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Deformation-obstruction theory for diagrams of
algebras and applications to geometry
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Abstract. LetX be an algebraic variety over an algebraically closed field of characteristic 0 and
letCoh.X/ denote itsAbelian category of coherent sheaves. By thework ofW.Lowen andM.Van
den Bergh, it is known that the deformation theory of Coh.X/ as an Abelian category can be seen
to be controlled by theGerstenhaber–Schack complex associated to the restriction of the structure
sheaf OX jU to a cover of affine open sets. We construct an explicit L1 algebra structure on the
Gerstenhaber–Schack complex controlling the higher deformation theory of OX jU or Coh.X/
in case X can be covered by two acyclic open sets, giving an explicit deformation-obstruction
calculus for such deformations. For smooth X , such deformations recover the deformation of
complex structures and deformation quantizations of X as degenerate cases, as we show by
means of concrete examples.
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1. Introduction

Noncommutative instantons were first studied over a noncommutative R4 by
Nekrasov and Schwarz [28] and have since attracted a lot of attention in the physical
literature. In [1, 2] we study (noncommutative) instantons on four-manifolds with
nontrivial topology via complex geometry, by identifying instantons with (framed
stable) holomorphic rank 2 bundles via a Kobayashi–Hitchin correspondence for
the noncompact complex surfaces Zk D TotOP1.�k/. In particular, viewing
an instanton as a locally free (thus coherent) sheaf of OX modules one obtains
noncommutative instantons by considering noncommutative deformations of OX as
a presheaf, which can also be viewed as deformations of its category Coh.X/ of
coherent sheaves as an Abelian category [5, 23, 24]. Our aim in this paper is to
develop general tools to control this deformation theory.

In [14] M.Gerstenhaber and S. D. Schack developed a deformation theory for
diagrams of (associative) algebras, controlled by the Gerstenhaber–Schack com-
plex CGS (see Definition 2.1). Here, a diagram of associative k-algebras over a small
category U is a functor AWUop Algk.

Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer Allianz- bzw. Nationallizenz
frei zugänglich. /  This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence

respectively.
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Denoting by HGS the cohomology groups of CGS, deformations of a diagram A of
associative algebras are parametrized by H2GS.A/ with obstructions lying in H

3
GS.A/.

This deformation theory generalizes the usual deformation theory of algebras due to
Gerstenhaber, as a “single” algebra A can be thought of as a diagram over the trivial
category. Indeed, for a single algebra A, the Gerstenhaber–Schack complex CGS.A/

coincides with the Hochschild complex CH .A/, which is known to control the
deformation theory of A as an associative algebra.

It is a remarkable fact [14] that to a diagram of algebras A, one can associate
a single associative algebra AŠ, its diagram algebra, such that there is an
isomorphism of theHochschild cohomologyHHn.AŠ/with theGerstenhaber–Schack
cohomology HnGS.A/.

Now let X be a Noetherian semi-separated scheme over an algebraically closed
field k of characteristic 0, and let Coh.X/ denote its Abelian category of coherent
sheaves. Let U D fUigi2I be a semi-separating cover of X , i.e. a cover of acyclic
open sets which is closed under intersections. We may think of U as a subcategory
of Open.X/, with objects Ui and morphisms given by inclusion of open sets.

Any presheaf of algebras F on X gives rise to a diagram of algebras F jU over U
obtained by restriction ofF WOpen.X/op Algk to the subcategoryU � Open.X/.

In [23, 24] W. Lowen and M. Van den Bergh developed a deformation theory for
(abstract) Abelian categories and showed that for the Abelian category Coh.X/ of
coherent sheaves on a Noetherian semi-separated schemeX , the complex controlling
Abelian deformations of Coh.X/ is isomorphic to the Gerstenhaber–Schack complex
for the diagram of algebras OX jU in the homotopy category of B1 algebras.
In particular, the deformation theory of Coh.X/ as an Abelian category can be
described by higher structures on the Gerstenhaber–Schack complex, which also
controls deformations of the diagram of algebrasOX jU, the restriction of the structure
sheaf OX to a semi-separating cover U.

Moreover, Dinh Van–Lowen [6] constructed a homotopy which can be used to
transfer the dg Lie algebra structure on the Hochschild complex CH .AŠ/ to an L1
algebra structure on the Gerstenhaber–Schack complex CGS.A/.

In this paper we give an explicit construction of an L1 algebra structure on
the Gerstenhaber–Schack complex via a different method and prove that the higher
structures describe the higher deformation theory of diagrams of associative algebras
over U D . Our approach is based on higher derived brackets due to
Voronov [31,32], which were also used in Frégier–Zambon [9,10], where the authors
study several “simultaneous deformation” problems in algebra and geometry, such
as simultaneous deformations of two Lie algebras and a morphism between them,
of coisotropic submanifolds in Poisson manifolds, or of Dirac structures in Courant
algebroids; these methods were also studied from an operadic point of view in
Frégier–Markl–Yau [8].

The L1 algebra structure on CGS allows us to give an explicit description of the
deformation-obstruction calculus of the diagram OX jU in case X can be covered by
two acyclic open sets.
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In general, deformations of Coh.X/ or of OX jU can be thought of as organizing
deformations of the complex structure of X and deformation quantizations of the
structure sheaf OX into one consistent whole.

TheGerstenhaber–Schack complex of the diagramOX jU computes theHochschild
cohomology HHn.X/ of X [14]. In case X is smooth, the Hochschild–Kostant–
Rosenberg theorem (see [14, §28] and [5, §3]) decomposes into a direct sum

HHn.X/ '
M

pCqDn

Hq.X;ƒpTX /

where TX is the tangent bundle of X . Deformations of Coh.X/ are parametrized
by [5, 24]

H2GS.X/ ' HH2.X/ ' H0.X;ƒ2TX /˚ H1.X; TX /˚ H2.X;OX / (1.1)

with obstructions lying in

H3GS.X/ ' HH3.X/

' H0.X;ƒ3TX /˚ H1.X;ƒ2TX /˚ H2.X; TX /˚ H3.X;OX /: (1.2)

The summands of (1.1) have the following geometric interpretation:
(i) H0.X;ƒ2TX / is the space of almost Poisson structures. An almost Poisson

structure � is a Poisson structure in case its Schouten–Nijenhuis bracket Œ�; �� 2
H0.X;ƒ3TX / vanishes. Such a Poisson structure � is seen to parametrize
noncommutative deformations of OX in the sense of deformation quantization
(Kontsevich [18, 19])

(ii) H1.X; TX / parametrizes “classical” deformations of the complex structure (after
Kodaira–Spencer [17])

(iii) H2.X;OX / parametrizes “twists” of OX (see [4, 5]).
The summands H0.X;ƒ3TX / and H2.X; TX / are seen to be the obstruction spaces
for the types (i) and (ii), respectively.

The L1 algebra structure on the Gerstenhaber–Schack complex CGS now controls
how these types of deformations interact when considering deformations to higher
orders. For example, a variety may admit unobstructed deformations both in the
“classical” and in the noncommutative sense, which do not extend to a simultaneous
deformation. We give such examples in §5 with explicit computations for the
noncompact surfaces Zk D TotOP1.�k/, for k � 1.

