent MPI_WAIT operation,
update receive buffer on the device, and copy the buffer
to the halo region solely on the device.

— Pass GPU pointers to the same Isend and Irecv routines
in a GPU-aware MPI implementation. The final copy to
the halo region is again performed on the device.

These two mechanisms illustrated in Listings 6 and 7 are
easily woven together with logicals in the corresponding
OpenACC IF clauses.

4.4 Physical parameterizations

The provision of the physical forcing for the time integra-
tion is organized in four levels outlined in Listing 8. The
first level, which is the dynamics—physics interface, trans-
forms the provisional variable state X (¢) that results from
dynamics and transport (Fig. 2) to the physics variable state
Y that is the input for the physical parameterizations (Fig. 3).
And on return from the physics, the collected total tenden-
cies from physics in Y variables are converted to tendencies
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in the X variables, followed by the computation of the new
state X (¢ 4+ dt). These tasks involve loops over blocks, lev-
els, and grid points as in dynamics. Their parallelization on
the GPU therefore follows the pattern used in the dynamics
codes; see Listing 1.

At the second level, the physics main routine calls the
physical parameterizations of the Sapphire configuration in
the sequence shown in Fig. 3 by use of a generic subroutine.
This routine contains the block loop from which the speci-
fied parameterization interface routine is called for each sin-
gle data block. Thus the computation below this level con-
cerns only the nproma dimension over cells and the nlev
dimension over levels and in some cases extra dimensions,
for instance, for tracers or surface tiles. Note that the second-
level interface and the generic subroutine do not compute any
fields and therefore do not use the GPU and are free of Ope-
nACC directives.

The third level consists of the interfaces to the specific
parameterizations. These interfaces provide access to the
global memory for the parameterizations by USE access to
memory modules. The equivalent variables in GPU mem-
ory, which have been created before and updated where
necessary, are now declared individually as present, as,
for instance, the three-dimensional atmospheric tempera-
ture ta and the four-dimensional array gtrc for tracer
mass fractions in $SACC DATA PRESENT (fieldS3%ta,
field%$qgtrc). This practice was followed in the code
used on Piz Daint. The newer code on JUWELS Booster in-
stead declares the entire variable construct as present instead
of its components, like SACC DATA PRESENT (field).
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#ifndef _OPENACC
DO jb = i_startblk ,i_endblk
IF (icount(jb) > 0) THEN
DO ic =1,

jc = iclist(ic,jb)

jk = iklist (ic,jb)

enh_diffu = tdlist(ic,jb)*5.e—4_vp

kh_smag_e(ieidx (jc,jb,1),jk,ieblk (jc
MAX(enh_diffu ,kh_smag_e(ieidx (jc
kh_smag_e(ieidx (jc,jb,2),jk,ieblk (jc
MAX(enh_diffu ,kh_smag_e(ieidx (jc
kh_smag_e(ieidx (jc,jb,3),jk,ieblk (jc

icount(jb)

MAX(enh_diffu ,kh_smag_e(ieidx (jc

M. A. Giorgetta et al.: The ICON-A model on GPUs

jbL 1)) =&
,jb 1), jk,ieblk (je,jb,1)))
jbL2)) =&

,jb,2),jk ,ieblk (jc,jb,2)))
,jb3)) =&

,jb.3),jk,ieblk (je,jb,3)))

ENDDO
ENDIF
ENDDO
#else
DO jb = i_startblk ,i_endblk
CALL get_indices_e (p_patch, jb, i_startblk , i_endblk, i_startidx , i_endidx, rl_start, rl_end)
!$ACC PARALLEL LOOP DEFAULT(NONE) GANG VECTOR COLLAPSE(2) ASYNC(1) IF( i_am_accel_node .AND. acc_on )
DO jk = nlev—1, nlev
DO je = i_startidx , i_endidx
kh_smag_e(je ,jk,jb) = MAX(kh_smag_e(je,jk,jb), &
enh_diffu_3d (iecidx (je,jb,1),jk,iecblk(je,jb,1)), &
enh_diffu_3d (iecidx (je,jb,2),jk,iecblk (je,jb,2)) )
ENDDO
ENDDO
!$ACC END PARALLEL LOOP
ENDDO

#endif

Listing 5. The OpenACC version uses a temporary 3D array enh_diffu_3d defined in cell centers and a revised MAX statement on the
edge grid to avoid the construction of iclist/iklist from the previous loop.

!$ACC DATA CREATE( send_buf, recv_buf ) PRESENT( recv, p_pat ) IF (use_gpu)

IF (iorder_sendrecv == 1 .OR. iorder_sendrecv == 3) THEN
! Set up irecv’s for receive buffers
DO np = 1, p_patdhnp_recv ! loop over PEs from where to receive the data
pid = p_pat%pelist_recv(np) ! ID of receiver PE
irs = p_patPrecv_startidx (np)
icount = p_pat%recv_count(np)*ndim2
CALL p_irecv(recv_buf(l,irs), pid, 1, p_count=icount, comm=p_pat%comm, use_g2g=use_g2g)
ENDDO
ENDIF
CALL p_wait

!$ACC UPDATE DEVICE( recv_buf ) IF (.NOT. use_g2g)

Listing 6. High-level halo receive operation with optional GPU-to-GPU communication.
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!$ACC HOST_DATA USE _DEVICE( t_buffer ) IF ( use_g2g )

CALL p_inc_request

CALL mpi_irecv (t_buffer, icount,

p_real_dp, p_source, p_tag, &

p_comm, p_request(p_irequest), p_error)

!$ACC END HOST DATA

Listing 7. Implemention of p_irecv, which supports GPU-to-GPU communication.

< uses GPU, ACC directives for data and loop parallelization >

CALL echam_phy_main(patch, ...)

SUBROUTINE echam_phy_main (patch, ...) ! <—— 2nd level interface
< does not use GPU, no ACC directives >
CALL omp_loop_cell_prog(patch, interface_echam_mig, ...)

SUBROUTINE omp_loop_cell_prog(patch, routine, ...)

< does not use GPU, no ACC directives >

< get grid index jg, start and end indices jbs and jbe for block loop >

!$OMP PARALLEL DO PRIVATE(jb, jcs, jce)

DO jb = jbs, jbe

< get start and end indices jcs and jce for cell loops in "routine" >

CALL routine (jg, jb, jcs, jce,
END DO
1$SOMP END PARALLEL DO

SUBROUTINE interface_echam_mig(jg, jb, jcs, jce, ...)

! <—— 3rd level interface

< uses GPU, ACC directives for data and loop parallelization >

Listing 8. Lines from the first- to third-level interfaces and the generic routine with the block loop used in the second-level interface for
calling the third-level interface routines for specific parameterizations, here for the example of graupel cloud microphysics (mig).

!$ACC PARALLEL DEFAULT(NONE) ASYNC(1)
!$ACC LOOP GANG VECTOR COLLAPSE(2)
DO jk = 1,nlev

DO jc = jes,jce

END DO
END DO
I$ACC END PARALLEL

Listing 9. Most common loop structure over levels jk and cells jc
in parameterizations and their interfaces.

Beside the memory access, these interfaces use the output of
the parameterization for computing the provisional physics
state for the next parameterization in the sequentially coupled
physics and for accumulating the contribution of the param-
eterization tendencies in the total physics tendencies. These
tasks typically require loops over the nproma and nlev di-
mensions but sometimes also over additional dimensions like
tracers. The typical loop structure follows Listing 9.
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Particular attention is paid to the bit-wise reproducibility
of sums, as for instance for vertical integrals of tracer masses
computed in some of these interfaces in loops over the ver-
tical dimension. Here the ! SACC LOOP SEQ directive is
employed to fix the order of the summands. This bit-wise re-
producibility is important in the model development process
because it facilitates the detection of unexpected changes of
model results, as further discussed in Sect. 5.

Finally, the fourth level exists in the parameteriza-
tions. The parameterizations used here are inherently one-
dimensional, as they couple levels by vertical fluxes. This
would allow them to be encoded for single columns, but
for traditional optimization reasons, these codes include a
horizontal loop dimension, which in ICON is the nproma
dimension. Therefore, these parameterizations include this
additional loop beside those required for the parameteriza-
tion itself. The presence of these horizontal loops favored
the GPU parallelization, which therefore generally follow the
pattern in Listing 9. Some parameterization-specific modifi-
cations of the GPU parallelization are pointed out in the fol-
lowing sections.
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4.4.1 Radiation

As pointed out earlier, the GPU implementation aims at using
maximum block sizes, so that all grid points and levels within
a computational domain fit into a single block, and hence a
single iteration of the block loop suffices. Using large block
sizes, however, means also that more memory is required to
store the local arrays, which is a challenge, especially on Piz
Daint with the small GPU memory capacity. This problem
turned out to be most pronounced for the radiation code, ow-
ing to the extra spectral dimension. On Piz Daint, this meant
that a single block per domain would not have been feasible.
This issue was resolved by allowing for a sub-blocking pa-
rameter rrtmgp_column_chunk (rcc) in the radiation
code, so that the original blocks of size nproma are broken
up into smaller data blocks for input and output of the ra-
diation scheme. This radiation block size can be specified
as necessary and is typically ca. 5% to 10% of nproma
when using the smallest possible number of nodes. But, at
the largest node counts during strong scaling as shown in the
experiments below, nproma can become small enough so
that no sub-blocking in the radiation is needed, and rcc is
set to the number of grid points in the computational domain.

