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Abstract:
Classical model reduction methods disregard the special symplectic structure associated with
Hamiltonian systems. A key challenge in projection-based approaches is to construct a sym-
plectic basis that captures the essential system information. This necessitates the computation
of a so-called proper symplectic decomposition (PSD) of a given sample data set. The PSD
problem allows for a canonical formulation as an optimization problem on the symplectic
Stiefel manifold. However, as with their Euclidean counterparts, symplectic projectors only
depend on the underlying symplectic subspaces and not on the selected symplectic bases. This
motivates to tackle the PSD problem as a Riemannian optimization problem on the symplectic
Grassmann manifold, i.e., the matrix manifold of symplectic projectors. Initial investigations
on this manifold feature in a recent preprint of the authors. In this work, we investigate
the feasibility and performance of this approach on two academic numerical examples. More
precisely, we calculate an optimized PSD for snapshot matrices that stem from solving the one-
dimensional linear wave equation and the one-dimensional nonlinear Schrödinger equation.
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1. INTRODUCTION

As a rule, simulating dynamical processes in real-life sce-
narios entails a tremendous amount of computational time
and costs. Model order reduction (MOR) is concerned with
developing techniques to emulate such large-scale systems
in a fraction of the original computation time up to a
satisfactory error. A key challenge in MOR is to construct
a reduced basis that captures the essential system infor-
mation. For snapshot-based MOR, this requires a data-
sampling stage as an upfront investment. Once the reduced
basis is at hand, the large-scale system is projected onto
the associated subspace in projection-based MOR. The
resulting reduced-order model (ROM) operates exclusively
on the basis coefficients—usually some p ∈ [102, 103]—
rather than on the original system dimension N , where
N ∈ [106, 108] is not rare in realistic applications. The
basis construction paradigm consists of two generic steps.

• Data sampling: collect sample solutions, store data in
a snapshot matrix S.

• Basis construction: find basis of low rank p ≪ N that
best represents the data in S with p coefficients.

The predictive power of the reduced basis is of paramount
importance for the ROM’s performance.

In this work, we consider aspects of MOR for Hamiltonian
systems. Examples of Hamiltonian systems include appli-
cations in quantum mechanics (the Schrödinger equation),
wave equations, the class of shallow water equations, celes-
tial dynamics, etc. For the background theory, see Arnol’d
(1997); Arnol’d and Givental’ (2001). Yet, classical MOR
methods provide bases that do not respect the invariants
and the symplectic structure inherent to Hamiltonian sys-
tems. This results in ill-suited, often unstable ROMs. To
obtain a basis that yields a structure-preserving ROM,
Peng and Mohseni (2016) proposed to compute a proper
symplectic decomposition (PSD) of the snapshot matrix
S and to replace orthogonal projections with symplectic
ones. The PSD problem is formalized via

min
U∈R2N×2p

∥S− UU+S∥2F s. t. UT J2NU = J2p, (1)

where U+ = JT2pUT J2N and

J2m =

(
0 Im

−Im 0

)
,

m ∈ {N, p}. Note that the problem only depends on
the symplectic projector UU+ and not the representative
U . Furthermore, note the formal similarities with the
archetype problem of dimension reduction

min
U∈RN×p

∥S− UUTS∥2F s. t. UT InU = Ip. (2)
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The solution of (2) is the singular value decomposition
(SVD) of S truncated to the p dominant left singular
vectors and is fundamental to the methods of proper
orthogonal decomposition (POD), principal component
analysis and Karhunen-Loève expansion. In contrast, there
is no known closed-form solution to the PSD problem (1).

We briefly relate the state of the art. For more details,
see Afkham and Hesthaven (2017); Buchfink et al. (2020);
Musharbash et al. (2020); Peng and Mohseni (2016). So
far, these are the probed methods:

(a) Cotangent lift, (Peng and Mohseni (2016)): This
method is SVD-based and yields the optimal sym-
plectic projection basis under all candidates of block-

diagonal form

(
Φ 0
0 Φ

)
.

(b) Complex SVD, (Peng and Mohseni (2016); Buchfink
et al. (2019)): This method is SVD-based and yields
the optimal symplectic projection basis under all

candidates of block form

(
Φ −Ψ
Ψ Φ

)
; however not for

representing S but rather (S,−J2NS).
(c) Symplectic SVD-like decomposition, (Buchfink et al.

(2019)): Here, the SVD is replaced by a decomposi-
tion for which one of the orthogonal factors is instead
symplectic, see Xu (2003) for details.