2. The Gerstenhaber–Schack complex

Let k be a field of characteristic 0 and write Hom D Homk and˝ D ˝k.
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Definition 2.1. Given a presheaf F over a small category U, consider the following
first quadrant double complex

Cp;q.F / D
Y

U0 ��� Up

Hom.F .Up/˝q;F .U0//

where the product is taken over all p-simplices in the simplicial nerve of U. The
differentials of Cp;q are the Hochschild and simplicial differentials

dHWCp;q.F / Cp;qC1.F /

d�WCp;q.F / CpC1;q.F /:

(These differentials are described in detail in Appendix A.) The Gerstenhaber–
Schack complex is defined as the total complex CGS.F / D Tot Cp;q.F / and the
Gerstenhaber–Schack differential is the usual total differentialdGSDdHC.�1/qC1d�.

Remark 2.2. As a category, U contains identity morphisms and its simplicial
nerve N.U/ contains simplices of length >1. There is a subcomplex, the reduced
Gerstenhaber–Schack complex, consisting of those morphisms which vanish on
simplices containing an identity arrow and the inclusion in the Gerstenhaber–Schack
complex is a quasi-isomorphism, see [6, §3.4]. Henceforth we shall work with the
reduced Gerstenhaber–Schack complex.

Remark 2.3. Gerstenhaber–Schack [14] found that the total complex of the truncated
complex with q � 1 parametrizes deformations of F as a presheaf of algebras. Dinh
Van–Lowen [6] showed that the full Gerstenhaber–Schack complex parametrizes
deformations of a sheaf as a twisted presheaf, and can also be generalized to describe
deformations of prestacks. (We note that to this end Dinh Van–Lowen defined a more
complicated differential on CGS.1 However, as long as X is covered by two acyclic
open sets with acyclic intersection, this extra structure does not appear.)

For our applications it thus suffices to only consider the truncated (reduced)
Gerstenhaber–Schack complex, which we will also denote by CGS.

2.1. Deformations of algebras and their diagrams. We briefly recall the deform-
ation theory of a “single” associative k-algebra A D .A; �/ first studied by
Gerstenhaber [12, 13]. Its multiplication �WA ˝ A A can be viewed as an
element of degree two2 in the Hochschild complex CH .A/. Let AJ"K D A y̋ kJ"K
and consider the natural extension of � to AJ"K, given by

�
�P

i�0 ai"
i ;
P
j�0 bj "

j
�
D
P
k�0

�P
iCjDk �.ai ; bj /

�
"k :

1Their new differential is of the form dpCq D d0 C � � � C dpCq , where d0 D dH and d1 D d�

and the other terms are maps di WCp;q CpCi;q�iC1.
2To view CH .A/ as a dg Lie algebra, one shifts the degree by 1, cf. Proposition 2.5.
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A formal deformation of A is a collection .�i /i�1 of k-bilinear maps

�i WA˝ A A

such that their extensions to AJ"K define a kJ"K-bilinear associative multiplication
�"WAJ"K � AJ"K AJ"K of the form

�" D �C "�1 C "
2�2 C � � �

The deformation theory of A can be conveniently described in terms of a graded
Lie algebra structure on the Hochschild cochains defined as follows.
Definition 2.4. Given twomultilinearmapsf2Hom.A˝mC1; A/, g2Hom.A˝nC1; A/
define

f ıi g D f .id˝i ˝g ˝ id˝m�i /

for 0 � i � m and write

f ı g D

mX
iD0

.�1/nif ıi g:

The Gerstenhaber bracket is then defined by

Œf; g� D f ı g � .�1/mng ı f:

Proposition 2.5 (Gerstenhaber [13]). Let � 2 Hom.A˝ A;A/. Then

� is associative, Œ�; �� D 0:

Corollary 2.6. �" is an associative deformation of � if and only if z� D �" � �

satisfies the Maurer–Cartan equation

dH z�C
1
2
Œz�; z�� D 0: (2.7)

Here dH D Œ�;�� together with the Gerstenhaber bracket Œ�;�� define a dg Lie
algebra structure on the Hochschild cochains. In this sense deformations of an
associative algebra are governed by a dg Lie algebra. In particular, one can construct
a deformation of A term by term using (2.7).

In the following, we wish to find a similar structure for deformations of more
general diagrams.

Now consider a diagram A over U D
�
U W V

�
and let

� M0 D .�0; �0; �0/ 2 C0;2 be the multiplications on A.U /, A.V /, A.W /,
respectively,

� ˆ0 D .'0;  0/ 2 C1;1 be the morphisms A.W U /, A.W V /, respectively.
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(Note that there are no “twists” since C2;0 is zero in the reduced Gerstenhaber–Schack
complex.)

A formal deformation of A is a diagram AJ"K such that for each object U 2 U,
AJ"K.U / D A.U / y̋ kJ"K is a deformation of A.U / with multiplication

�" D �C "�1 C "
2�2 C � � �

and for each morphism W U in U,

AJ"K.W U / D ' C "'1 C "
2'2 C � � �

is a deformation of the morphism ' D A.W U /.

3. L1 algebras via higher derived brackets

An L1 algebra3 is a graded vector space together with a collection of n-ary “brackets”
satisfying graded anti-symmetry and generalized Jacobi identities.

We find it convenient to shift the grading and work with what one may call
an L1Œ1� algebra. The suspension of an L1Œ1� algebra is again an (ordinary) L1
algebra.

Definition 3.1. AnL1Œ1�algebra .g;fmngn�0/ is a gradedk-vector spacegD
Q
m2Zg

m

together with a collection of multilinear maps mnW g˝n g of degree 1 satisfying:

(i) mn.xs.1/; : : : ; xs.n// D ".s/mn.x1; : : : ; xn/ for any s 2 Sn

(graded anti-symmetry)

(ii)
X

iCjDnC1
i;j�1

X
s2Si;n�i

".s/mj .mi .xs.1/; : : : ; xs.i//; xs.iC1/; : : : ; xs.n// D 0

(generalized Jacobi identity)

for homogeneous elements x1; : : : ; xn. Here:
� Sn is the set of permutations of n elements;
� Si;n�i � Sn is the set of unshuffles, i.e. permutations s 2 Sn satisfying

s.1/ < � � � < s.i/ and s.i C 1/ < � � � < s.n/I

� ".s/ is the Koszul sign4 of the permutation s, which also depends on the degrees
of the xi .

We denote the n-ary multilinear maps mn.�; : : : ;�/ by h�; : : : ;�i.

3L1 algebras are also called strongly homotopy (or sh) Lie algebras.
4The Koszul sign of a transposition of two elements xi ; xj is defined by .�1/jxi jjxj j, where jxi j

denotes the degree of xi . This definition is then extended multiplicatively to an arbitrary permutation
using a decomposition into transpositions.
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The first few generalized Jacobi identities, starting at n D 0, read

hh ii D 0;

hhaii C hh i; ai D 0;

hha; bii C hhai; bi C .�1/jajjbjhhbi; ai C hh i; a; bi D 0:

For h i D 05 and writing h�i D d , these identities start at n D 1 and read

.d ı d/.a/ D 0 (3.2)

d ha; bi C hda; bi C .�1/jajjbjhdb; ai D 0 (3.3)

hha; bi; ci C .�1/jbjjcjhha; ci; bi C .�1/jajjbjCjajjcjhhb; ci; ai C d ha; b; ci

C hda; b; ci C .�1/jajjbjhdb; a; ci C .�1/jajjcjCjbjjcjhdc; a; bi D 0 (3.4)

i.e. d is a differential (3.2), d is a derivation with respect to the binary bracket (3.3)
and the usual (shifted) Jacobi identity holds for the binary bracket (first line of (3.4))
up to homotopy correction terms (second line of (3.4)).