As explained in Pincus et al. (2019), RTE+RRTMGP com-
prises a set of user-facing code, written in object-oriented
Fortran 2008, which is responsible for flow control and input
validation, etc. Computational tasks are performed by com-
putational kernels using assumed-size arrays with C bind-
ings to facilitate language interoperability. For use on GPUs,
a separate set of kernels was implemented in Fortran using
OpenACC directives, with refactoring to increase parallelism
at the cost of increased memory use relative to the original
CPU kernels. The Fortran classes also required the addition
of OpenACC data directives to avoid unnecessary data flows
between CPU and GPU.

RTE+RRTMGTP, like ICON, operates on sets of columns
whose fastest-varying dimension is set by the user and whose
second-fastest varying dimension is the vertical coordinate.
Low-level CPU kernels are written as loops over these two
dimensions, with higher-level kernels passing results be-
tween low-level kernels while looping over the slowest-
varying spectral dimension. This approach, illustrated in
Listing 10, keeps memory use modest and facilitates the
reuse of cached data. Low-level GPU kernels, in contrast,
operate on all three dimensions at once. When the calcula-
tion is parallelizable in all dimensions, i.e where values at
every spatial and spectral location are independent, the paral-
lelization is over all rccxnlev(= 191) x ngpt (= O(125))
elements at once. Some loops have dependencies in the ver-
tical; for these the GPU kernels are parallelized over the col-
umn and spectral point, with the vertical loop performed se-
quentially within each horizontal and spectral loop (see List-
ing 11).

Most sets of kernels in RTE+RRTMGP now contain two
separate implementations organized in distinct directories
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with identical interfaces and file naming. A few sets of ker-
nels (e.g., those related to summing over spectral points to
produce broadband fluxes) were simple enough to support
the addition of OpenACC directives into the CPU code.

Though the original plan was to restrict OpenACC direc-
tives to the kernels themselves, it became clear that the For-
tran class front ends contain enough data management and
small pieces of computation that they, too, required Ope-
nACC directives, both to keep all computations on the GPU
and to allow for the sharing of data from high-level kernels
(for example, to reuse interpolation coefficients for the com-
putation of absorption and scattering coefficients by gases).
The classes therefore have been revised such that commu-
nication with the CPU is not required if all the data used
by the radiation parameterization (temperatures, gas concen-
trations, hydrometeor sizes, and concentrations, etc.) already
exist on the GPU.

4.4.2 Land surface physics

One of the design goals of the new ICON-Land infrastructure
has been to make it easy for domain scientists to implement
the scientific routines for a specific land model configura-
tion, such as ISBACH. Except for the (lateral) river routing of
runoff, all processes in JSBACH operate on each horizontal
grid cell independently, either 2-D or 3-D with an additional
third dimension such as soil layers, and therefore do not re-
quire detailed knowledge of the memory layout or horizontal
grid information. To further simplify the implementation, the
2-D routines are formulated as Fortran elemental subroutines
or functions, thus abstracting away the field dimensions of
variables and loops iterating over the horizontal dimension.
As an intermediate layer between the infrastructure and these
scientific routines, JSBACH uses interface routines which are
responsible for accessing variable pointers from the memory
and calling the core (elemental) calculation routines. These
interfaces make extensive use of Fortran array notation. Con-
sequently, the implementations of the land process models
have no explicit loops over the nproma dimension, in con-
trast to the atmospheric process models, where the presence
of these loops favored the GPU parallelization.

Instead of refactoring large parts of JSBACH to use ex-
plicit ACC directives and loops and thus hampering the us-
ability for domain scientists, the CLAW (Clement et al.,
2018) source-to-source translator has been used for the GPU
port. CLAW consists of a domain-specific language (DSL)
and a compiler, allowing it to automate the port to OpenACC
with much fewer directives and changes to the model code
than are necessary with pure ACC. For example, blocks of
statements in the interface routines using array notation can
simply be enclosed by ! $claw expand parallel and
!Sclaw end expand directives and are then automati-
cally expanded into ACC directives and loops. An example
of this mechanism, as used in the JSBACH interface to radi-
ation, is shown in Figs. 8 and 9 of Clement et al. (2019).
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!
! Element—wise loop for fully independent calculations
!
do ilay = 1, nlay
do icol = 1, ncol
tau_s = tau(icol, ilay)

! Intermediate computation

source_up (icol ,ilay) = Rdir = dir_flux_inc(icol)
end do
end do

!

! Vertically —dependent loop (e.g. for radiation transport)

!

do ilev = nlay, 1, —1

1._wp/(l._wp — rdif (:,ilev)=albedo (:,ilev+1)) ! Eq 10

1]

denom
albedo (:,ilev) = rdif (:,ilev) + &
tdif (:,ilev)=tdif (:,ilev) % albedo(:,ilev+1l) % denom ! Equation 9

end do
Listing 10. Example loop structure for CPU kernels in RTE+RRTMGP. High-level kernels operate on all levels and columns in the block but
only one spectral point (g-point) at a time. In this example the loop over g-points is performed at one higher calling level.

!$acc parallel loop collapse(3)
do igpt = 1, ngpt
do ilay = 1, nlay
do icol = 1, ncol
tau_s = tau(icol ,ilay ,igpt)

! Intermediate computation

source_up (icol ,ilay ,igpt) = Rdir = dir_flux_inc (icol ,igpt)
end do
end do
end do
!
! Vertically —dependent loop (e.g. for radiation transport)
!
!$acc parallel loop gang vector collapse(2)
!$Somp target teams distribute parallel do simd collapse (2)
! Note loop over levels is performed sequentially
do igpt = 1, ngpt
do icol = 1, ncol
do ilev = nlay, 1, —1
denom (icol ,ilev ,igpt) = 1._wp/(1._wp — rdif(icol,ilev ,igpt)salbedo(icol ,ilev+1,igpt)) ! Eq 10
albedo (icol ,ilev ,igpt) = rdif (icol ,ilev ,igpt) + &
tdif (icol ,ilev ,igpt)=tdif (icol ,ilev ,igpt) * &
albedo (icol ,ilev+1,igpt) * denom(icol ,ilev ,igpt) ! Eq 9
end do
end do

end do

Listing 11. Example loop structure for GPU kernels in RTE+RRTMGP. For the GPUs, kernels operate on all levels, columns, and spectral
points at once, expect where dependencies in the vertical require the vertical loop to be done sequentially.
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The elemental routines discussed above are transformed
into ACC code using an additional CLAW feature: the
CLAW Single Column Abstraction (SCA) (Clement et al.,
2018). The CLAW SCA has been specifically introduced in
CLAW to address performance portability for physical pa-
rameterizations in weather and climate models which operate
on horizontally independent columns. Using the CLAW SCA
translator, the only changes necessary in the original Fortran
code of JSBACH were to

— prepend the call to an elemental routine by the CLAW
directive ! Sclaw sca forward,

— insert !$claw model-data and !$claw end
model-data around the declaration of scalar param-
eters in the elemental routine that need to be expanded
and looped over,

— inserta ! $Sclaw sca directive in the beginning of the
statement body of the elemental routine.

The CLAW SCA transformation then automatically discards
the ELEMENTAL and PURE specifiers from the routine, ex-
pands the flagged parameters to the memory layout speci-
fied in a configuration file, and inserts ACC directives and
loops over the respective dimensions. Examples for the orig-
inal and transformed code of the JSBACH routine calculating
the net surface radiation are shown in Figs. 5 and 6, respec-
tively, of Clement et al. (2019).

More details on the CLAW port of JISBACH including per-
formance measurements for the radiation component of JS-
BACH can be found in Clement et al. (2019).

4.4.3 Cloud microphysics

Cloud microphysical processes are computed in three se-
quential steps: (1) saturation adjustment for local condensa-
tion or evaporation; (2) the microphysics between the differ-
ent hydrometeors and the vertical fluxes of rain, snow, and
graupel; and (3) again saturation adjustment for local con-
densation or evaporation. Here the code for the saturation
adjustment exists in a CPU and GPU variant, selected by a
compiler directive. The CPU code sets up one-dimensional
lists of cell and level indices, where the adjustment requires
Newton iterations, while the GPU code uses a logical two-
dimensional mask with nproma and nlev dimensions for
the same purpose. The CPU code then loops over the cells
stored in the index lists, while the GPU code employs a two-
dimensional loop structure in which computations happen
only for the cells selected by the mask. Beside the different
means to restrict the computations to the necessary cells, the
CPU code is also optimized for vectorizing CPUs, which is
the reason that the loop over the list occurs within the condi-
tion for ending the Newton iteration cycles, while the GPU
code checks this within the parallelized loops. The related
code fragments are shown in Listings 12 and 13.
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5 Validation

The ICON development on CPU makes use of test suites
comprising simplified test experiments for a variety of model
configurations running on a number of compute systems us-
ing different compilers and parallelization setups. This in-
cludes the AMIP experiment discussed in Giorgetta et al.
(2018) but is shortened to four time steps. The test suite for
this experiment checks for reproducible results with respect
to changes of the blocking length, amount, and kind of par-
allelization (MPI, OpenMP, or both), as well as checks for
differences to stored reference solutions. This test suite was
also implemented on Piz Daint, where the experiments have
been run by pure CPU binaries as well as GPU-accelerated
binaries. Output produced on these different architectures —
even if performed with IEEE arithmetic — will always pro-
duce slightly different results due to rounding. Therefore, the
above-mentioned tests for bit identity cannot be used across
different architectures. The problem is made worse by to
the chaotic nature of the underlying problem. These initially
very small changes, which are on the order of floating point
precision, quickly grow across model components and time
steps, which makes distinguishing implementation bugs from
chaotically grown round-off differences a non-trivial task.