(d) Greedy basis generation, (Afkham and Hesthaven
(2017); Buchfink et al. (2020)). This approach is
based on symplectic extension of an existing basis
according to an error criterion, e.g., conservation of
the Hamiltonian. The extension methods are based
on an iterative, symplectic Gram-Schmidt process,
or on complex SVD or SVD-like decomposition of a
residual.

(e) Nonlinear programming, (Peng and Mohseni (2016)):
Here, (1) is tackled as a constrained optimization
problem.

The methods (a), (b), (d) are, by design, in general not
able to produce the global optimum for (1). The approach
(e) has this potential but tends to be expensive. This
has already been recognized in Peng and Mohseni (2016),
who propose a restricted optimization that is bound to
linear transformations of an initial suboptimal PSD. The
approach (c) appears as a promising starting point but
comes with the extra challenge that off-the-shelf methods
for computing named symplectic SVD-like decomposition
are lacking. For the experiments in Section 4, we utilize the
MATLAB implementation ‘svd like decomposition.m’
provided by Buchfink et al. (2019).

Original contribution. The PSD problem (1) can be con-
sidered as an unconstrained optimization problem on the
symplectic Stiefel manifold,

SpSt(2N, 2p) := {U ∈ R2N×2p | UT J2NU = J2p}.
However, the objective function (1) actually does not
depend on the symplectic Stiefel frame U ∈ SpSt(2N, 2p),
but on the associated symplectic projector UU+. The set

SpGr(2N, 2p) :=
{P ∈ R2N×2N | P 2 = P, rank(P ) = 2p, P+ = P} (3)

of symplectic projectors also constitutes a matrix mani-
fold, which we refer to as the real symplectic Grassmann
manifold. In the recent preprint Bendokat and Zimmer-

mann (2021), we established the symplectic Grassmann
manifold as a quotient space of SpSt(2N, 2p) and proposed
Riemannian and Pseudo-Riemannian metrics. Moreover,
we derived formulas for the associated geodesic lines on
SpGr(2N, 2p) and introduced efficient retractions. In the
work at hand, we present preliminary numerical experi-
ments on tackling (1) as a Riemannian optimization prob-
lem on SpGr(2N, 2p) by applying Riemannian optimiza-
tion to two examples of Hamiltonian systems and compar-
ing the results to the first three methods mentioned above.

2. HAMILTONIAN SYSTEMS AND SYMPLECTIC
STRUCTURES

2.1 Basics

The canonical symplectic vector space is V = (R2N , ω0),
with symplectic form ω0(v, w) = vT J2Nw. The symplectic
inverse of a matrix A ∈ R2N×2p is

A+ := JT2pAT J2n.
For symplectic Stiefel matrices U ∈ SpSt(2N, 2p), it holds
U+U = I2p. Hamiltonian matrices are characterized by
A+ = −A. For U ∈ SpSt(2N, 2p), P := UU+ represents
the symplectic projection onto the 2p-dimensional sym-
plectic subspace span(U) ⊂ V.

An autonomous Hamiltonian system associated with a
smooth Hamiltonian function H : V → R has the form

ż(t) = J2N∇zH(z(t)), z(t) =

(
q(t)
p(t)

)
∈ R2N (4)

⇔ q̇(t) =∇pH(q(t), p(t)), ṗ(t) = −∇qH(q(t), p(t)),

with initial state (q(t0)
T , p(t0)

T )T = z(t0) = z0.

Hamiltonian systems preserve the Hamiltonian, identified
with the total energy, see (Hairer et al., 2006, Section IV,
Example 1.2). Hence, numerical schemes for advancing (4)
in time that share this feature have been developed. Let
h = ∆t be a time step size. We mention the symplectic
Euler method

qn+1 = qn + h∇pH(qn, pn+1),

pn+1 = pn − h∇qH(qn, pn+1)

and the Störmer-Verlet scheme

qn+ 1
2
= qn +

h

2
∇pH(qn+ 1

2
, pn),

pn+1 = pn − h

2

(
∇qH(qn+ 1

2
, pn) +∇qH(qn+ 1

2
, pn+1)

)
,

qn+1 = qn+ 1
2
+

h

2
∇pH(qn+ 1

2
, pn+1), (5)

and refer to (Hairer et al., 2006, Section VI.3) for the
details and more options.

2.2 Model reduction for Hamiltonian systems

As with classical MOR, a formal reduction in dimension
of a given Hamiltonian system can be obtained via projec-
tion. Let P ∈ SpGr(2N, 2p) be a symplectic projector as
in (3). According to (Bendokat and Zimmermann, 2021,
Prop. 4.1), there is U ∈ SpSt(2N, 2p) such that P = UU+
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The solution of (2) is the singular value decomposition
(SVD) of S truncated to the p dominant left singular
vectors and is fundamental to the methods of proper
orthogonal decomposition (POD), principal component
analysis and Karhunen-Loève expansion. In contrast, there
is no known closed-form solution to the PSD problem (1).