Remark 3.5. If the n-ary brackets are identically zero for n > 1, one obtains a
cochain complex with differential d D h�i; if the brackets are zero for n > 2, one
obtains a dg Lie algebra.

Definition 3.6. Given an L1Œ1� algebra .g; h i; h�i; h�;�i; : : :/, a Maurer–Cartan
element is an element ˆ of degree 0 satisfying the Maurer–Cartan equation

exph iˆ D
1X
nD0

ˆhni

nŠ
D 0

where ˆhni D hˆ; : : : ; ˆi is the bracket of n copies of ˆ. Denote by MC.g/ � g0

the set of Maurer–Cartan elements of g.

Remark 3.7. When the n-ary brackets are zero for n > 2 and the L1 algebra is
in fact a dg Lie algebra with differential d D h�i and dg Lie bracket h�;�i, the
Maurer–Cartan equation for an element ˛ reduces to the familiar form

d˛ C 1
2
h˛; ˛i D 0:

3.1. Voronov’s higher derived brackets. From the definition we gave, constructing
non-trivial examples of L1 algebras might seem like a daunting task, as it involves
infinitely many multilinear maps satisfying infinitely many compatibility conditions.
Here we follow [9, 10] and use a construction due to Voronov [31, 32] (see also [20,
21]), which constructs an L1 algebra from simple data.

5The 0-ary “bracket” h i of an L1 algebra is simply a distinguished element. If this element is
non-zero, the L1 is said to be curved. However, in what follows we will not need curved L1 algebras.
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Definition 3.8. Let .g; Œ�;��/ be a graded Lie algebra and let a be an Abelian
subalgebra. Let P W g a be a projection such that kerP � g is a subalgebra and
let M 2 kerP \ g1 satisfying ŒM;M� D 0. The data .g; a; P;M/ which we shall
write visually asM 2 g P a are called Voronov data. If insteadM 2 g1 n kerP ,
thenM 2 g P a are called curved Voronov data.
Theorem 3.9 ([31]). LetM 2 g P a be (curved) Voronov data. Then
(i) aPM D .a; h i; h�i; h�;�i; : : :/ is a (curved) L1Œ1� algebra with multibrackets

defined by

h i D PM

ha1; : : : ; ani D P Œ: : : ŒŒM; a1�; a2�; : : : ; an�

(ii) .gŒ1�˚ a/PM D .gŒ1�˚ a; h i; h�i; h�;�i; : : :/ is a (curved) L1Œ1� algebra with
multibrackets defined by

d.xŒ1�˚ a/ D hxŒ1�˚ ai D �ŒM; x�Œ1�˚ P.x C ŒM; a�/ 2 gŒ1�˚ a

hxŒ1�; yŒ1�i D .�1/jxjC1Œx; y�Œ1� 2 gŒ1�

hxŒ1�; a1; : : : ; ani D P Œ: : : ŒŒ x ; a1�; a2�; : : : ; an� 2 a

ha1; : : : ; ani D P Œ: : : ŒŒM ; a1�; a2�; : : : ; an� 2 a

where xŒ1�; yŒ1� 2 gŒ1� and a1; : : : ; an 2 a. Up to permutation of the entries all
other multibrackets are set to vanish.

Remark 3.10. Theorem 3.9 remains true if the inner derivation ŒM ;�� is replaced
by an arbitrary derivation, which was shown in [32].

The construction of an L1 algebra via derived brackets might appear like a
specialized class of examples. However, they are in fact very general: any L1
algebra can be given via derived brackets [10, Prop. 2.12].
Notation 3.11. Let Pˆ D P ı expŒ�; ˆ�W g a.
Remark 3.12. LetM 2 g P a be Voronov data. Thenˆ 2 a0 is a Maurer–Cartan
element of aPM if and only ifM 2 kerPˆ.

4. An explicit L1 algebra structure on the Gerstenhaber–Schack complex

Now let A be a diagram of algebras over U D
�
U W V

�
and let

A.U / D .AU ; �/ � 2 Hom.A˝2U ; AU /

A .V / D .AV ; �/ � 2 Hom.A˝2V ; AV /

A.W / D .AW ; �/ � 2 Hom.A˝2W ; AW /

where �; �; � are associative multiplications.
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Remark 4.1. The rest of the section also works for diagrams of algebras over

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

However, for our applications we only need to consider the case of two arrows, so we
only give details for this case.

Let g D
Q
n�0 g

n and a D
Q
n�0 a

n be defined by

gn D
M
Ui2U

Hom.
Nn
iD0AUi

; AW /˚ Hom.A˝nC1U ; AU /˚ Hom.A˝nC1V ; AV /

(4.2)

an D Hom.A˝nC1U ; AW /˚ Hom.A˝nC1V ; AW /

and equip g with the Gerstenhaber bracket denoted by Œ�;�� and defined in
Definition 2.4. Then .g; Œ�;��/ is a graded Lie algebra and a � g an Abelian
subalgebra.

Now let P W g a be the projection given by the decomposition (4.2) and set
M D �˚ �˚ � 2 kerP \ g1. Each of �; �; � is only composable with itself and so

ŒM;M� D Œ�; ��˚ Œ�; ��˚ Œ�; �� D 0

since �; �; � are associative (cf. Proposition 2.5).

Lemma 4.3. M 2 g P a define Voronov data.

Proof. It remains to check that kerP is a graded Lie subalgebra of g. We can
decompose kerP \ gn as

.kerP /n D KnU ˚K
n
V ˚K

n
W

where

KnU D Hom.A˝nC1U ; AU /

KnV D Hom.A˝nC1V ; AV /

KnW D
M
Ui2U
W 2fUi g

Hom.AU0
˝ � � � ˝ AUn

; AW /:

One easily verifies that kerP is closed under the compositions ıi , thus also under
the bracket.
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Proposition 4.4. Let ' 2 Hom.AU ; AW / and  2 Hom.AV ; AW / and set ˆ D
�' ˚� 2 Hom.AU ; AW /˚Hom.AV ; AW / D a0. The following are equivalent:
(i) ˆ 2 MC.aPM /;
(ii) Pˆ.M/ D 0;
(iii) ' and are morphisms compatible with the algebra structures onAU ; AV ; AW .

Proof. Recall from Notation 3.11 that Pˆ D P ı expŒ�; ˆ�. Then (i), (ii) follows
from the definition of Maurer–Cartan elements. For (ii), (iii), one calculates

Pˆ.M/ D P
�
M C ŒM;ˆ�C 1

2
ŒŒM;ˆ�;ˆ�C 1

6
ŒŒŒM;ˆ�;ˆ�;ˆ�C � � �

�
D P

�
ŒM;ˆ�C 1

2
ŒŒM;ˆ�;ˆ�

�
where

ŒM;ˆ� D �� ı0 ' ˚ � ı1 ' ˚ �� ı0  ˚ � ı1  ˚ ' ı0 � ˚  ı0 �

(4.5)

and

ŒŒM;ˆ�;ˆ� D � .� ı0 ' ı1 ' C � ı1 ' ı0 '/ ˚ �.� ı0 ' ı1  C � ı1  ı0 '/

˚ �.� ı0  ı1 ' C � ı1 ' ı0  / ˚ �.� ı0  ı1  C � ı1  ı0  /

D �2
�
� ı '˝2 ˚ � ı .' ˝  / ˚ � ı . ˝ '/ ˚ � ı  ˝2

�
(4.6)

and higher commutators with ˆ vanish. (Graphical illustrations of (4.5) and (4.6)
are given in (4.11) and (4.12).)