This central question of CPU vs. GPU code consistency
was addressed in three ways, (1) the “ptest” mode, (2) the
serialization of the model state before and after central com-
ponents, and (3) tolerance tests of the model output. Details
for these methods are given in the following subsections. The
first two methods are able to test a small fraction of the code
in isolation where chaotic growth of round-off differences is
limited to the tested component and thus small. We found
that tolerating relative errors up to differences of 10~? with
double-precision floating point numbers (precision roughly
at 1071) did not result in many false positives (a require-
ment for continuous integration) while still detecting most
bugs. Even though most of the code is covered by such com-
ponent tests, there is no guarantee that passing all these tests
leads to correct model output. To ensure this, a third method
had to be implemented. This method came to be known as
the “tolerance test” because tolerance ranges could not be as-
sumed constant but had to be estimated individually for each
variable across all model components and over multiple time
steps. It should be emphasized that, while the introduction of
directives took only weeks of work, the validation of proper
execution with the inevitable round-off differences between
CPU and GPU execution took many months.

5.1 Testing with the ptest mode

The preexisting internal ptest mechanism in ICON allows
the model to run sequentially on one process and in parallel
on the “compute processes” with comparisons of results at
synchronization points, such as halo exchanges. This mech-
anism was extended for GPU execution with the addition of
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count = 0

DO WHILE (ANY(ABS(twork (1:nsat)—tworkold(1:nsat)) > tol)

DO indx = 1, nsat

7001

AND. count < maxiter)

IF (ABS(twork (indx)—tworkold (indx)) > tol) THEN

! Here we still have to iterate
i = iwrk(indx)
k = kwrk(indx)

tworkold (indx) = twork(indx)

twork (indx) = twork(indx) — ...
END IF
END DO
count = count + 1
END DO

Listing 12. Code structure of the Newton iteration for the saturation adjustment on CPU, making use of 1D lists iwrk for the cell index and
kwrk for the level index of cells where the adjustment needs to be computed iteratively.

!$acc parallel default(present)

!$acc loop gang vector collapse(2) private (...
DO k = klo,kup

DO i = ilo,iup

count = 0

DO WHILE (ABS(twork (i,k)—tworkold(i,k)) > tol

! Here we still have to iterate
tworkold (i ,k) = twork(i, k)

twork (i ,k) = twork(i,k) — ...
count = count + 1
END DO !while
END DO !i
END DO !k

!$acc end parallel

, count)

.AND. count < maxiter .AND. iter_mask(i,k))

Listing 13. Code structure for saturation adjustment on GPU, making use of a 2D mask iwrk for the cell index and kwrk for the level index

of cells where the adjustment needs to be computed iteratively.

IF statements in kernel directives, so that the GPUs are only
active on the compute processes. Listing 1 illustrates all of
the above-mentioned ideas. In particular, the global variable
i_am_accel_node is .TRUE. on all processes which are
to execute on accelerators but .FALSE. on the worker node
delegated for sequential execution.

If the ptest mode is activated when a synchronization point
is encountered, arrays calculated in a distributed fashion on
the MPI compute processes are gathered and compared to the
array calculated on the single sequential process. Synchro-
nization points can either be halo exchanges or manually in-
serted check_patch_array invocations which can com-
pare any arrays in the standard 3-D ICON data layout.

While this method was very handy at the beginning of the
effort to port the model to GPUs, especially for the dynam-
ical core of the model, extending it beyond the preexisting
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mechanism turned out to be cumbersome. At the same time,
the Serialbox library offered a very flexible way to achieve
the same goal without running the same code on different
hardware at the same time.

5.2 Serialization

Besides the ptest technique mentioned, two other approaches
were used for the validation of GPU results. First, the full
model code was used with test experiments, which typically
use low resolution, just a few time steps, and only the com-
ponent of interest. Examples are AMIP experiments on the
R2B4 grid, as used in Giorgetta et al. (2018) but for four time
steps only, with or without physics, or with only a single pa-
rameterization. This approach has the advantage that the ex-
periments can be compared to other related experiments in
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the common way, based on output fields as well as the log
files in all tests.

The second approach, the “serialization” method, uses
such experiments only to store all input and output variables
of a model component. Once these reference data are stored,
the test binary (usually utilizing GPUs) reads the input data
from the file and calls the model component in exactly the
same way as the reference binary (usually running exclu-
sively on CPUs). The new output is stored and compared
to the previously generated reference data, for instance, to
check for identical results or for results within defined toler-
ance limits due to round-off differences between pure CPU
and GPU-accelerated binaries. This serialization mechanism
was implemented in ICON for all parameterizations (but not
dynamics or transport, which were tested with the technique
mentioned in Sect. 5.1), which were ported to GPU, and was
primarily used during the process of porting individual com-
ponents to GPU. The advantage of this method is the fine
test granularity that can be achieved by surrounding arbitrary
model components with the corresponding calls to the serial-
ization library.

5.3 Tolerance testing

The methods discussed in the last two sections are valu-
able tools to locate sources of extraordinary model state di-
vergence (usually due to implementation bugs) as well as
frequent testing during optimization and GPU code devel-
opment. However, they do not guarantee the correctness of
the model output. This problem is fundamentally different
from component testing because chaotic growth of initial
round-off differences is not limited to a single component
but quickly accumulates across all model components and
simulation time steps. This section introduces a method to
estimate this perturbation growth and how it is used to ac-
cept or reject model state divergence between pure CPU and
GPU-accelerated binaries.

The idea is to generate for each relevant test experiment on
CPU an ensemble of solutions, which diverge due to tiny per-
turbations in the initial state. In practice the ensemble is cre-
ated by perturbing the state variables consisting of the verti-
cal velocity w, normal velocities on cell edges v,, the virtual
potential temperature 6y, the Exner function I1, and the den-
sity p by uniformly distributed random numbers in the inter-
val [—1 x 10714, 1 x 107'4]. The resulting ensemble, which
consist of the unperturbed and nine perturbed simulations, is
used to define for each time step of the test the tolerance lim-
its for all output variables. In practice, we do not compute the
tolerance limit for each grid point but define a single value
for each variable and time step by applying different statis-
tics across the horizontal dimension and selecting the largest
value for each statistic across the vertical dimension. The test
is currently implemented using minimum, maximum, and
mean statistics in the horizontal. This approach has proved
to be effective to discard outliers. Applying the same proce-
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dure to the model output from the GPU-accelerated binary
allows the test results to be compared with the pure CPU ref-
erence under the limits set by the perturbed CPU ensemble.
This method proved effective in highlighting divergences in
the development of the GPU version of the ICON code over
a small number of time steps.

6 Benchmarking results

Once the GPU port of all components needed for the planned
QUBICC experiments was completed, practical testing was
started with the first full experiment shortened to 2 simula-
tion hours — a computational interval that proved to be suffi-
cient to provide robust performance results. For the technical
setup, it was found that a minimum of ca. 960 GPU nodes of
Piz Daint was necessary for the memory of a QUBICC exper-
iment. Because performance was affected when getting close
to 960 nodes, a setup of 1024 nodes was chosen for the model
integration. This number 1024 = 210 also has the advantage
that it more easily facilitates estimates of scalings for factor
of 2 changes in node counts. Similarly, a minimal number of
128 compute nodes was determined for a QUBICC experi-
ment on JUWELS Booster and Levante.

An additional small number of nodes was allocated for the
asynchronous parallel output scheme. The number is chosen
such that the output written hourly on Piz Daint and 2-hourly
on JUWELS Booster and Levante is faster than the integra-
tion over these output intervals. As a result, the execution
time of the time loop of the simulation is not affected by
writing output. Only does the writing output at the end of the
time loop add additional time.

These setups were used for the science experiments in-
cluding the experiment discussed in Sect. 6.1 as well as start-
ing points for the benchmarking experiments.

6.1 Benchmarking experiments

The test experiment for benchmarking consists of precisely
the configuration of dynamics, transport, and physics as for
the intended QUBICC experiments. Only the horizontal grid
size, the number of nodes, and parameters to optimize par-
allelization were adjusted as needed for the benchmark tests.
The length of the benchmark test is 180 time steps corre-
sponding to 2 h simulated time, using the same 40 s time step
in all tests. For all benchmark tests, the time to solution has
been measured by internal timers of the model. This provides
the data for the discussion of the speedup, time to solution
and scaling in Sects. 6.3 to 6.5. These data are available in
the related data repository (Giorgetta, 2022).

Three different grid sizes are used for benchmarking. First,
for single-node testing on Piz Daint (Sect. 6.3) the R2B4
grid is used because this grid is 1024 times smaller than the
R2B9 grid used for experiments running on 1024 Piz Daint
nodes. Second, for the strong scaling analysis, the R2B7 grid
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is used, which is 16 times smaller than the R2B9 grid. Ac-
cordingly, the minimal number of nodes used for the strong
scaling tests is 16 times smaller than for the R2B9 setup used
in experiments, so that this smallest setup is again compara-
ble in memory consumption to the R2B9 setup for the exper-
iments and further so that at least four node doubling steps
are possible within the limits of the computer allocations.
The actual ranges of compute nodes n., used for the strong
scaling tests for the R2B7 grid on the three computers can
be seen in Table 3. Third, for the weak scaling analysis, the
R2B9 grid is used, so that it can be compared with the R2B7
tests with 16 times smaller number of grid points and nodes.