We briefly relate the state of the art. For more details,
see Afkham and Hesthaven (2017); Buchfink et al. (2020);
Musharbash et al. (2020); Peng and Mohseni (2016). So
far, these are the probed methods:

(a) Cotangent lift, (Peng and Mohseni (2016)): This
method is SVD-based and yields the optimal sym-
plectic projection basis under all candidates of block-

diagonal form

(
Φ 0
0 Φ

)
.

(b) Complex SVD, (Peng and Mohseni (2016); Buchfink
et al. (2019)): This method is SVD-based and yields
the optimal symplectic projection basis under all

candidates of block form

(
Φ −Ψ
Ψ Φ

)
; however not for

representing S but rather (S,−J2NS).
(c) Symplectic SVD-like decomposition, (Buchfink et al.

(2019)): Here, the SVD is replaced by a decomposi-
tion for which one of the orthogonal factors is instead
symplectic, see Xu (2003) for details.

(d) Greedy basis generation, (Afkham and Hesthaven
(2017); Buchfink et al. (2020)). This approach is
based on symplectic extension of an existing basis
according to an error criterion, e.g., conservation of
the Hamiltonian. The extension methods are based
on an iterative, symplectic Gram-Schmidt process,
or on complex SVD or SVD-like decomposition of a
residual.

(e) Nonlinear programming, (Peng and Mohseni (2016)):
Here, (1) is tackled as a constrained optimization
problem.

The methods (a), (b), (d) are, by design, in general not
able to produce the global optimum for (1). The approach
(e) has this potential but tends to be expensive. This
has already been recognized in Peng and Mohseni (2016),
who propose a restricted optimization that is bound to
linear transformations of an initial suboptimal PSD. The
approach (c) appears as a promising starting point but
comes with the extra challenge that off-the-shelf methods
for computing named symplectic SVD-like decomposition
are lacking. For the experiments in Section 4, we utilize the
MATLAB implementation ‘svd like decomposition.m’
provided by Buchfink et al. (2019).

Original contribution. The PSD problem (1) can be con-
sidered as an unconstrained optimization problem on the
symplectic Stiefel manifold,

SpSt(2N, 2p) := {U ∈ R2N×2p | UT J2NU = J2p}.
However, the objective function (1) actually does not
depend on the symplectic Stiefel frame U ∈ SpSt(2N, 2p),
but on the associated symplectic projector UU+. The set

SpGr(2N, 2p) :=
{P ∈ R2N×2N | P 2 = P, rank(P ) = 2p, P+ = P} (3)

of symplectic projectors also constitutes a matrix mani-
fold, which we refer to as the real symplectic Grassmann
manifold. In the recent preprint Bendokat and Zimmer-

mann (2021), we established the symplectic Grassmann
manifold as a quotient space of SpSt(2N, 2p) and proposed
Riemannian and Pseudo-Riemannian metrics. Moreover,
we derived formulas for the associated geodesic lines on
SpGr(2N, 2p) and introduced efficient retractions. In the
work at hand, we present preliminary numerical experi-
ments on tackling (1) as a Riemannian optimization prob-
lem on SpGr(2N, 2p) by applying Riemannian optimiza-
tion to two examples of Hamiltonian systems and compar-
ing the results to the first three methods mentioned above.

2. HAMILTONIAN SYSTEMS AND SYMPLECTIC
STRUCTURES

2.1 Basics

The canonical symplectic vector space is V = (R2N , ω0),
with symplectic form ω0(v, w) = vT J2Nw. The symplectic
inverse of a matrix A ∈ R2N×2p is

A+ := JT2pAT J2n.
For symplectic Stiefel matrices U ∈ SpSt(2N, 2p), it holds
U+U = I2p. Hamiltonian matrices are characterized by
A+ = −A. For U ∈ SpSt(2N, 2p), P := UU+ represents
the symplectic projection onto the 2p-dimensional sym-
plectic subspace span(U) ⊂ V.

An autonomous Hamiltonian system associated with a
smooth Hamiltonian function H : V → R has the form

ż(t) = J2N∇zH(z(t)), z(t) =

(
q(t)
p(t)

)
∈ R2N (4)

⇔ q̇(t) =∇pH(q(t), p(t)), ṗ(t) = −∇qH(q(t), p(t)),

with initial state (q(t0)
T , p(t0)

T )T = z(t0) = z0.