We have that

PˆM D P
�
ŒM;ˆ�C 1

2
ŒŒM;ˆ�;ˆ�

�
D .' ı � � � ı '˝2/˚ . ı � � � ı  ˝2/

which is zero if and only if

' ı � D � ı '˝2

 ı � D � ı  ˝2

i.e. if and only if

'.�.a; b// D �.'.a/; '.b// a; b 2 AU

 .�.a; b// D �. .a/;  .b// a; b 2 AV

so that ', respectively  , are morphisms compatible with the algebra structures
on AU and AW , respectively AV and AW .
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We can now prove the following result.
Theorem 4.7. Let .AU ; �/

'
.AW ; �/

 
.AV ; �/ be a diagram of associative

algebras over U W V . Let zg � g be the subalgebra defined by

zgn D Hom.A˝nC1U ; AU /˚ Hom.A˝nC1V ; AV /˚ Hom.A˝nC1W ; AW /:

and let zM D z�˚ z� ˚ z� 2 zg1 and ẑ D z' ˚ z 2 a0 be arbitrary. Then�
AU ; �C z�

� ' C z' �
AW ; � C z�

�  C z �
AV ; � C z�

�
is a diagram of associative algebras if and only if

zMŒ1�˚ ẑ 2 MC
�
.zgŒ1�˚ a/Pˆ

M

�
:

Proof. Calculate . zMŒ1�˚ ẑ /hni (see [9, §1.4]) to see that exph iˆ D 0 corresponds
precisely to

ŒM C zM;M C zM� D 0

PˆCẑ .M C
zM/ D 0:

Now apply Propositions 2.5 and 4.4 (ii).

Definition 4.8. Let x ıˆi a D x ı .ˆ˝i ˝ a ˝ ˆ˝n�i / and then set x ıˆ a DPn
iD0.�1/

mix ıˆi a. We then define

Œx; a�ˆ D x ıˆ a � .�1/jxjjaja ı x

which is essentially the Gerstenhaber bracket extended from the case of algebras to
two algebras and morphisms between them.

Recall from Remark 3.5 that any L1Œ1� algebra .g; h�i; h�;�i; : : :/ defines a
cochain complex .g; d / for d D h�i.
Proposition 4.9. The cochain complex underlying the L1Œ1� algebra .zgŒ1�˚ a/Pˆ

M

coincides with the (truncated) Gerstenhaber–Schack complex. In particular,

hxŒ1�˚ ai D dGS.xŒ1�˚ a/ D .�1/
jxjC1.dHx/Œ1�˚ d�xC .�1/

jajdHa 2 zgŒ1�˚ a

for homogeneous elements x 2 zg and a 2 a.

Proof. That zgŒ1�˚ a coincides with CGS.A/ as graded k-vector space is clear from
the definitions of g, zg and a, see (4.2) and Theorem 4.7.

To show that h�i D dGS we compute the unary bracket in Theorem 3.9 applied
to .zgŒ1�˚ a/Pˆ

M . For x 2 zgn and a 2 am, Theorem 3.9 gives the following formula

hxŒ1�˚ ai D �ŒM; x�Œ1�˚ Pˆ
�
x C ŒM; a�

�
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where
M D .�; �; �/ 2 zg1 x D .xU ; xV ; xW / 2 zg

n

ˆ D .';  / 2 a0 a D .aW U ; aW V / 2 am
(4.10)

and

Pˆ.�/ D P ı expŒ�; ˆ� D P.�/C P Œ�; ˆ�C 1
2
P ŒŒ�; ˆ�;ˆ�C � � �

We give a visual proof, denoting inputs and outputs in AU ; AV ; AW by , , ,
respectively, to write (4.10) in operadic notation as

M D
�

, ,

�
2 zg1 x D

�
... , ... , ...

�
2 zgn

ˆ D
�

,
�

2 a0 a D

�
... , ...

�
2 am

(Inputs are at the bottom and outputs at the top of the diagram.) We can now calculate
the Gerstenhaber brackets in g.

Computation of hxŒ1�i D �ŒM; x�Œ1� ˚ Pˆ.x/. That ŒM; x� D dH.x/ is clear
from the definition of dH. (The sign .�1/jxjC1 appears as part of the total differential.)

To calculate

Pˆ.x/ D P
�
x C Œx;ˆ�C 1

2
ŒŒx;ˆ�;ˆ�C � � �

�
we calculate

Œx;ˆ� D

nM
iD0

... ...i ˚

nM
iD0

... ...i ˚ .�1/

...

˚ .�1/

...

(4.11)

1
2
ŒŒx;ˆ�;ˆ� D

M
i<j

... ... ...i j ˚

M
i<j

... ... ...i j

˚

M
i<j

... ... ...i j ˚

M
i<j

... ... ...i j (4.12)

Since x … a, P.x/ D 0. In the expression of Œx;ˆ� only the last two terms are in a,
so

P Œx;ˆ� D .�1/

...

˚ .�1/

...

D �ˆ ı x

In ŒŒx;ˆ�;ˆ� none of the terms are in a, so P ŒŒx;ˆ�;ˆ� D 0.
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Similarly for Œ: : : ŒŒx;ˆ�;ˆ�; : : : ; ˆ�, the only terms surviving the projection to a
are terms where ˆ has been precomposed in all inputs of x, so that

1

nŠ
P Œ: : : ŒŒx;ˆ�;ˆ�; : : : ; ˆ„ ƒ‚ …

nC1

� D
...

...

˚
...

...

D x ıˆ˝nC1

We thus have

Pˆ.x/ D x ıˆ
˝nC1

�ˆ ı x D d�.x/;

where d� is the simplicial differential of Definition 2.1, whose formula is given in
Definition A.3.

Computation of Pˆ.ŒM; a�/. To calculate

Pˆ.a/ D P
�
ŒM; a�C ŒŒM; a�;ˆ�C 1

2
ŒŒŒM; a�;ˆ�;ˆ�C � � �

�
we calculate

ŒM; a� D

...

˚ .�1/m

...

˚

...

˚ .�1/m

...

˚ .�1/mC1
mX
iD0

.�1/i ... ... ˚ .�1/mC1
mX
iD0

.�1/i ... ...

ŒŒM; a�;ˆ� D

...

C .�1/m

...

˚

...

C .�1/m

...

˚

...

˚ .�1/m

...

˚

...

˚ .�1/m

...

The first line of ŒM; a� and the second line of ŒŒM; a�;ˆ� have mixed inputs and thus
map to 0 under P . Moreover, higher commutators with ˆ vanish as ŒŒM; a�;ˆ� has
neither AU or AV outputs nor AW inputs (i.e. no or on the top, nor a on the
bottom).
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Thus

Pˆ
�
ŒM; a�

�
D .�1/m

 
...