The allocations on JUWELS Booster and Levante also al-
lowed us to run benchmark tests for the R2B9 grid on larger
node numbers so that the strong and weak scaling could also
be analyzed for higher node numbers, as tabulated in Table 3.

Among the three grids used here, only the benchmark test
on the original QUBICC grid (R2B9) has a physically mean-
ingful configuration, while benchmark tests with smaller grid
sizes are not configured for meaningful experiments. Tim-
ings reported below for benchmark tests on smaller grid
sizes therefore should not be interpreted as timings for [CON
experiments configured for such reduced resolutions, e.g.,
through the introduction of additional processes or changes
in time steps.

Two measures of scaling are introduced. Strong scaling S
measures how much the time to solution, 7%, is increased for
a fixed configuration with 2n, computing nodes compared
to one-half of the time to solution with n¢, nodes. Weak scal-
ing Sy measures how much 7t increases for a 2-fold increase
in the horizontal grid size (with ng, grid points) balanced by
a 2-fold increase in the node count, n¢,. These are calculated
as

_ Tf(”gpa Nen)/2 Tf(ngpa Rcn)

= and Sy=—77"7—""—
Tt(ngp, 2ncn) Tt(2ngp, 2ncn)
1/4
~ Tf(ngpﬂ’lcn) / = (SW 16)1/4 (1)
Tr(16ngp, 16ncn) '

respectively. Because global grids can more readily be con-
figured with grid resolution changing in factors of 2 and con-
sequently ngp changing in multiples of 4, and to minimize
the noise for the weak scaling, Sy is estimated through ex-
periments with a 4-fold increase in resolution and 16-fold
increases in the computational mesh and node count. An
ideal scaling would result in S§s = Sy =1, while S5 < 0.5
would indicate a detrimental effect of adding computational
resources.

Values of Tt needed in calculating S and Sy, are provided
by the simulation log files. These time measurements, which
are part of the model infrastructure, are taken for the inte-
gration within the time loop that includes the computations
for all processes (dynamics, transport, radiation, cloud mi-
crophysics, vertical diffusion, and land processes), as well as
other operations required to combine the results from these
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components, to communicate between the domains of the
parallelizations and to send data to the output processes, etc.
But for benchmarking, we are mostly interested in the perfor-
mance of the time loop integration and the above-mentioned
processes. The benchmarking should show that the GPU port
provides a substantial speedup on GPU compared to CPU,
and it should characterize the strong and weak scaling be-
havior of the ICON model on the compute systems available
in this study.

Two model versions have been used in the benchmarking,
as listed in Table 2. Version (1) resulted from the GPU port-
ing on Piz Daint and version (2) from the further develop-
ments made when porting to JUWELS Booster. This latter
version was also used on Levante. The codes of both model
versions are available in the related data repository (Gior-
getta, 2022).

6.2 Optimization parameters

The computational performance of benchmark experiments
can be optimized by the choice of the blocking length
nproma, the radiation sub-blocking length rcc, and the
communication method. As discussed already in Sect. 4.1,
the most important point for execution on GPU is to have all
data in a single block on each MPI domain, thus including
the grid points for which computations are needed (Table 3,
column ngp,) as well as the halo points needed as input for
horizontal operations in dynamics and transport. At the same
time, the GPU memory must be sufficient to store the local
data given the (large) block size.

For Piz Daint, the 1024-node setup for the R2B9 grid has
20480 horizontal grid points per domain and a nproma
value of ca. 21 000. The single-node benchmarking uses the
R2B4 grid with nproma = ngy, = 20480 because no halo
is needed. Strong scaling tests are based on the R2B7 grid
using 64 to 1024 nodes. Thus the initial 64 node setup uses
practically the same amount of memory per node as the small
single-node test, while the largest setup has a block size ca.
16 times smaller. The weak scaling tests consist of the same
R2B7 setup on 64 nodes used for strong scaling and the 16
times larger R2B9 setup on 1024 nodes, which therefore have
comparable block sizes of ca. 21 000.

A second performance parameter consists in the size of the
sub-blocking used for radiation, rcc, which was introduced
to reduce the memory requirement of the radiation and thus
to allow for the usage of single blocks for all other compo-
nents of the model. For setups on Piz Daint with nproma
close to 21 000, tests showed that the maximum rcc is 800
(Table 3), thus splitting a data block into 26 sub-blocks for
the radiation calculation (20480 =25 x 800+ 480). In the
strong scaling series, the increasing number of nodes reduces
the grid size per node and nproma accordingly, which al-
lows rcc to be increased. Only for 512 nodes did it show
that having rcc = 1280, which amounts to two sub-blocks of
equal size, was more efficient to compute the radiation than
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Table 2. Model revisions and their usage.
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No. Computer Revision

Comments

(1)  Piz Daint
2) JUWELS Booster, Levante

icon-cscs:7de52b43701a5f56b5f82c¢411651a290edb3950c
icon-cscs:baf28a514c0f6d8143el1fde2ebce7fe02becd79d

480 g-points, clear-sky computation
240 g-points, no clear-sky computation

having a higher rcc, which triggers two radiation calls with
quite unequal sub-block sizes as, for instance, 2000 and 560.
Finally, for 1024 nodes, rcc = 1280 covers all computational
cells so that a single radiation call is sufficient; i.e., no sub-
blocking takes place.

Further optimizations can be exploited in the communica-
tion. Choosing direct GPU-to-GPU communication instead
of CPU-to-CPU communication (see Sect. 4.3.5) results in a
speedup of ca. 10 % on Piz Daint. Unfortunately the GPU-
to-GPU communication on Piz Daint caused random crashes
seemingly related to the MPICH implementation, and there-
fore all scaling tests and experiments on Piz Daint use the
slower CPU communication. On JUWELS Booster, no such
problems were encountered, so that the GPU-to-GPU com-
munication is used in all experiments.

On JUWELS Booster, more GPU memory is available
compared to Piz Daint (160 GB vs. 16 GB per node). This al-
lows for scaling tests with the same R2B7 and R2B9 grids on
a minimum of 8 and 128 nodes, respectively, with a blocking
length nproma close to 42000 and a sub-blocking length
rcc starting at 5120 or eight sub-blocks of equal size. This
larger sub-blocking length is possible not only because of the
larger GPU memory, but also because the newer ICON code
that is used on JUWELS Booster has only half of the g-points
of the gas optics in the radiation, 240 instead of 480, which
reduces the memory for local arrays in radiation accordingly.
On JUWELS Booster the strong scaling tests extend from 8
to 256 nodes, thus from 32 to 1024 GPUs. On 64 and more
nodes, nproma is small enough to set rcc to the full num-
ber of computational grid points in the domain, which allows
the radiation scheme to be computed without sub-blocking.
Further, it should be pointed out that the reduction of the
number of g-points constitutes a major computational opti-
mization by itself, as this reduces the computing costs of this
process by a factor 2 without physically significant effects on
the overall results of the simulations.

On Levante, where no GPUs are used and the CPUs have
a comparatively large memory, the best nproma is 32 for
all grids and number of nodes, and no sub-blocking is nec-
essary for the radiation; i.e., rcc is also 32 for all cases. An
additional optimization concerns the parallelization between
MPI processes and OpenMP threads. In all tests on Levante,
we use two CPUs/node x 16 processes/CPU x four thread-
s/process = 128 threads/node.
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6.3 Single-node CPU-to-GPU speedup on Piz Daint

On Piz Daint the achievable speedup of a small R2B4 model
setup on a single GPU versus a single CPU was an impor-
tant metric. Single-node tests give a clear indication of the
performance speedup achievable on GPUs vs. CPUs with-
out side effects from parallelization between nodes. Only a
speedup clearly larger than 2 would be an improvement for
a node hosting one CPU and one GPU versus a node with
two CPUs. To achieve this goal, the speedup must be favor-
able, especially for the model components which dominate
the time to solution of the integration.

Figure 4 therefore shows in panel (a) the relative costs of
the model components on the GPU as percentage of the time
to solution of the integration in the time loop and in panel (b)
the CPU-to-GPU speedup for the integration and the model
components. Concerning the relative costs, it is clear that dy-
namics and radiation are the dominating components, each
taking between 30 % and 40 %. All other components con-
sume less than 10 % of the integration time. Also the CPU-
to-GPU speedup varies between the components. The highest
value is achieved by radiation, 7.4, and the lowest by the land
scheme, 2.9. All together, the speedup of the full integration
is 6.4, as a result of the high scaling of the most expensive
components and the very low costs of the components with a
lower speedup.

The high speedup of radiation is attributed to the higher
computational intensity and more time invested in optimiza-
tions as compared to other, less costly components. The land
physics stands out for its poor performance, which is at-
tributed to the very small GPU kernels, so that the launch
time is often comparable to the compute time. But for the
same reason (small computational cost), this has little ef-
fect on the speedup of the full model. The 6.4-fold speedup
of the code of the whole integration is considered satisfac-
tory, given that the ICON model is bandwidth-limited, and
the GPU bandwidth : CPU bandwidth ratio on Piz Daint is of
approximately the same order.