Hamiltonian systems preserve the Hamiltonian, identified
with the total energy, see (Hairer et al., 2006, Section IV,
Example 1.2). Hence, numerical schemes for advancing (4)
in time that share this feature have been developed. Let
h = ∆t be a time step size. We mention the symplectic
Euler method

qn+1 = qn + h∇pH(qn, pn+1),

pn+1 = pn − h∇qH(qn, pn+1)

and the Störmer-Verlet scheme

qn+ 1
2
= qn +

h

2
∇pH(qn+ 1

2
, pn),

pn+1 = pn − h

2

(
∇qH(qn+ 1

2
, pn) +∇qH(qn+ 1

2
, pn+1)

)
,

qn+1 = qn+ 1
2
+

h

2
∇pH(qn+ 1

2
, pn+1), (5)

and refer to (Hairer et al., 2006, Section VI.3) for the
details and more options.

2.2 Model reduction for Hamiltonian systems

As with classical MOR, a formal reduction in dimension
of a given Hamiltonian system can be obtained via projec-
tion. Let P ∈ SpGr(2N, 2p) be a symplectic projector as
in (3). According to (Bendokat and Zimmermann, 2021,
Prop. 4.1), there is U ∈ SpSt(2N, 2p) such that P = UU+

and P (R2N ) = ran(U). Let z(t) be a solution of (4).
Then, the projected trajectory Pz(t) = UU+z(t) = Uzp(t)
is uniquely defined by the coefficient function zp(t) =
U+z(t) ∈ R2p. If z(t) were perfectly contained in ran(U),
then z(t) = Pz(t) = Uzp(t) and (4) yields

żp(t) =U+J2N∇zH(Uzp(t)) = −JT2pUT∇zH(Uzp(t))

= J2p∇zpH(Uzp(t)). (6)

In this way, formally, the order-2N system (4) has been
replaced by an order-2p system for the function zp(t) that
defines the coefficients for the projected trajectory. For
linear non-parametric Hamiltonian systems, the operators
associated with the reduced system (6) can be precom-
puted. Nonlinear systems can be treated, e.g., with a
symplectic discrete empirical interpolation approach, see
Peng and Mohseni (2016) for details.

Due to space limitations, this contribution will focus
entirely on the process of finding the projector P =
UU+. With such a projector, a reduced order model can
be created using the techniques in Peng and Mohseni
(2016); Afkham and Hesthaven (2017). In order to find
the projector, we advance the full system (4) in time
and collect snapshot solutions S = (z(ts1), . . . , z(tsm)) at
selected time instants ts1 , . . . , tsm . Then, we conduct a
Riemannian optimization process for the problem

argmin
P

∥S− PS∥2F . (7)

3. OPTIMIZATION ON THE SYMPLECTIC
GRASSMANN MANIFOLD

Optimization on the symplectic Grassmann manifold
SpGr(2N, 2p) can be efficiently executed by a lift to the
symplectic Stiefel manifold SpSt(2N, 2p). Details on the
connection between these two manifolds and on Rieman-
nian optimization aspects can be found in Bendokat and
Zimmermann (2021).

The tangent space at a symplectic projector UU+ ∈
SpGr(2N, 2p) can be parameterized by choosing an asso-
ciated representative U ∈ SpSt(2N, 2p) and setting

TUU+SpGr(2N, 2p) = {H ∈ R2N×2p | U+H = 0}.
For a chosen representative U , a Riemannian met-
ric is defined point-wise by gUU+ : TUU+SpGr(2N, 2p) ×
TUU+SpGr(2N, 2p) → R,

gUU+ (H1, H2) =
tr(UTU(HT

2 H1)
+ − (UTH1)

+HT
2 U).

(8)

Note that this Riemannian metric does not depend on the
representative U , as the change of symplectic basis for
U and Hi consist of the post-multiplication of the same
symplectic matrix, which cancel each other out. A smooth
function on SpGr(2N, 2p) can be defined as a smooth
function f : SpSt(2N, 2p) → R fulfilling f(U) = f(UN) for
all symplectic basis changes N , i.e., all N ∈ R2p×2p with
N+N = I2p. Let ∇fU be the Euclidean gradient of f at U .
The Riemannian gradient gradf (U) ∈ TUU+SpGr(2N, 2p)
of f with respect to (8) is given by

gradf (U) = (I2n − UU+)JT2N∇fUJ2p.