C

mX
iD0

.�1/iC1 ... ... C .�1/mC2

...

!

˚ .�1/m

 
...

C

mX
iD0

.�1/iC1 ... ... C .�1/mC2

...

!

D .�1/mdH.a/:

Definition 4.13. In light of Proposition 4.9, we call the L1 algebra .zgŒ1� ˚ a/Pˆ

M

given in Theorem 4.7 parametrizing deformations of a diagram A of associative
algebras on the category U W V the Gerstenhaber–Schack algebra and
denote it by gs.A/.
Proposition 4.14. The higher multibrackets of the Gerstenhaber–Schack algebra
gs.A/ D .zgŒ1�˚ a/Pˆ

M may be given explicitly by the following formulae

hxŒ1�; yŒ1�i D .�1/jxjC1Œx; y�Œ1� 2 zgŒ1�

hxŒ1�; ai D Œx; a�ˆ 2 a

hxŒ1�; a1; a2i D x ı .a1 ˝ a2/C x ı .a2 ˝ a1/ 2 a

ha1; a2i DM ı .a1 ˝ a2/CM ı .a2 ˝ a1/ 2 a

for homogeneous elementsx2zg and a; a1; a22a. A formula for hxŒ1�; a1; : : : ; ani2a
is given in the proof. Moreover,

hxŒ1�; a1; : : : ; ani D 0 if n > jxj C 1
ha1; : : : ; ani D 0 if n > jM j C 1 D 2.

Proof. Let ˆ; x; a be as in (4.10). The higher brackets are calculated similarly,
giving

Pˆ
�
Œx; a�

�
D

nX
iD0

.�1/mi ... ...

...

� .�1/mn
mX
iD0

.�1/ni ... ...

...

˚

nX
iD0

.�1/mi ... ...

...

� .�1/mn
mX
iD0

.�1/ni ... ...

...

D x ıˆ a � .�1/mna ı x:
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Note that this is essentially the Gerstenhaber bracket, replacing the identity by ˆ
wherever necessary, see Definition 4.8.

Finally, hxŒ1�; a1; : : : ; ani D PˆŒ: : : ŒŒx; a1�; a2�; : : : ; an� is obtained by plugging
the outputs of a1; : : : ; an into n different inputs of x.

Pˆ
�
Œ: : : ŒŒx; a1�; a2�; : : : ; an�

�
D

X
I

X
s2SI

".s/

... ... ... ... ... ... ... ...

........ ........ ........ ............ ........

as.1/ as.2/ as.n/

˚

X
I

X
s2SI

".s/

... ... ... ... ... ... ... ...

........ ........ ........ ............ ........

as.1/ as.2/ as.n/

where we sum over subsets I � f1; : : : ; mg of length n and SI denotes the
permutation group of I . (Here, ".s/ is the Koszul sign as in Definition 3.1.)

For x 2 zg1 and a1; a2 2 a0

hx; a1; a2i D Pˆ
�
ŒŒ x; a1�; a2�

�
D x ı .a1 ˝ a2/C x ı .a2 ˝ a1/

ha1; a2i D Pˆ
�
ŒŒM; a1�; a2�

�
DM ı .a1 ˝ a2/CM ı .a2 ˝ a1/:

In §5 we consider applications to algebraic geometry by considering a diagram
of the form A D OX jU, describing deformations of the Abelian category Coh.X/.

4.1. Obstruction theory via L1 algebras. Let A be a diagram of associative alg-
ebras on U D

�
U  W V

�
and AJ"K be defined by

AJ"K.U / D A.U / y̋ kJ"K:

If �; �; � denote the associative multiplications on A.U /;A.V /;A.W /, respectively,
let �0; �0; �0 denote their obvious extensions to AJ"K.U /;AJ"K.V /;AJ"K.W /,
respectively.

Similarly, let 'WA.U / A.W / and  WA.V / A.W / be the images of the
morphisms in U under A, which extend to morphisms '0WAJ"K.U / AJ"K.W /
and  0WAJ"K.V / AJ"K.W /.

Now set

M DM0 D �0 ˚ �0 ˚ �0

ˆ D ˆ0 D '0 ˚  0

so thatMŒ1�˚ˆ 2 gs.AJ"K/ of degree 0.
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A formal deformation of A is given by M C zM and ˆ C ẑ , where zM DP
n�1Mn"

n and ẑ D
P
n�1ˆn"

n for

Mn D �n ˚ �n ˚ �n

ˆn D 'n ˚  n

with zMŒ1�˚ ẑ of degree 0.
By Proposition 4.4,MC zM andˆC ẑ are compatible preciselywhen zMŒ1�˚ ẑ 2

MC.gs.A/ y̋ m/ where m D ."/ is the maximal ideal of kJ"K, i.e. when

X
n�0

�
zMŒ1�˚ ẑ

�hni
nŠ

D 0

which is equivalent to

dH zM C
1
2
Œ zM; zM� D 0 2 zg1 (4.15)

dH ẑ C d� zMŒ1�C h zMŒ1�; ẑ i C 1
2
h ẑ ; ẑ i C 1

2
h zMŒ1�; ẑ ; ẑ i D 0 2 a0: (4.16)

Using the explicit formulae given in Proposition 4.14, we may rewrite the brackets
in (4.16) as follows

d�
�
zMŒ1�

�
D zM ı .ˆ˝ˆ/ �ˆ ı zM

dH ẑ DM ı .ˆ˝ ẑ / � ẑ ıM CM ı . ẑ ˝ˆ/

h zMŒ1�; ẑ i D zM ı . ẑ ˝ˆ/C zM ı .ˆ˝ ẑ / � ẑ ı zM

1
2
h ẑ ; ẑ i DM ı . ẑ ˝ ẑ /

1
2
h zMŒ1�; ẑ ; ẑ i D zM ı . ẑ ˝ ẑ /:

Thus, we have that zMŒ1�˚ ẑ 2 MC.gs.A// precisely when (i) M C zM is a triple
of associative multiplications which is equivalent to (4.15), and (ii)

zM ı .ˆ˝ˆ/CM ı .ˆ˝ ẑ /CM ı . ẑ ˝ˆ/

C zM ı . ẑ ˝ˆ/C zM ı .ˆ˝ ẑ /

CM ı . ẑ ˝ ẑ /C zM ı . ẑ ˝ ẑ / D ˆ ı zM C ẑ ıM C ẑ ı zM
(4.17)

which is equivalent to (4.16).
Moreover, collecting powers of ", we can rewrite (4.17) asX

iCjDn

ˆi ıMj D

X
iCjCkDn

Mi ı .ˆj ˝ˆk/:

Remark 4.18. Note that, unlike the Maurer–Cartan equation for a dg Lie algebra,
the Maurer–Cartan equation for gs.A/ contains a ternary bracket (4.16).
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5. Applications to geometry

In this final section we wish to use the L1 structure on the Gerstenhaber–Schack
complex constructed in §4 to study the deformation theory of the diagram OX jU
for a (smooth) variety X , which by [23] is equivalent to the deformation theory
of the Abelian category of (quasi)coherent sheaves Coh.X/ or QCoh.X/ (see also
Lowen [22, Thm. 1.4]). As we made assumptions on the shape of the diagram, we
first determine what varieties admit a cover by two acyclic opens. Since we have in
mind applications to smooth complex surfaces, we state the applications for this case.