6.4 Scaling

On each compute system, the R2B7 and R2B9 setups are run
for successive doublings of n¢y, starting from the minimum
value of n¢y (cp min) that satisfies the memory requirements
of the model and proceeding to the largest n¢, for which
we could obtain an allocation. Blocking sizes are optimized
for each value of n¢,. The smaller memory requirements of
R2B7 allow it to be run over a much larger range of ncp.
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Table 3. Time to solution, 7f; percent of time spent on dynamical solver (Dyn); strong and weak scaling, Ss and Sy, respectively; and
temporal compression, 7, for experiments on Piz Daint, JUWELS Booster, and Levante with code version (Code) from Table 2, grid name,
number of grid points, ngp, number of computing nodes, n¢n, number of grid points per MPI process, ngpp, and optimization parameters,
nproma and rcc. Scaling values shown in bold are used in the extrapolation for a 1 SYPD simulation at ca. 1 km resolution; see Sect. 6.5.1.
The temporal compression is only shown for the R2B9 setup, to which the chosen time step (40's) corresponds.

Code  Grid ngp Ren Ngpp Nproma rcc Ty (s) Dyn (%) Ss Sw 7 (SDPD)
Piz Daint 1 xP100 GPU per compute node, 1 MPI process per GPU

(@) R2B7 1310720 64 20480 21464 800 132.8 355

(€] R2B7 1310720 128 10240 10944 1200 73.43 38.9 0.904

(€)) R2B7 1310720 256 5120 5621 1600  49.77 38.7 0.738

(€)) R2B7 1310720 512 2560 2999 1280 37.18 38.9 0.669

(€)) R2B7 1310720 1024 1280 1589 1280 31.20 319 0.596

1) R2B9 20971520 1024 20480 21706 800 1474 33.6 0.974 48.85
JUWELS Booster 4xA100 GPU per compute node, 1 MPI process per GPU

2) R2B7 1310720 8 40960 42338 5120 49.58 39.5

2) R2B7 1310720 16 20480 21464  49.58 31.07 372 0.798

2) R2B7 1310720 3210240 10944 10240 22.66 38.7 0.686

2) R2B7 1310720 64 5120 5621 5120 16.13 33.8 0.703

2) R2B7 1310720 128 2560 2999 2560 14.40 309 0.560

2) R2B7 1310720 256 1280 1589 1280 14.77 262 0.487

2) R2B9 20971520 128 40960 42690 4096 54.13 37.5 0.978 133.0

2) R2B9 20971520 256 20480 21706 5120 33.97 355 0.797 0.978 212.0
Levante 2xMilan CPU per compute node, 16 MPI processes per CPU, 4 OMP threads per process

2) R2B7 1310720 8 5120 32 32 4843 46.5

2) R2B7 1310720 16 2560 32 4843 2412 475 1.004

2) R2B7 1310720 32 1280 32 4843 1186 48.6 1.017

2) R2B7 1310720 64 640 32 4843 63.60 475 0.932

2) R2B7 1310720 128 320 32 4843 3446 447  0.923

2) R2B7 1310720 256 160 32 4843 18.60 39.3  0.926

2) R2B7 1310720 512 80 32 4843 11.14 343 0.835

2) R2B9 20971520 128 5120 80 32 491.1 46.4 0.997 14.7

2) R2B9 20971520 256 2560 32 4843 2497 46.8 0.984 0.991 28.8

2) R2B9 20971520 512 1280 32 4843 1273 46.7 0.980 0.982 56.5

2) R2B9 20971520 1024 640 32 4843 6945 447 0917 0978 103.7

In each case, the full time to solution 7f measured for the
model integration is provided in Table 3. (The time to solu-
tion per grid column and time step can be calculated straight-
forwardly from these data as Tj = Tt/ngp/180.) The strong
and weak scaling parameters are then calculated from 7; and
Eq. (1). First we discuss the R2B7 benchmarks made for the
strong scaling analysis, followed by the weak scaling analy-
sis based on R2B7 and R2B9 benchmarks.

6.4.1 Time to solution and strong scaling of the model
integration

The full time to solution 7t and the cumulative strong scaling
Ss.cum Of the model integration on the R2B7 grid, as mea-
sured by the “integrate” timer, are displayed in Fig. 5. The
time to solution for the smallest setups clearly shows that the
GPU machines allow a solution to be reached more quickly
than the CPU machine, when small node numbers are used.
And as expected, the more modern JUWELS Booster ma-

https://doi.org/10.5194/gmd-15-6985-2022

chine is faster than the older Piz Daint machine. The ben-
efit of repeatedly doubling the GPU node count decreases,
as visible in the flattening of the time-to-solution series for
Piz Daint and JUWELS Booster. Generally only two dou-
bling steps are possible if S cym should be higher than 0.5.
For JUWELS Booster, where the allocation allowed for a
fifth doubling step, the time to solution of the last step, at
256 nodes, is actually higher than for 128 nodes. For Lev-
ante, the time to solution essentially halves for each dou-
bling of nodes, except for a small degradation building up
towards the highest node counts. This makes it already clear
that the strong scaling of this experiment differs substantially
between the GPU machines Piz Daint and JUWELS Booster
and the CPU machine Levante.

Indeed the scaling panel shows that the GPU machines
have a cumulative strong scaling Sg cum that decays rather
quickly, almost linearly with the number of node doubling
steps. Correspondingly, also the single step strong scaling S

Geosci. Model Dev., 15, 6985-7016, 2022
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(a) Percentage of time-to-solution of components on GPU
20480 points, 191 levels, 180 time steps
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Figure 4. For a small setup with 20480 grid points and 191 lev-
els integrated over 180 time steps: (a) time to solution on GPU of
the model components as percentage of the time for the “integrate”
timer that measures the whole time loop and (b) the CPU-to-GPU
speedup for the whole time loop as well as the model components.

decreases with increasing node counts, as can be seen in Ta-
ble 3 for Piz Daint and JUWELS Booster. For Levante we
find, however, that Ss cum even slightly increases in the first
two doubling steps, before showing a weak degradation, so
that S5 cum €xceeds 0.6, even at the highest tested paralleliza-
tion on 512 nodes with a 64 times increased node count,
where only 80 grid columns are left per MPI process. This
results from favorable Sg values even at high node counts,
with Sg staying above 0.9 up to 256 nodes; see Table 3.

6.4.2 Time to solution of components

The measurement of 7; of the model components in the
strong scaling benchmarks allows for quantification of the
relative costs of the main components. Typically the most
time-consuming components not only dominate the total
time, but also often determine the scaling behavior of the
model. Thus knowing the relative costs and the scaling of the
components contributes to understanding the behavior of the
full model and can give guidance for future improvements.
For these purposes, Tt from the dynamical core, tracer trans-
port, radiative transfer, turbulent mixing processes, cloud mi-
crophysics, and land processes is displayed in the left col-
umn of Fig. 6 for all three compute systems. Among these
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components, the dynamics generally dominates, taking about
40 % of the compute time on the GPU systems and closer to
50 % of the time on Levante (see Table 3 for precise percent-
ages). The fraction of the compute time spent on the dynam-
ics decreases for high node counts as the model stops scal-
ing. On Piz Daint, radiation is the second most computation-
ally expensive component, while on JUWELS Booster trans-
port is substantially more costly. This difference results from
the changed setup of the radiation code used on JUWELS
Booster and Levante, which includes (1) the reduction of
g-points from 480 to 240 and (2) avoiding the extra com-
putation of clear-sky fluxes. In the smallest R2B7 setup on
JUWELS Booster, the first step reduces the radiation time by
43 %, and both steps together yield a reduction of 60 %. On
Levante, where also the faster radiation is used, the compute
time spent in transport and radiation is almost equal.

The ranking of the less costly processes partly depends
on the scaling of the components, which makes the radiation
scheme relatively cheaper and the land processes relatively
more expensive for higher number of nodes. On the GPU
machines Piz Daint and JUWELS Booster, the least amount
of time is spent for cloud microphysics for all numbers of
nodes, while on the CPU machine Levante, the same is true
for the land processes. This points again at the poor CPU-
to-GPU speedup of the land scheme and in addition also at
a poor strong scaling. However, the total cost of the micro-
physical complexity is much larger, as in the absence of mi-
crophysics there would be no need for tracer transport, which
is computed here for six tracers, and the vertical diffusion
would be computed only for temperature and wind.