Specifically, the Euclidean gradient of the objective func-
tion of (7), i.e., of f : SpSt(2N, 2p) → R with

f(U) = ∥S− UU+S∥2F , (9)

is given by

∇fU = −2
(
Q+Q+

)
(U+)T ,

where Q = (I2N −UU+)SST . With knowledge of the Rie-
mannian gradient, a gradient descent approach can be used
to minimize (9). Stepping from a point in a given direction
on the symplectic Grassmann manifold can be done via
retractions that mediate between tangent space data, i.e.,
‘directions’ and manifold data. The prime example of a
retraction is the Riemannian exponential mapping, which
corresponds to stepping along geodesic lines. An alterna-
tive is to use retractions based on the Cayley map. Explicit
formulas for both of the aforementioned approaches are
included in Bendokat and Zimmermann (2021). For the
numerical experiments features in Section 4, we use the
Cayley retraction exclusively, as it is cheaper in terms of
the computational cost. Let U ∈ SpSt(2N, 2p) represent
UU+ ∈ SpGr(2N, 2p) and let H ∈ TUU+SpGr(2N, 2p).
Furthermore, let

A = (HTU)+UTU − (UTU)+HTU ∈ R2p×2p

and
T = (UH+ −HU+)TU − UA ∈ R2N×2p.

Then the Cayley retraction from U in direction H is given
by

CayU (tH) = −U + (tT + 2U)(
t2

4
T+T − t

2
A+ I2p)

−1.

For the experiments in the next Section 4, we use (Gao
et al., 2021, Algorithm 1) as the line-search gradient de-
scent method, adapted to the symplectic Grassmann man-
ifold, i.e., using the aforementioned Riemannian metric,
Riemannian gradient and Cayley retraction.

4. NUMERICAL EXPERIMENTS

We test the approach of computing a PSD via optimizing
(7) on SpGr(2N, 2p) by means of numerical experiments.
To this end, we consider the linear wave equation and
the nonlinear Schrödinger equation, where we follow the
settings of (Peng and Mohseni, 2016, Section 6.2) and
(Afkham and Hesthaven, 2017, Section 5.2), respectively.

4.1 Linear wave equation

The one-dimensional linear wave equation with constant
wave speed c reads

utt(t, x) = c2uxx(t, x).

We consider the spatial domain [0, l] and impose periodic
boundary conditions. Discretizing in space on steps xi :=
i∆x, i = 0, . . . , N − 1, ∆x = l

N and introducing qi(t) =
u(t, xi) and pi(t) = ut(t, xi), the Hamiltonian formulation(

q̇
ṗ

)
= J2n

(
−c2Dxx 0

0 I

)(
q
p

)
= J2n

(
∇qH(q, p)
∇pH(q, p)

)
(10)

is obtained, where Dxx is the central difference operator
corresponding to the second-order spatial derivative. Es-
sentially, this is the tridiagonal matrix 1

∆x2 diags(1,−2,1),

but with the extra entries Dxx[N, 1] = 1
∆x2 = Dxx[1, N ]

that encode the periodic boundary conditions. As an ini-

tial condition q(0) :=
(
c(10|x1 − 1

2 |), . . . , c(10|xN − 1
2 |)

)T
,

p(0) := 0 ∈ RN is used, where c(s) is the spline func-
tion defined piece wise by c|[0,1](s) = 1 − 3

2s
2 + 3

4s
3,

c|(1,2](s) = 1
4 (2− s)3, c|(2,∞)(s) = 0.
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Fig. 1. Corresponding to Subsection 4.1: The function
u(t, x) based on the numerical solution of (10) at time
t = 0, 2.5, 5.

The full-order data is now obtained by applying the
symplectic Störmer-Verlet time-stepping scheme (5) with
the parameters l = 1, N = 500, ∆x = l

N , t0 = 0, tend = 5,

h = ∆t = 0.01, c2 = 0.01. Fig. 1 displays snapshot
solution functions x → u(t, x) = q(t, x) at time instants
t = 0, 2.5, 5.

We take snapshots at every 10th time step. This produces
a snapshot matrix

S =

((
q(t1)
p(t1)

)
, . . . ,

(
q(tm)
p(tm)

))
∈ R1000×51.

We use a fixed reduced dimension of p = 5. As symplectic
starting points for optimizing (7), we consider P0 =
U0U

+
0 ∈ SpGr(2N, 2p), with the following options for

constructing U0 ∈ SpSt(2N, 2p):

(0) U0 = E :=

(
Ip 0 0 0
0 0 Ip 0

)T

;

(a) U0 of the same dimensions produced by ‘cotangent
lift’;

(b) U0 of the same dimensions produced by ‘complex
SVD’;

(c) U0 of the same dimensions produced by ‘SVD-like
decomposition’.

