Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!FreigabegeschichteDetailsÜbersicht

Verworfen

Preprint

The spatiotemporal neural dynamics of object recognition for natural images and line drawings

MPG-Autoren
/persons/resource/persons242545

Hebart,  Martin N.       
Max Planck Research Group Vision and Computational Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

(Kein Zugriff möglich)

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Singer, J., Cichy, R. M., & Hebart, M. N. (2022). The spatiotemporal neural dynamics of object recognition for natural images and line drawings. bioRxiv. doi:10.1101/2022.08.12.503484.


Zusammenfassung
Drawings offer a simple and efficient way to communicate meaning. While line drawings capture only coarsely how objects look in reality, we still perceive them as resembling real-world objects. Previous work has shown that this perceived similarity is mirrored by shared neural representations for drawings and natural images, which suggests that similar mechanisms underlie the recognition of both. However, other work has proposed that representations of drawings and natural images become similar only after substantial processing has taken place, suggesting distinct mechanisms. To arbitrate between those alternatives, we measured brain responses resolved in space and time using fMRI and MEG, respectively, while participants viewed images of objects depicted as photographs, line drawings, or sketch-like drawings. Using multivariate decoding, we demonstrate that object category information emerged similarly fast and across overlapping regions in occipital and ventral-temporal cortex for all types of depiction, yet with smaller effects at higher levels of visual abstraction. In addition, cross-decoding between depiction types revealed strong generalization of object category information from early processing stages on. Finally, by combining fMRI and MEG data using representational similarity analysis, we found that visual information traversed similar processing stages for all types of depiction, yet with an overall stronger representation for photographs. Together our results demonstrate broad commonalities in the neural dynamics of object recognition across types of depiction, thus providing clear evidence for shared neural mechanisms underlying recognition of natural object images and abstract drawings.