6.4.3 Strong scaling of components

The cumulative strong scaling S cym of the components is
shown in the right column of Fig. 6. Most components show
similar scaling behavior to the model as a whole (Fig. 5b),
with some noteworthy exceptions. On the GPU machines Piz
Daint and JUWELS Booster, the important exceptions to this
rule are the land and radiation. Land shows very poor strong
scaling, quickly approaching the cumulative strong scaling
for S5 = 0.5, shown by grey symbols, where the time to so-
lution is constant for all node numbers. Radiation, however,
achieves a scaling better than 1 on Piz Daint and remains
close to 1 on JUWELS Booster in the first and second dou-
bling of nodes, only starting to decay for larger increases in
Nen-

The strong scaling on GPUs depends sensitively on the
ability to maintain sufficient work for each node as the node
count is increased. In the case of land, which is computa-
tionally inexpensive and spatially sparse, this is not possible.
For radiation, the workload can be increased through the op-
timization of the sub-blocking parameter, rcc. On Piz Daint
this is possible up to n., = 512, reaching the case of no sub-
blocking in the last step only, on 1024 nodes; see Table 3.
On JUWELS Booster the initial sub-blocking size is substan-
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(a) Time-to-solution for the integration
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(b) Cumulative strong scaling of the integration
1.3 M points, 191 levels, 180 time steps
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Figure 5. Time to solution (a) and cumulative strong scaling Ss cum (b) from the model integration on Piz Daint (black), JUWELS Booster
(red), and Levante (blue). The scaling panel additionally shows in grey Ss cum for Ss = 0.5 for a constant time to solution.

tially larger from the beginning, owing to the larger available
memory, and thus the largest workload is already reached on
32 nodes. From this step onward, no sub-blocking is needed
and the work load decays with the decreasing number of grid
points on the processor.

Not critical but noteworthy is the scaling of transport. Gen-
erally, the scaling of transport resembles that of dynamics, as
both schemes have horizontal dependencies. But for the first
node doubling on Piz Daint and the second node doubling
on Levante, transport shows a remarkably higher strong scal-
ing than dynamics. Further, on Levante the cumulative strong
scaling of the vertical diffusion takes a value of 1 from 8 to
64 nodes and increases for higher node counts up to 1.2 for
512 nodes. The reasons for these behaviors have not been
investigated.

6.4.4 Weak scaling

The weak scaling Sy, derived from pairs of R2B7 and R2B9
benchmarks with a factor 16 in node count and grid points
is shown in Table 3. Generally we found a very good weak
scaling, whether on GPUs or on CPUs. For JUWELS Booster
and Levante, where Sy, was evaluated for more than one pair
of R2B7 and R2B9 experiments, S,, remains higher than 0.97
for all cases.

6.4.5 Scaling evaluation

For the practical employment of the ICON-A model, here in
the QUBICC configuration, the scaling results have the fol-
lowing consequences. (1) On GPU machines the possibility
to speed up the turnover rate along the strong scaling line is
rather limited. Starting from the smallest setup, only a dou-
bling or quadrupling of the number of compute nodes would
be reasonable. (2) On the CPU machine, the high strong scal-
ing allows the turnover to be increased with little scaling
loss, as long as the number of grid columns stays roughly
above 100. (3) The excellent weak scaling would allow the
horizontal resolution to be increased to the largest grid fit-
ting in the memory of these systems. Thus a resolution of
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2.5km (R2B10 grid) would be possible on Piz Daint and
JUWELS Booster. And Levante is large enough for a reso-
lution of 1.25km (R2B11 grid).

6.5 Outlook for 1 simulated year per day at 1 km
resolution on a global grid

6.5.1 Temporal compression of benchmarks

The temporal compression, t, of a model setup on an avail-
able compute systems is important for determining what kind
of scientific questions the model may be used for. Here it
is measured as a unit-less parameter, of simulated days per
day (SDPD), and only calculated for the R2B9 benchmark
simulations for which the correct physical configuration and
time step are used. Achieving a full simulated year per day
(1 SYPD =365.25 SDPD) for kilometer-scale configurations
is a target for centennial-scale climate simulations and still a
major challenge.

The temporal compression of the R2B9 benchmarks is
shown in Fig. 7 and also tabulated in Table 3. On Piz Daint
the R2B9 experiment on 1024 nodes achieves a temporal
compression of 48 SDPD. Considering the poor strong scal-
ing, 1 SYPD is well beyond reach. On Levante, where the
experiment has been run on 128, 256, 512, and 1024 nodes,
the turnover grows from 14.7 to 103.7 SDPD. Hence, us-
ing the entire machine gets closer but still falls about 25 %
short of 1 SYPD. On JUWELS Booster a turnover of 133 and
212 SDPD was achieved on 128 and 256 nodes respectively.
The linear extrapolation in log(n¢,), shown as a thin red line
in Fig. 7, indicates that ca. 984 nodes could return about 1
SYPD. Thus the entire JUWELS Booster system that has 936
nodes would get close to 1 SYPD with the model setup for
QUBICC experiments.

6.5.2 Computational demands for 1 SYPD

Based on the results above, we extrapolate to assess the
computation requirements for a global simulation using an
R2B11 (1.25km) mesh with a temporal compression of 1
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(b) Piz Daint: Cumulative strong scaling of components
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Figure 6. Time to solution (a, ¢, e) and cumulative strong scaling Ss,cum (b, d, f) for Piz Daint (a, b), JUWELS Booster (¢, d), and Levante
(e, f). The time used and the cumulative strong scaling are shown for the model components: in blue the resolved processes dynamics and
transport; in red the atmospheric parameterizations for radiation, vertical diffusion, and cloud microphysics, and in brown the land physics.
The scaling panels additionally shows in grey Ss cum for Ss = 0.5 for a constant time to solution.

SYPD. We base our estimates on reference calculations us-
ing the QUBICC configuration, anticipating that its increased
number of vertical levels would be commensurate with the
target system. Further, we assume that a time step 4 times
smaller is stable on the R2B11 grid.

Our calculations of weak scaling allow us in a first step
to estimate the performance of an R2B11 system using a 16-
fold enlarged setup on an enlarged version of one of the ref-
erence compute systems (Ref — 16xRef). Then we use the
strong scaling factor for the reference system to estimate the
increase in the temporal compression for a 4-fold larger setup
(16 xRef — 64 x Ref). For this strong scaling calculation, we
use the two Ss values starting from the R2B7 setup with the
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same number of grid points per node as used in the R2B9
setup enlarged 16-fold in the weak scaling step. Sy, and S
values used for the extrapolation are shown in bold in Ta-
ble 3. The parameter y1, measures the gap, i.e., the additional
factor of temporal compression required to reach 1 SYPD
(Table 4); alternatively it can be understood as the number of
days required to simulate 1 year for a given configuration.

It shows that for Piz Daint, where our reference system
uses only 1024 of its 5704 nodes, a system roughly 12-fold
larger than Piz Daint would still fall a factor 12 short of the
desired compression. This factor is too large to be achieved
by further strong scaling. We get closer with the A100 chip-
set, as a system roughly 9 times larger than JUWELS Booster
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Table 4. ICON R2B11 configurations and their expected turnover. Compute system with processor type, its total number of nodes and the
Rmax LINPACK benchmark, and ICON code version, ICON grid, horizontal resolution (Ax), time step, number of nodes, fraction of nodes
with respect to the total number of nodes, temporal compression t (in SDPD), the gap factor, y; for 1 simulated year per day, defined as
y1 = 365.25/7, and the required computational power P| = R - y|, where R = n¢p/nen,tot - Rmax, and given in units of exaflops per second
(EFlop ) required to simulate 1 year per day of the indicated model on the indicated configuration of the machine, assuming ideal strong
scaling for a speedup of ;. Because we use the LINPACK references for Rmax, the ncp tot for Levante is not its present node count but the

number used in the November 2021 benchmarks.

System Grid Ax (km) Afr(s) ncn

Ten/Men, tot

7 (SDPD) 1y P; (EFlops™!)

Piz Daint, 1 x P100 GPU per node, ncn,tot = 5704, Rmax = 21.2 PFlop s_l, code base (1)

Ref R2B9 5.00 40 1024 0.18
16xRef R2B11 1.25 10 16384 2.87
64x Ref R2B11 1.25 ? 65536 11.5

48.85 7.48 0.028
11.01 332 2.024
29.37 12.4 3.033

JUWELS Booster, 4x A100 GPU per node, ncp tot = 936, Rmax = 44.1 PFlop s~ 1 , code base (2)

Ref R2B9 5.00 40 128 0.14 133.0 2.75 0.017
16xRef R2B11 1.25 10 2048 2.19 30.46 12.0 1.158
64x Ref R2BI11 1.25 10 8192 8.75 66.66 5.48 2.116
HLRES 4xNG-100 GPU per node, code base (2)

R2B11 1.25 10 2048 131.0 2.79

R2B11 1.25 10 8192 286.6 1.27

Levante 2x AMD EPYC Milan per node, ncn,tot = 2048, Rmax = 7.0 PFlop s_l, code base (2)

Ref R2B9 5.00 40 1024 0.5
16xRef R2B11 1.25 10 16384 8
64x Ref R2B11 1.25 10 65536 32

103.7 3.52 0.0123
23.73 15.4 0.862
81.15 4.50 1.008

Simulated days per day (SDPD)

20 M points, 191 levels
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Figure 7. Simulated days per day R2B9 (20 M points) based on
the integrate timer on Piz Daint, JUWELS Booster, and Levante.
The black horizontal line indicates 1 simulated year per day. The
thin red line is a linear fit in log(nodes) for the JUWELS Booster
simulations. The vertical markers on the 1 sim. year per day line
indicate the estimated number of nodes for the integration of a full
year on JUWELS Booster: 984 nodes.