Methods (a) and (b) are as discussed in (Peng and
Mohseni, 2016, Section 4). Method (c) is from Buchfink
et al. (2019), Algorithm 1. As termination conditions for
the descent algorithm, we use a tolerance of 10−3 for
the Frobenius norm of the Riemannian gradient and a

tolerance of 10−6 for both ∥Uk−1−Uk∥F√
2n

and |f(Uk−1)−f(Uk)|
|f(Uk)|+1 .

The results are stated in Table 1. The largest error in
symplecticity ∥U+U − I2p∥F after optimization from all
starting points is generated by method (b) and amounts
to 1.0968× 10−13, so that symplecticity can be considered
as numerically preserved.

As an example, the convergence history corresponding
to optimizing (7) when starting from ‘complex SVD’ is
displayed in Fig. 2. It is worth mentioning that the opti-
mization process arrives at different matrix representatives
U∗
a , U

∗
b , U

∗
c depending on the chosen starting point, but

that the associated optimal projector P ∗ = U∗
a (U

∗
a )

+ =
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Fig. 2. Corresponding to Subsection 4.1: Relative error
∥S − UiU

+
i S∥F /∥S∥F of the convergence history for

minimizing (9) with starting point P0 = U0U
+
0 ob-

tained from the method of ‘complex SVD’.
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Fig. 3. Corresponding to Subsection 4.1: Projector dis-
tance (11) between the iterates with starting point
P0 = U0U

+
0 obtained from the method of ‘complex

SVD’ and the optimum P ∗.

U∗
b (U

∗
b )

+ = U∗
c (U

∗
c )

+ is the same up to the convergence
accuracy. In Fig. 3 we denote the projector distance

dist(P1, P2) := ∥P1 − P2∥F (11)

between the iterates from case (b) and the assumed op-
timum P ∗, where the latter is obtained by letting the
descent algorithm run for 5000 iterations from the starting
point obtained by the SVD-like decomposition. To further
strengthen the conjecture that P ∗ is a global optimum,
we started the algorithm from a random starting point P0

with initial projector distance of dist(P0, P
∗) = 109.771

from P ∗, and observed that the algorithm converged
against the same optimum after 24492 iterations. More-
over, the experiments show that it is possible to represent
the snapshot data S with a rank-10 symplectic projector
up to a relative error of less than 1.6%, which is a sig-
nificant improvement on the initial guess, when started

Table 1. Optimizing the symplectic basis for
the test case of Section 4.1. The relative error

∥S− UU+S∥F /∥S∥F is reported.

Start init. error error after opt. iters.

(0) U0 = E 0.9906 0.0157 3537
(a) cotangent lift 0.2407 0.0157 2200
(b) complex SVD 0.1277 0.0157 2338
(c) SVD-like decomp. 0.0160 0.0157 1444
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Fig. 1. Corresponding to Subsection 4.1: The function
u(t, x) based on the numerical solution of (10) at time
t = 0, 2.5, 5.

The full-order data is now obtained by applying the
symplectic Störmer-Verlet time-stepping scheme (5) with
the parameters l = 1, N = 500, ∆x = l

N , t0 = 0, tend = 5,

h = ∆t = 0.01, c2 = 0.01. Fig. 1 displays snapshot
solution functions x → u(t, x) = q(t, x) at time instants
t = 0, 2.5, 5.

We take snapshots at every 10th time step. This produces
a snapshot matrix

S =

((
q(t1)
p(t1)

)
, . . . ,

(
q(tm)
p(tm)

))
∈ R1000×51.

We use a fixed reduced dimension of p = 5. As symplectic
starting points for optimizing (7), we consider P0 =
U0U

+
0 ∈ SpGr(2N, 2p), with the following options for

constructing U0 ∈ SpSt(2N, 2p):

(0) U0 = E :=

(
Ip 0 0 0
0 0 Ip 0

)T

;

(a) U0 of the same dimensions produced by ‘cotangent
lift’;

(b) U0 of the same dimensions produced by ‘complex
SVD’;

(c) U0 of the same dimensions produced by ‘SVD-like
decomposition’.

Methods (a) and (b) are as discussed in (Peng and
Mohseni, 2016, Section 4). Method (c) is from Buchfink
et al. (2019), Algorithm 1. As termination conditions for
the descent algorithm, we use a tolerance of 10−3 for
the Frobenius norm of the Riemannian gradient and a

tolerance of 10−6 for both ∥Uk−1−Uk∥F√
2n

and |f(Uk−1)−f(Uk)|
|f(Uk)|+1 .

