English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Extrapyramidal plasticity predicts recovery after spinal cord injury

MPS-Authors
/persons/resource/persons147461

Weiskopf,  Nikolaus
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Felix Bloch Institute for Solid State Physics, University of Leipzig, Germany;

/persons/resource/persons188373

Freund,  Patrick
Balgrist Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, United Kingdom;
Department of Brain Repair & Rehabilitation, University College London, United Kingdom;
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Huber_2020.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Huber, E., Patel, R., Hupp, M., Weiskopf, N., Chakravarty, M. M., & Freund, P. (2020). Extrapyramidal plasticity predicts recovery after spinal cord injury. Scientific Reports, 10: 14102. doi:10.1038/s41598-020-70805-5.


Cite as: https://hdl.handle.net/21.11116/0000-0007-2CBA-7
Abstract
Spinal cord injury (SCI) leads to wide-spread neurodegeneration across the neuroaxis. We explored trajectories of surface morphology, demyelination and iron concentration within the basal ganglia-thalamic circuit over 2 years post-SCI. This allowed us to explore the predictive value of neuroimaging biomarkers and determine their suitability as surrogate markers for interventional trials. Changes in markers of surface morphology, myelin and iron concentration of the basal ganglia and thalamus were estimated from 182 MRI datasets acquired in 17 SCI patients and 21 healthy controls at baseline (1-month post injury for patients), after 3, 6, 12, and 24 months. Using regression models, we investigated group difference in linear and non-linear trajectories of these markers. Baseline quantitative MRI parameters were used to predict 24-month clinical outcome. Surface area contracted in the motor (i.e. lower extremity) and pulvinar thalamus, and striatum; and expanded in the motor thalamus and striatum in patients compared to controls over 2-years. In parallel, myelin-sensitive markers decreased in the thalamus, striatum, and globus pallidus, while iron-sensitive markers decreased within the left caudate. Baseline surface area expansions within the striatum (i.e. motor caudate) predicted better lower extremity motor score at 2-years. Extensive extrapyramidal neurodegenerative and reorganizational changes across the basal ganglia-thalamic circuitry occur early after SCI and progress over time; their magnitude being predictive of functional recovery. These results demonstrate a potential role of extrapyramidal plasticity during functional recovery after SCI.