(Mcn,tot = 936) leads to less than a factor of 6 shortfall in tem-
poral compression. Also this factor is out of reach given the
strong scaling found on JUWELS Booster. The system gets
closer not just by being bigger, but also because of the better
usage of the compute power, characterized here by the LIN-
PACK Rpax. For the Ref and 16 xRef setups, the minimum
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required compute power, as measured by Py, is 1.7 times re-
duced on JUWELS Booster compared to Piz Daint. Even if
the radiation costs on Piz Daint were reduced by 60 % due
to fewer g-points and computing no clear-sky radiation (and
assuming the scaling remains unchanged), P; on JUWELS
Booster would still be reduced by 1.5 times. This higher ef-
ficiency is only partly explained by the 30 % increase in the
counter-gradient versus LINPACK performance of JUWELS
Booster versus Piz Daint.

For the CPU chipset of Levante, it is found that the
64 xRef setup would fall a factor 4.5 short of the targeted
compression, and the required system would be 104 times
the size of Levante. The estimate for 16 xRef on Levante
may be compared to that of Neumann et al. (2019), which
was based on similar ICON simulations (Ax = 5 km, 90 lev-
els, At =45), albeit with a different implementation of the
physical processes. Their benchmarks were performed on
the Mistral computer at DKRZ (now being replaced by Lev-
ante), using the partition with two Broadwell CPUs per node.
Scaling of their performance of 26 SDPD on 256 Mistral—
Broadwell nodes (their Fig. 4), and assuming an Rpax of
1.8715PFlops~! for the 1714-node Broadwell partition',

ITOP500  for November 2015 reported  Rmax =
1.1392 PFlop s~! for 1556 Haswell nodes, and TOP500 for
November 2016 reported Rmax = 3.0107 PFlop s~ for 1557
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yields an estimate? of P; = 0.655EFlops~!. This is some-
what better than what is realized on Levante, a difference
that might be related to an initial, and hence sub-optimal,
Levante implementation, as well as slight differences in the
configuration of physical processes, for instance, the treat-
ment of radiative transfer. However, it seems reasonable to
conclude that we are not seeing a large reduction in Pj in
transitioning from the Broadwell-based Mistral machine to
the Milan-based Levante. This stands in contrast to the re-
duction in P; in transitioning from the P100 Piz Daint to the
A100 JUWELS Booster, and while the P; values for both
GPU machines remain higher than for the CPU machines,
the trend is more favorable for the GPU machines, something
consistent with changes in memory bandwidth?® for the dif-
ferent architectures.

Strong scaling limits how much we could translate a larger
machine into a reduction in y;. For example, from Table 4
the envisioned 16 xRef version of JUWELS Booster is 2.19
times larger than the existing machine and thus would corre-
spond to an Ryax = 96.5 PFlop s~ !, which s still far from the
required Rpax = 1.158 EFlop s~! to achieve 1 SYPD. Were
one to simply increase the size of JUWELS Booster, poor
strong scaling would create the need for a proportionally
larger machine, something that is measured by the increase in
Pj from 1.158 EFlops~! for the 16xRef implementation to
2.116 EFlops~! for 64 xRef (Table 4). Using these numbers,
we see that 1 SYPD at R2B11 is likely not attainable with
the present implementation of ICON on existing GPU archi-
tectures. The present situation is somewhat more favorable
on the CPU architectures. The currently second most per-
formant computer, Fugaku, with Rpyax = 442 (TOP500.0rg,
2021), would have y; = 2.3, if ICON operated on Fugaku at
the same P; value as for the 64 x Ref setup based on Levante.
A factor 2.3 larger CPU machine with Rp,x = 1017 seems
technically within reach.

The situation for the GPU machines becomes more favor-
able when we look toward the future. Realizing a factor of
4.3xA100 in transitioning to a next generation GPU (NG-
100 in Table 4), as found in the ICON-A benchmarks in the
transition from the P100 to the A100 GPU, would imply y; =
2.78 for a 2048 node 4xNG-100 system rated at Rpyax =
415PFlops~!. For such a system, even without improve-
ments in strong scaling, the 64 x Ref benchmark on JUWELS

Haswell nodes + 1714 Broadwell nodes. The difference, attributed
here to 1714 Broadwell nodes, is 1.8715 PFlop g1

2Here we assume perfect weak scaling, starting from the 26
SDPD for R2B9 on 256 nodes, which yields a y = %322 (43 ) =
63.2 for R2B11, with the latter (45/40) factor accounting for dif-
ferences in time steps. The weak-scaling to R2B11 (using the
same Sw = 0.978 as for Levante) inflates the size to 16% X
256/(0.978)* = 9492 nodes

3Memory bandwidth per core decreased by approximately 25 %
on Levante relative to Mistral but increased by 10 % on JUWELS
Booster as compared to Piz Daint.
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Booster implies a y; = 1.3 and an Ry,x = 1660 PFlop s~

This indicates that for the GPU architectures, performance
improvement of 4.3 x over the A100 would begin to out per-
form the CPU performance for the same Rpax.

The recently announced Nvidia Hopper GPU promises a
performance increase in this range and perhaps even larger
(NVIDIA, 2022). In addition, Fugaku, an exceptionally effi-
cient CPU machine, still uses twice as much electrical power
as JUWELS Booster when normalized by Rpyax, which fur-
ther favors GPU-based implementations of ICON in the fu-
ture. The upshot of these calculations is that the goal of 1
SYPD at roughly a 1 km scale is well within reach.

6.5.3 Anticipated increases in T from hardware

General circulation models typically process many grid
points with often relatively little compute load, which results
in the bandwidth limitation encountered in the single-node
speedup tests. This means that improved memory bandwidth
allows for a better exploitation of the compute power of the
GPUs, which helps explain the considerably improved per-
formance of ICON-A on the A100 versus the P100 GPUs

Another typical characteristic is the organization of the
work, which happens in many separated loops, often with not
very many operations. On the GPUs, this results in a non-
negligible amount of time spent for the preparation of the
parallel regions. If this amount remains constant while the
computation decreases with increasing parallelization, then
the benefit of stronger parallelization will be limited. Simi-
larly, if a newer system has increased compute speed but still
spends the same time for the overhead for GPU kernels, then
ICON cannot profit that much. Thus, in the absence of refac-
toring, to realize the benefits of an acceleration of the GPU
compute speed would require a commensurate speedup of
the overhead time for the GPU-parallel regions.

6.5.4 Anticipated increases in 7 from software

Because the scaling and computational throughput are lim-
ited by the dynamical core, algorithmic improvements to this
component of the code, followed by the transport scheme,
stand the best chance of increasing 7. This part of the model
is, however, already relatively well optimized — given the
limits of what can be accomplished with openACC. Further
improvements in performance would require a refactoring to
exploit special features of the processors. For instance, ex-
posing solvers to the application of Al arithmetic, i.e., matrix
multiply and accumulate, where possible, could substantially
improve throughput. Obviously the very poor scaling of the
land scheme is also a matter of concern, though it is unclear
how the underlying problems — little computational work —
can be resolved.

Another, and perhaps the best, possibility to speed up the
code concerns the precision of the variables and computa-
tions. ICON uses by default 64-bit variables and arithmetic,
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although the ICON model can be used in a mixed-precision
mode, in which mostly the dynamics is computed with 32-
bit arithmetic, while the remaining model components still
work with 64-bit arithmetic. Because this mixed mode has
not been validated on GPUs, the mixed mode is not used in
this study, neither on GPU nor on CPU, although on the lat-
ter, ICON applications frequently make use of this option.
Hence we see considerable potential to speed up simulations
using 32-bit variables and arithmetic. Even as few as 16 bits
can be sufficient if round-off errors are kept under control,
as shown in Klower et al. (2022) for a shallow water model.
This would not only speed up the simulations, but also re-
duce the memory footprint so that a certain turnover can
be achieved with significantly fewer nodes. However, more
model development would be needed to explore the poten-
tial compute time or memory savings and the effects on the
simulations.

An open question is if a different parallelization would im-
prove the turnover for a given number of nodes. The current
parallelization is organized as a single geographical domain
decomposition used for all model processes (and a separate
decomposition for the output scheme). Thus all model pro-
cesses in a domain are computed in a specified sequence by
the same processor. The practical sequence of the compu-
tations of processes is determined by the order of the pro-
cesses in the coupling scheme of the model. This method
balances the total work to be done in each domain relatively
well. But the single processes can be quite different in their
work load, and, as seen above, this results in a quite uneven
strong scaling behavior on GPUs. Would this be better in a
process-specific parallelization, in which each process has its
own domain decomposition? Such a parallelization would fo-
cus the resources on the more expensive components, and
it would avoid higher parallelization of processes where the
scaling limit is reached. It would also require a more com-
plex communication scheme and an ability to compute dif-
ferent processes in parallel; the latter can make it difficult to
maintain physical limits in tendencies, for instance, to main-
tain positivity of tracers. While these ideas have not yet been
developed or tested in ICON, they could provide a substantial
speedup in the future.

7 First QBO experiments

Finally it is important to verify the utility of the new model
code for the QUBICC experiments, for which a small selec-
tion of results is presented here relating to two experiments
performed on Piz Daint. (A more detailed analysis will be
published elsewhere.) The main questions to be addressed in
the beginning are the following:

1. Is the model stable over at least 1 month?
2. Are there obvious biases which need to be corrected be-

fore scientific experiments can begin?
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3. Can the model simulate a reasonable tropical precipita-
tion and the downward propagation of the QBO jet as a
result of wave—mean flow interaction?