Curves. Since a smooth projective curve C minus finitely many points is affine —
hence acyclic by Serre’s criterion [16, Thm. III.3.7] — C can be covered by two
affine open sets (the complements of two distinct points on C ).

Since also ƒiTC D 0 for i > 1 we have that deformations of OC jU are
parametrized by

H2GS.C / ' HH2.C / ' H1.C; TC / (5.1)

and all obstructions vanish. It is well known that

dimH1.C; TC / D

�
0 genus 0
1 genus 1
3g � 3 genus g � 2.

(5.2)

and deformations of OC jU capture precisely deformations of the complex structure
of X .

Surfaces and higher dimensions. First note that if a smooth scheme admits an open
cover U D fU; V g of two affine opens with affine intersection, Leray’s theorem (see
for example [15, Ch. 0, §3]) states that the sheaf cohomology of X can be calculated
as the Čech cohomology of the open cover U, whence

Hi .X;F / ' LH
i�
U;F jU

�
D 0

for every i � 2 and every coherent sheaf F .
Yet, if X is smooth projective of dimC D n � 2, Serre duality gives

Hn.X; !/ ' H0.X;OX /� ' C ¤ 0:

Thus X cannot be covered by two acyclic open sets and applications in complex
dimension � 2 are thus limited to noncompact spaces.
Remark 5.3. At least with respect to the original motivation of developing a
tool for studying noncommutative instantons on complex surfaces this should not
necessarily be seen as a drawback, as theories of instantons are often defined over
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noncompact spaces. Indeed, in the context of the instanton partition function defined
by Nekrasov [26] and explored by various authors (see for example [3, 11, 25, 27]),
the noncompactness of the underlying surface is essential for the nontriviality of the
theory.

A broad class of smooth complex varieties of dimension� 2which can be covered
by two affine open sets is given by the varieties Z D TotE for E an algebraic vector
bundle over a smooth projective curve C (of any genus).

For such Z, we thus get that deformations of Coh.Z/ are parametrized by

H2GS
�
OZjU

�
' HH2.Z/ ' H0.Z;ƒ2TZ/˚ H1.Z; TZ/

with obstructions in

H3GS
�
OZjU

�
' HH3.Z/ ' H0.Z;ƒ3TZ/˚ H1.Z;ƒ2TZ/:

In particular, if E is a line bundle, thenZ D TotE is a surface covered by two acyclic
open sets. But then ƒ3TX D 0 and H1.X;ƒ2TX / is its only obstruction space.
Remark 5.4. For Z D TotE , the cohomology groups may be infinite-dimensional
over C. This can be avoided by considering the nth formal neighbourhood of C
inside Z, i.e. by considering the reduced scheme with structure sheaf OZ=I

nC1
C ,

where IC is the ideal sheaf of C in Z.
In the introduction we mentioned that a deformation of Coh.X/ or OX jU can be

thought of as a simultaneous deformation quantization of OX and deformation of the
complex structure of X . We first explain how these can be reformulated in terms of
deformations of diagrams. Throughout we will illustrate the theory by means of the
noncompact surfaces Zk WD TotOP1.�k/ for k � 1, which admit both classical and
noncommutative deformations for k � 2.

5.1. Deformation quantization. Let X be a smooth complex algebraic variety and
let � 2 H0.X;ƒ2TX / be a global bivector field with vanishing Schouten–
Nijenhuis bracket Œ�; �� 2 H0.X;ƒ3TX /. Then � defines a holomorphic Poisson
structure f�;�g� by

ff; gg� D h�; df ^ dgi;
where d denotes the exterior derivative and h�;�i the pairing between vector fields
and forms.

A star product on a complex variety X is a CJ„K-bilinear associative multipli-
cation

?WOXJ„K �OXJ„K OXJ„K
mapping

.f; g/ f ? g D fg C „B1.f; g/C „
2B2.f; g/C � � �

where Bn are bidifferential operators. (Here „ is a formal parameter, which we call "
elsewhere.)
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A deformation quantization of a complex Poisson variety .X; �/ is a star product
on X with first term B1.f; g/ D ff; gg� .

A deformation quantization of X is thus given as a collection of bilinear maps
.Bn/n�1 D .BUn /n�1 for each open set U , deforming the commutative product of
functions on U .

The condition that the star product on the individual open sets is compatible with
the algebra maps '0WOJ„K.U / OXJ„K.W / for every inclusion W � U of open
sets, can be written in terms of the bilinear operators Bn for n � 1 as

BWn .'0.�/; '0.�// D '0.B
U
n .�;�//: (5.5)

The restriction of .OXJ„K; ?/ to an open cover U of acyclic open sets gives a
formal deformation of the diagram OX jU with parameter „.

As part of the proof of his Formality Conjecture in [18], Kontsevich gave an
explicit construction of a star product on Rd . This star product works equally on Cd

and quantizations of more general algebraic varieties were studied in [19, 30, 33].
For a Poisson structure � on Cd , the Kontsevich star product ?K is defined by

f ?K g D fg C
X
n�1

„
n
X

�2Gn;2

w� B�.f; g/ (5.6)

where � is an “admissible” graph, Gn;2 is a finite set of such graphs, B� are
bidifferential operators constructed from � and w� is the weight of � defined in
terms of integral over a certain configuration space.
Lemma 5.7 ([7]). Up to second order in „ the Kontsevich star product for � on Cd

is given by

f ?K g D fg

C „

X
i;j

�ij @i .f / @j .g/

C
„2

2

X
i;j;k;l

�ij�kl @i@k.f / @j @l.g/

C
„2

3

X
i;j;k;l

�ij @i .�
kl/ @j @l.f / @k.g/

C
„2

3

X
i;j;k;l

�kl @k.�
ij / @i .f / @j @l.g/

�
„2

6

X
i;j;k;l

@l.�
ij / @j .�

kl/ @i .f / @k.g/

C � � �
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To illustrate this, we consider the noncompact complex surfaces ZkWDTotOP1.�k/

for k � 1.
Notation 5.8. CoverZk by two open setsU D f.z; u/ 2 C2g andV D f.�; v/ 2 C2g

such that on U \ V ' C� �C we identify

.�; v/ 7! .z�1; zku/:

We refer to these as canonical coordinates.
Here our aim is to give one particular Poisson structure � 2 H0.Zk; ƒ2TZk

/ for
each k � 1 and explain how it can be quantized. For a detailed study of deformation
quantizations of the surfaces Zk we refer to [2].

SinceZk is a surface,ƒ3TZk
D 0 and thus any � 2 H0.Zk; TZk

/ defines a global
Poisson structure on Zk .

We give Poisson structures on Zk in canonical coordinates (Notation 5.8). In
particular, on U D f.z; u/ 2 C2g a (holomorphic) Poisson structure can be given
as a bivector field fU @z ^ @u, where fU is some holomorphic function on U and
similarly on V D f.�; v/ 2 C2g. A global Poisson structure may thus be given by
a pair .fU @z ^ @u; fV @� ^ @v/ such that rewriting fV in terms of z and u via the
change of coordinates .�; v/ D .z�1; zku/ is equal to �zk�2fU . (Here �zk�2 is
the transition function of the anticanonical line bundle ƒ2TZk

written in canonical
coordinates.) When referring to a Poisson structure in canonical coordinates, we
shall often write only its coefficient functions as a pair .fU ; fV /.
Lemma 5.9 ([2]). H0.Zk; ƒ2TZk

/ is a finitely generated module over the algebra of
global functions on Zk . In canonical coordinates, generators can be given by

.1/ .1;��/; .z;�1/ for k D 1

.2/ .1;�1/ for k D 2

.3/ .u;��2v/; .zu;��v/; .z2u;�v/ for k � 3.