The results are stated in Table 1. The largest error in
symplecticity ∥U+U − I2p∥F after optimization from all
starting points is generated by method (b) and amounts
to 1.0968× 10−13, so that symplecticity can be considered
as numerically preserved.

As an example, the convergence history corresponding
to optimizing (7) when starting from ‘complex SVD’ is
displayed in Fig. 2. It is worth mentioning that the opti-
mization process arrives at different matrix representatives
U∗
a , U

∗
b , U

∗
c depending on the chosen starting point, but

that the associated optimal projector P ∗ = U∗
a (U
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Fig. 2. Corresponding to Subsection 4.1: Relative error
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+
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minimizing (9) with starting point P0 = U0U
+
0 ob-

tained from the method of ‘complex SVD’.
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Fig. 3. Corresponding to Subsection 4.1: Projector dis-
tance (11) between the iterates with starting point
P0 = U0U

+
0 obtained from the method of ‘complex

SVD’ and the optimum P ∗.

U∗
b (U

∗
b )

+ = U∗
c (U

∗
c )

+ is the same up to the convergence
accuracy. In Fig. 3 we denote the projector distance

dist(P1, P2) := ∥P1 − P2∥F (11)

between the iterates from case (b) and the assumed op-
timum P ∗, where the latter is obtained by letting the
descent algorithm run for 5000 iterations from the starting
point obtained by the SVD-like decomposition. To further
strengthen the conjecture that P ∗ is a global optimum,
we started the algorithm from a random starting point P0

with initial projector distance of dist(P0, P
∗) = 109.771

from P ∗, and observed that the algorithm converged
against the same optimum after 24492 iterations. More-
over, the experiments show that it is possible to represent
the snapshot data S with a rank-10 symplectic projector
up to a relative error of less than 1.6%, which is a sig-
nificant improvement on the initial guess, when started

Table 1. Optimizing the symplectic basis for
the test case of Section 4.1. The relative error

∥S− UU+S∥F /∥S∥F is reported.

Start init. error error after opt. iters.

(0) U0 = E 0.9906 0.0157 3537
(a) cotangent lift 0.2407 0.0157 2200
(b) complex SVD 0.1277 0.0157 2338
(c) SVD-like decomp. 0.0160 0.0157 1444
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Fig. 4. Corresponding to Subsection 4.2: The function
|u(t, x)| based on the numerical solution of (12) at
time t = 0, 10, 20.

from ‘cotangent lift’ or ‘complex SVD’. The method ‘SVD-
like decomposition’ produces a symplectic projector that
is already close to numerical optimum so that the improve-
ment is minor. For comparison, the relative error of POD
projection of the same dimension is 0.0140, which is the
optimum for any 2p dimensional subspace. The symplectic
structure however is lost in that case, which may lead to
high errors in the reduced model (Peng and Mohseni, 2016,
Section 6).

4.2 Nonlinear Schrödinger equation

The one-dimensional parametric Schrödinger equation for
a complex wave function u(t, x) reads

ιut(t, x) = −uxx(t, x)− ϵ|u(t, x)|2u(t, x),
with initial condition u(t0, x) = u0(x). Here, ι =

√
−1

denotes the complex unit. The spatial domain is [− l
2 ,

l
2 ].

Again, we impose periodic boundary conditions and dis-
cretizing in space via Dxx as introduced above and steps
− l

2+i∆x, i = 0, . . . , N−1, ∆x = l
N . By writing u = p+ιq,

we arrive at the Hamiltonian system(
q̇
ṗ

)
= J2n

((
Dxx 0
0 Dxx

)(
q
p

)
+ ϵ

(
a(q, p)
b(q, p)

))
(12)

with nonlinear terms a = (a1, . . . , aN )T and b =
(b1, . . . , bN )T defined by

ai(q, p) = (q2i + p2i )qi, bi(q, p) = (q2i + p2i )pi.

The initial condition is set to be

u(0, x) =

√
2

cosh(x)
exp

( ι

2
cx

)
, x ∈ [− l

2
,
l

2
],

so that p(0, x) = ℜ(u(0, x)) is the real part and q(0, x) =
ℑ(u(0, x)) is the imaginary part of u(0, x).

Full-order simulations are conducted with the Störmer-
Verlet time-stepping scheme (5) for the parameters l =
2π
0.11 , N = 256, ∆x = l

N , t0 = 0, tend = 20, h = ∆t = 0.01,
ϵ = 1.0932 and c = 1. Fig. 4 displays the function
|u(t, x)| =

√
q2(t, x) + p2(t, x), which is to be interpreted

as a probability density function in quantum mechanics,
for time instants t = 0, 10, 20.