The initial series of experiments was integrated over
1 month starting from four initial dates (1 April 2004,
1 November 2004, 1 April 2005, and 1 November 2005),
which were selected based on the protocol for the QBOi ex-
periments (Butchart et al., 2018). These dates spread across a
fairly normal QBO cycle, which is used here as well as in the
QBOi project (Butchart et al., 2018). A second series of ex-
periments (“dy experiments”) was conducted to investigate
the issues identified in the first one.

A key learning point from the first series of experi-
ments was that all experiments remained stable over 1
month. Therefore, the first experiment with a start date of
1 April 2004 was continued until it crashed after 2 months
and 6d with too high a wind speed at the model top. The
analysis showed that not only this experiment, but also the
other three experiments of this series had a tendency towards
a nearly vertical axis of the polar night jet, with a very strong
wind maximum found at the top of the model. A vertical
jet axis with a wind maximum at ca. 80 km height is in dis-
agreement with observations, and the high wind speeds pose
a threat for numerical stability. This issue was addressed in
a number of short experiments of the second series. These
experiments showed that the Rayleigh damping of the ver-
tical wind in the uppermost ca. 30 km of the model domain
was too strong. An increase of the start level of the Rayleigh
damping from 42 to 50km and a reduction of the strength
to 20 % of the original value lead to a more realistic wind
maximum of the polar night jet at heights of 50 to 60 km.

Another important finding from the first series of exper-
iments was that the parameterized vertical diffusion was
clearly too strong. This not only slowly damped the QBO
jet, but also affected many aspects of the tropospheric cir-
culation, including the distribution and intensity of precipi-
tation and convection. In the investigation of this problem it
was found that the maximum mixing length within the verti-
cal diffusion scheme was implemented in the code at a much
larger value, 1000 m, than described in the original descrip-
tion, 150 m (Pithan et al., 2015). The value that is too high
was reset in the experiment dy21, which ultimately reduced
many large biases. Figure 8 shows the occurrence frequency
for equatorial 3-hourly precipitation in the dy21 experiment,
now fitting reasonably well to TRMM data (Huffman et al.,
2007). In comparison, ERAS5 (Hersbach et al., 2020) has
more frequent weak precipitation and less frequent strong
precipitation.

In contrast to the first series of experiments, the dy21 ex-
periment also shows a downward propagation of the zonal
mean zonal wind in the equatorial stratosphere, thus a down-
ward progression of the westerly and easterly QBO jets,
which are initially centered at ca. 30 and 40 km height, re-
spectively (Fig. 9). However, in comparison to ERAS, the
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Figure 8. Occurrence frequency of the 3 h mean precipitation rate
between 15° S and 15° N from 1 to 30 April 2004 in the QUBICC
simulation dy21, in ERAS, and in TRMM, using 250 bins of
2mmd~! width.

downward propagation of the easterly jet in dy21 is clearly
faster, which results in growing differences in the zonal mean
zonal wind in the upper half of this region. Nevertheless, the
key result is that a downward propagation of the QBO jets is
simulated.

The processes which cause this downward propagation of
the QBO jets include the interaction of vertically propagating
waves in equatorial latitudes with these jets and their verti-
cal advection. The contribution of these processes to the ten-
dency of the zonal mean zonal wind u can be estimated from
the divergence of the Eliassen—Palm flux (EP flux) and the
residual circulation (v*, w*) in the meridional plain (see, for
example, Andrews et al., 1987). For this diagnostics, the sim-
ulation data as well as the ERAS data were first interpolated
to a Gaussian grid with 1024 latitude x 512 latitude. Fig-
ure 10 shows the tendency of u and the contributions from
the EP flux divergences and the advection terms averaged
over the first month.

Over this first month, the profiles of the zonal mean zonal
wind (#) remain quite similar, except for the easterly jet cen-
tered at 40 km altitude that extends already further down in
dy21. The total tendency (du/dr) profile is also comparable
up to 27km but diverges above with a large negative ten-
dency in dy21 maximizing at 33 km height, where the east-
erly jet has started its decent, while ERAS shows a weaker
negative tendency centered higher at 36 km height.

Below 30km altitude the total tendency du/d¢ in ERAS
is mostly explained by the vertical divergence of the EP
flux, (du/dtgp ;), which is almost identical to the total con-
tribution by the EP flux divergence and the advection terms
(du/dttem). These tendencies appear in similar shape in
dy21. Thus for the wave—mean flow interaction and the ad-
vection, as captured by this diagnostics, the simulation is
close to the reanalysis. A difference exist however in the
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Figure 9. Zonal mean zonal wind & averaged from 5° S to 5° N from
1 January to 20 May 2004 in the simulation dy21 (a) and ERAS (b)
and the difference between dy21 and ERAS.

residual term (du/dt#.s), which at these altitudes is negligi-
ble in ERAS but significant in dy21, opposing the diagnosed
vertical divergence of the EP flux. This residual term is the
main reason for the difference in the total tendency between
dy21 and ERAS.

Above 30km altitude, where the easterly jet has propa-
gated further downward in dy21 than in ERAS, du/dtgp,; is
negative and peaks in the lower shear layer of the easterly jet,
with a stronger amplitude in the simulation. The upward ver-
tical wind, which creates a positive tendency du/dt,+ in the
same shear layer, however, is stronger in ERAS than in dy21.
Stronger differences exist however in the residuals, which
also play a role here in ERAS. The residual tendencies make
a substantial contribution to dy21 and ERAS, albeit with a
vertical downward shift in the simulation. The meridional EP
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Figure 10. Zonal mean zonal wind (dotted red line) and its tendencies averaged between 5° S and 5° N and between 1 and 30 April 2004 from
15 to 40 km height in the simulation dy21 and in ERAS, with the total tendency (bold line) and contributions diagnosed in the transformed
Eulerian mean framework for advection by the residual meridional v* and vertical wind w* (dashed lines), the meridional and vertical
divergence of the Eliassen—Palm flux (dotted lines), the sum of these four terms (dotted—dashed line), and the residual (dotted—dashed orange

line).

flux divergence as well as the meridional advection play only
minor roles.

The initial sets of experiments thus led to a model version
in which the wave—-mean flow interaction and the advection
by the residual meridional circulation play an important role.
The nature of the residual terms is not yet known. But these
simulations build the base for further research on the factors
that influence the processes of the QBO. Eventually, with suf-
ficient resources, this will also allow for the simulation of full
QBO cycles.

8 Conclusions

With the scientific motivation to conduct a first direct sim-
ulation of the QBO relying only on explicitly resolved con-
vection and gravity waves, the ICON atmosphere model has
been ported to GPUs with all components needed for such
a simulation at a horizontal resolution of 5 km and with 191
levels up to a height of 83 km. The initial GPU port of ICON
on Piz Daint at CSCS is based on OpenACC directives.
Benchmark experiments showed a single-node CPU-to-GPU
speedup of 6.4, corresponding to the ratio of the GPU band-
width to the CPU bandwidth. This memory bandwidth limi-
tation of the ICON code is a typical characteristic for general
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circulation models. The strong scaling tests showed that a
minimum of ca. 10000 grid columns is needed on the GPU to
remain efficient, which limits the possibilities to profit from
strong scaling. On CPUs the limit is near 100 grid columns,
which increases the strong scaling to larger processor counts.
The weak scaling of ICON-A is very good (typically 0.98)
over the tested 16-fold increase in grid size and node count,
on both GPU and CPU architectures, making even higher re-
solved global simulations possible, albeit with the through-
put limited by the strong scaling and the required reduction
in the model time step.

For the model setup used in the QBO simulations, a
turnover of 48 SDPD and 133 SDPD was achieved on the
GPU systems Piz Daint at CSCS and JUWELS Booster
at FZJ, respectively, while 103 SDPD were achieved on
the CPU system Levante at DKRZ. Extrapolations show
that ICON simulations at 1.25km resolution and 1 SYPD
turnover will be possible on the next generation of super-
computers.

The GPU port of ICON-A made the first series of ex-
periments related to the QBO processes possible. These ex-
periments led to a better tuning of the damping and diffu-
sion schemes, which in the end allowed for a first simulation
showing downward-propagating QBO jets driven by wave—
mean flow interaction in a model where the tropical wave
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spectrum depends entirely on explicitly simulated convec-
tion. However, further research is needed to understand why
the downward propagation of the easterly jet was too fast. As
in the case of the QBO, other scientific problems in climate
research which depend on scales from a few kilometers or
smaller to the global scale will also need enormous compu-
tational resources. Having now a code that can be used on the
largest supercomputers using GPUs will open up new oppor-
tunities in this direction.

Code availability. The codes (1) and (2) listed in Ta-
ble 2 and the run scripts for Piz Daint, JUWELS Booster,
and Levante are available in the related data repository
(https://doi.org/10.17617/3.5CYUFN, Giorgetta, 2022). These
code versions are not standard release versions, but the related
GPU developments are merged in the release candidate for the
upcoming release version icon-2.6.5. Release versions of the code
are available to individuals under license as described by MPI-M
(2022). By downloading the ICON source code, the user accepts
the license agreement.

Data availability. The data relating to the vertical grid (Fig. 1),
codes (Table 2), computers (Table 4), speedup (Fig. 4), strong
scaling (Fig. 6), time to solution and scaling (Table 3 and
Fig. 5), turnover rate (Table 3, Fig. 7), and outlook (Table 4) are
stored in the data.ods spreadsheet of the related data repository
(https://doi.org/10.17617/3.5CYUEN; Giorgetta, 2022).
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