Theorem 5.10 ([2]). Let � 2 H0.Zk; ƒ2TZk
/ be the cohomology class represented

by the 0-cocycle .�U ; �V / D .zu;��v/. Then � can be quantized, giving rise to a
commutative diagram

OZk
J„K.Zk/

OZk
J„K.U / OZk

J„K.V /

OZk
J„K.U \ V /

(5.11)

where U ' C2 is endowed with the Kontsevich star product associated to �U .
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Denoting by �0; �0; �0 the (commutative) multiplications on

OZk
.U / ' CŒ z; u�

OZk
.V / ' CŒ �; v�

OZk
.U\V / ' CŒz˙; u�

respectively, the deformation of the diagramOZk
jU corresponding to the deformation

quantization given in Theorem 5.10 can be expressed as�n D BUn with�1 D BU1 D
f�;�g�U

and similarly for �n and �n.
For example, on monomials zaub; zcud 2 CŒz; u� ' OZk

.U / we have

�1W .z
aub; zcud / fzaub; zcud g�U

D .ad � bc/zaCcubCd (5.12)

and similarly

�1W .�
avb; �cvd / f�avb; �cvd g�V

D �.ad � bc/�aCcvbCd (5.13)

where the sign in (5.13) appears because of the sign in .�U ; �V / D .zu;��v/.

5.2. Classical deformations. While in §5.1we considered deformations of themulti-
plication on the algebra OX .U / of sections over an open set U , but fixing
the morphisms, now we show how classical deformations can be considered as
deformations of the morphisms, but fixing the (commutative) algebra structure over
each open set.

A formal deformation of a smooth semi-separated schemeX can be considered as
a family over CJ"K. Given a cover of X by smooth affine schemes Ui , the individual
affine charts do not admit any “classical” scheme-theoretic deformations (see [29]).
However, such a family gives rise to a deformation of the morphisms which we now
illustrate for the noncompact surfaces Zk , whose classical deformations have been
studied in [1].
Lemma 5.14 ([1, Lem. 5.3]). Let k � 2. Then H1.Zk; TZk

/ ' Ck�1 and in
canonical coordinates a cohomology class # 2 H1.Zk; TZk

/ can be represented by
a 1-cocycle

k�1X
iD1

tiz
�kCi @

@u

for some coefficients ti 2 C.
Theorem 5.15 ([1, Thm. 5.4]). Let k � 2. Then Zk D TotOP1.�k/ admits a
.k�1/-dimensional semi-universal family

Zk M Ck�1
' H1.Zk; TZk

/

of “classical deformations”, which may be constructed as the family of deformations
of the vector bundle structure of Zk to an affine bundle over P1.
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A classical deformationZk.0; #/ ofZk can now be given by the same coordinate
charts, but with the identification

.�; v/ D
�
z�1; zkuC

k�1P
iD1

tiz
i
�
: (5.16)

Regarded as a formal deformation parametrized by # , the change of coordi-
nates (5.16) is given by

.�; v/ D
�
z�1; zkuC "

k�1P
iD1

tiz
i
�
: (5.17)

Writing

OZk
.U / OZk

.U \ V / OZk
.V /

CŒz; u� CŒz˙; u� CŒ�; v�

z z , z�1 �

u u, zku v

'0  0

the coordinate change (5.17) is defined on linear monomials �; v and can be
generalized to an algebra homomorphism defined on arbitrary monomials �mvn
by

 D  0 C " 1 C "
2 2 C � � �

where  W �mvn .z�1/m
�
zku C "

Pk�1
iD1 tiz

i
�n. Expanding this in powers of "

gives the expressions for  i ; the first terms are given by the linear maps

 0W �
mvn znk�mun D .z�1/m.zku/n

 1W �
mvn

k�1X
iD1

n ti z
.n�1/k�mCiun�1

 2W �
mvn

k�1X
i;jD1

n.n�1/
2

ti tj z
.n�2/k�mCiCjun�2:

Note that  1 is precisely the 1-cocycle
Pk�1
iD1 tiz

�kCi @
@u

applied to  0.�mvn/ D
znk�mun. In other words, the 1-cocycle representing # is precisely the first-order
term of a deformation of the restriction morphism of the sheaf OZk

.
A “classical” (commutative) deformation of the diagram OZk

jU is thus given by
the diagram OZk

J"KjU with undeformed multiplications, but deformed morphisms

' D '0

 D  0 C " 1 C "
2 2 C � � �
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Collecting powers of ", the fact that  D  0 C " 1 C � � � is a morphisms is
equivalent to

 n.� � �/ D
X
iCjDn

 i .�/ �  j .�/: (5.18)

5.3. Simultaneous deformations. In §§5.1–5.2 we saw that cohomology classes
� 2 H0.Zk; ƒ2TZk

/ and # 2 H1.Zk; TZk
/ give rise to deformation quantizations

and classical (commutative) deformations of OZk
jU.

A simple calculation gives

HH3.Zk/ ' H1.Zk; ƒ2TZk
/ '

(
0 1 � k � 3

Ck�3 k � 4

so that there is an obstruction space to simultaneous deformations ofOZk
jU for k � 4.

We now show that the continuation of a general 2-cocycle representing

�˚ # 2 H0.Zk; ƒ2TZk
/˚ H1.Zk; TZk

/ ' HH2.Zk/

to higher ordersmaydefine a non-zero obstruction class inHH3.Zk/'H1.Zk;ƒ2TZk
/,

even if � and # can individually be continued to all orders. This obstruction class can
be computed from the Maurer–Cartan equation (4.16) for the Gerstenhaber–Schack
L1 algebra gs.OZk

jU/ to which we will turn to next.
For simplicity we choose the 1-cocycle # D tiz

�kCi@u (rather than a sum
over 1 � i � k � 1) and the Poisson structure given by the global bivector field
.zu @z^@u;��v @�^@v/. (Note that this Poisson structure is quantizable for the
open immersions U; V � Zk for any k � 1, see Proposition 5.10.)

Denoting by �0 and �0 the (commutative) multiplications of OZk
.V / ' CŒ�; v�

andOZk
.U \V / ' CŒz˙; u�, respectively, we check the obstruction on two arbitrary

monomials �avb; �cvd 2 CŒ�; v� D OZk
.V /.

First order. The obstruction in " of the form

f 0.�/;  0.�/g C  1.�/ 0.�/C  0.�/ 1.�/ �  0.f�;�g/ �  1.� � �/

is easily checked to vanish, see (5.5) and (5.18). Here we have written � for �0 on V
and f�;�g for both �1 and �1.