We take snapshots at every 10th time step. This produces
a snapshot matrix
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Fig. 5. Corresponding to Subsection 4.2: Relative error
∥S − UiU

+
i S∥F /∥S∥F of the convergence history for

minimizing (9) with starting point P0 = U0U
+
0 ob-

tained from the method of ‘cotangent lift’.

S =

((
q(t1)
p(t1)

)
, . . . ,

(
q(tm)
p(tm)

))
∈ R512×201.

We use a fixed reduced dimension of p = 10. As sym-
plectic starting points for optimizing (7), we consider the
same three options as in Subsection 4.1: (0) U0 = E ∈
SpSt(2N, 2p); (a) U0 via ‘cotangent lift’, (b) U0 via ‘com-
plex SVD’, (c) U0 via ‘SVD-like decomposition’, and the
same tolerances for convergence. The results are stated
in Table 2. For comparison, the relative error obtained
from POD is 0.0581. The largest error in symplecticity

Table 2. Optimizing the symplectic basis for
the test case of Section 4.2. The relative error

∥S− UU+S∥F /∥S∥F is reported.

Start init. error error after opt. iters.

(0) U0 = E 1.0 0.0672 658
(a) cotangent lift 0.2608 0.0672 307
(b) complex SVD 0.1750 0.0672 409
(c) SVD-like decomp. 0.0857 0.0672 258

among all methods after optimization amounts to 8.4269×
10−14 for case (a), so that symplecticity can be consid-
ered as numerically preserved. The convergence history
corresponding to optimizing (7) when starting from (b)
‘cotangent lift’ is displayed in Fig. 5.

As in the previous example, upon convergence, the opti-
mized projector P ∗ = U∗

a (U
∗
a )

+ = U∗
b (U

∗
b )

+ = U∗
c (U

∗
c )

+ is
the same (up to the convergence accuracy), regardless of
which initial guess (0), (a), (b), (c) is chosen, even though
the matrix representatives U∗

a , U
∗
b , U

∗
c differ. In Fig. 6 we

show the projector distance between the iterates from case
(a) and the assumed optimum P ∗, obtained by letting the
descent algorithm run for 5000 iterations from the starting
point obtained by the SVD-like decomposition. Also in
this case, the optimized projector improves significantly
on the initial guesses produced by the first three methods.
The best starting projector is provided by the method of
‘SVD-like decomposition’; however, the experiment shows
that this projector is not the global optimum.

5. CONCLUSION

From the experiments conducted in Section 4, we infer the
following main conclusions:
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Fig. 6. Corresponding to Subsection 4.2: Projector dis-
tance (11) between the iterates with starting point
P0 = U0U

+
0 obtained from the method of ‘cotangent

lift’ and the optimum P ∗.

• It is appropriate to tackle the PSD problem (1) as an
optimization problem (7) on the symplectic Grass-
mann manifold. The experiments suggest that from
the Grassmann perspective, the problem is unimodal,
i.e., it appears that there is an optimal symplectic
projector which is the unique global minimum.

• The proposed Riemannian optimization approach to
tackle (7) has shown the potential to significantly
improve on a given initial guess. On the other hand,
the experiments confirm, as was to be expected,
that the SVD-based approaches ‘cotangent lift’ and
‘complex SVD’ produce suboptimal projectors.

• The question posed in Buchfink et al. (2019) whether
the SVD-like decomposition produces the global op-
timum for the PSD problem can be answered nega-
tively. However, it produces a projector that seems
to be reasonably close to the optimum compared to
other methods. Future investigations whether there
is a matrix decomposition that produces the global
optimum directly, analogously to the SVD in POD,
seem worthwhile.

• A generic gradient descent method is able to reach the
minimum. However, the method proceeds with small
steps and the associated iteration count is rather
high. This observation triggers the need to tailor-
made optimization procedures, preferably of second
order. Moreover, Figs. 2 & 5 show that, for practical
purposes, the optimization procedure can be stopped
earlier without compromising the prediction quality
of the resulting projector. Hence, problem-adapted
starting and stopping conditions are also of interest.

• Given that the conjectured unimodality of the opti-
mization problem (7) holds true, it is fair to assume
that the optimal symplectic projector associated with
a given snapshot matrix S depends smoothly on
any additional system parameters, provided that S
is smooth in these parameters. This would then jus-
tify parametric interpolation of optimized symplectic
projectors in the sense of Zimmermann (2021). All
the necessary algorithmic tools for such a course of
action are provided by Bendokat and Zimmermann
(2021).
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