Second order. Similarly, the vanishing of the obstruction in "2 amounts to

 2.� � �/C  0.�2.�;�//C  1.f�;�g/ D  0.�/ 2.�/C  2.�/ 0.�/

C  1.�/ 1.�/C �2. 0.�/;  0.�//

C f 0.�/;  1.�/g C f 1.�/;  0.�/g:



1042 S. Barmeier and Y. Frégier

When the multiplication, respectively the morphisms, are not deformed this obstruc-
tion simplifies to

 2.� � �/ D  0.�/ 2.�/C  2.�/ 0.�/

C  1.�/ 1.�/

respectively
 0.�2.�;�// D �2. 0.�/;  0.�//

which again hold by (5.5) and (5.18).
It remains to check the obstruction involving higher terms of both  i on the one

hand, and �i ; �i on the other. This obstruction reads

 1.f�;�g/ D f 0.�/;  1.�/g C f 1.�/;  0.�/g: (5.19)

The individual terms applied to arbitrary monomials �avb; �cvd read as follows.

 1.f�
avb; �cvd g/ D �.ad � bc/ 1.�

aCcvbCd /

D �.ad � bc/ .b C d/ ti z
.bCd�1/k�.aCc/CiubCd�1

f 0.�
avb/;  1.�

cvd /g D �1.z
bk�aub; d ti z

.d�1/k�cCiud�1/

D d..bk�a/.d�1/�b..d�1/k�cCi//

� ti z
.bCd�1/k�.aCc/CiubCd�1

f 1.�
avb/;  0.�

cvd /g D �1.b ti z
.b�1/k�aCiub�1; zdk�cud /

D b...b�1/k�aCi/d�.b�1/.dk�c//

� ti z
.bCd�1/k�.aCc/CiubCd�1

Dropping the monomials and the factor of ti , the obstruction (5.19) amounts to

�.ad � bc/.b C d/ D �.ad � bc/.b C d/C ad � bc

i.e. ad � bc D 0. Of course, this is not satisfied for all a; b; c; d 2 N and for k � 4
and 1 < i < k � 1 the 3-cocycle

 1.�1/ � �1. 0 ˝  1/ � �1. 1 ˝  0/

involving � and # thus defines a non-zero class in HH3.Zk/ ' H1.Zk; ƒ2TZk
/. In

other words, the simultaneous deformation in a commutative and noncommutative
direction of Zk may be obstructed already at second order.

We summarize our findings in the following proposition.
Proposition 5.20. There exists no simultaneous deformation of the pair

�˚ # 2 H0.Zk; ƒ2TZk
/˚ H1.Zk; TZk

/ ' HH2.Zk/

restricting to the purely noncommutative and purely commutative deformations
described in §5.1 and in §5.2 respectively.
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We end with a conceptual explanation of this observation. The (cubic) Maurer–
Cartan equation (4.16) for gs.A/ gives rise to an obstruction map

obsWC2GS.A/ C3GS.A/

such that the preimage of 0 2 C3GS.A/ under obs are precisely solutions to the
Maurer–Cartan equation. The solution space M D obs�1.0/ D MC.gs.A// can
thus be viewed as a variety in C2GS.A/ cut out by polynomial equations. Under
the decomposition C2GS.A/ D C0;2 ˚ C1;1; purely noncommutative and purely
commutative deformations can be thought of as curvesC1 andC2 inM whose tangent
vectors at OZk

jU are � and # , respectively. These curves lie in the intersection ofM
with the coordinate hyperplanes C0;2, respectively C1;1, whereas Proposition 5.20
shows there cannot exist a curve in M with tangent �˚ # projecting to C1 � C0;2
and C2 � C1;1.

The question of the existence of formal simultaneous deformations of OZjU, cut
out by the (cubic) Maurer–Cartan equation (4.16), shall be addressed in future work.
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to Antwerp and it is a great pleasure to thank them all. The first named author also
thanks the Studienstiftung des deutschen Volkes for support. A large part of this
work was carried out at the Max Planck Institute for Mathematics in Bonn and we
are grateful for the excellent resources and working conditions there.

A. Hochschild cohomology and simplicial presheaf cohomology

References for this appendix are DinhVan–Lowen [6] andGerstenhaber–Schack [14].

A.1. Hochschild cohomology of algebras.
Definition A.1. Let S be a k-algebra and letM be an S -bimodule. The Hochschild
complex CH .S;M/ is defined as

CHq.S;M/ D Homk.S
˝q;M/

with the Hochschild differential dHWCHq.S;M/ CHqC1.S;M/ given by

dH.x/.s0; : : : ; sq/ D s0 � x.s1; : : : ; sq/

C

qX
iD1

.�1/ix.s0; : : : ; si�1si ; : : : ; sq/

C .�1/qC1x.s0; : : : ; sq�1/ � sq:
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A.2. Simplicial cohomology of presheaves. Let U be a small category and denote
by N D N.U/ the simplicial nerve of U. A p-simplex � 2 Np is a string of p
composable morphisms in U, which we write

� D .U0
'1 U1

'2
� � �

'p�1
Up�1

'p
Up/:

The simplicial structure of N gives face maps

@i W NpC1 Np
� @i�

(A.2)

where

@0�D
�
U1 � � � Ui�1 Ui UiC1 � � � Up UpC1

�
@i�D

�
U0 U1 � � � Ui�1 UiC1 � � � Up UpC1

�
@pC1�D

�
U0 U1 � � � Ui�1 Ui UiC1 � � � Up

�
:

1 � i � p

Definition A.3. Let F and E be presheaves of k-modules over U and define the
simplicial presheaf complex by

Cp.E;F / D
Y

U0 ��� Up

Hom.E.Up/;F .U0//:

The simplicial differential is defined as

d� D

pC1X
iD0

.�1/idi

where di is obtained from @i as follows.
An element x 2 Cp.E;F / is a tuple x D .x� /�2Np

of homomorphisms

x� WE.Up/ F .U0/

for each � D .U0 � � � Up/. We define dix D .dix� /�2NpC1
where for each

� D .U0
'1
� � �

'pC1
UpC1/

d0x
�
D F .'1/ ı x

@0�

dix
�
D x@i� 1 � i � p

dpC1x
�
D x@pC1� ı E.'pC1/

so that each dix� WE.UpC1/ F .U0/, whence

d�W
Y

U0 ��� Up

Hom.E.Up/;F .U0//
Y

U0 ��� UpC1

Hom.E.UpC1/;F .U0//:
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A.3. Differentials in theGerstenhaber–Schackdouble complex. InDefinition 2.1
the Gerstenhaber–Schack complex was defined as the total complex of the first
quadrant double complex

Cp;q.F / WD Cp.F ˝q;F /

D

Y
U0 ��� Up

Hom.F .Up/˝q;F .U0//:

The (vertical) Hochschild differential

dHW
Y

U0 ��� Up

Hom.F .Up/˝q;F .U0//
Y

U0 ��� Up

Hom.F .Up/˝qC1;F .U0//

is now given on each component, i.e. for each p-simplex

U0
'1 U1

'2
� � �

'p�1
Up�1

'p
Up;

as in Definition A.1 by regarding F .U0/ as an F .Up/-bimodule with left and right
actions given by left- respectively right-multiplication in F .U0/

s0 � s D F .'p ı � � � ı '1/.s
0/s

s � s0 D s.F .'p/ ı � � � ı F .'1//.s
0/ s0 2 F .Up/; s 2 F .U0/:

The (horizontal) simplicial differential

d�WCp;q.F / CpC1;q.F /

is given by taking E D F ˝q in Definition A.3.
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