Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Temperature regulates transcription in the zebrafish circadian clock

MPG-Autoren
/persons/resource/persons283511

Lahiri,  K
Research Group Zebrafish Chronobiology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons283508

Vallone,  D       
Research Group Zebrafish Chronobiology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons283526

Gondi,  SB
Research Group Zebrafish Chronobiology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons283523

Santoriello,  C
Research Group Zebrafish Chronobiology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons281424

Dickmeis,  T       
Research Group Zebrafish Chronobiology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons275723

Foulkes,  NS       
Research Group Zebrafish Chronobiology, Max Planck Institute for Developmental Biology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lahiri, K., Vallone, D., Gondi, S., Santoriello, C., Dickmeis, T., & Foulkes, N. (2005). Temperature regulates transcription in the zebrafish circadian clock. PLoS Biology, 3(11): e351. doi:10.1371/journal.pbio.0030351.


Zitierlink: https://hdl.handle.net/21.11116/0000-000B-8599-2
Zusammenfassung
It has been well-documented that temperature influences key aspects of the circadian clock. Temperature cycles entrain the clock, while the period length of the circadian cycle is adjusted so that it remains relatively constant over a wide range of temperatures (temperature compensation). In vertebrates, the molecular basis of these properties is poorly understood. Here, using the zebrafish as an ectothermic model, we demonstrate first that in the absence of light, exposure of embryos and primary cell lines to temperature cycles entrains circadian rhythms of clock gene expression. Temperature steps drive changes in the basal expression of certain clock genes in a gene-specific manner, a mechanism potentially contributing to entrainment. In the case of the per4 gene, while E-box promoter elements mediate circadian clock regulation, they do not direct the temperature-driven changes in transcription. Second, by studying E-box-regulated transcription as a reporter of the core clock mechanism, we reveal that the zebrafish clock is temperature-compensated. In addition, temperature strongly influences the amplitude of circadian transcriptional rhythms during and following entrainment by light-dark cycles, a property that could confer temperature compensation. Finally, we show temperature-dependent changes in the expression levels, phosphorylation, and function of the clock protein, CLK. This suggests a mechanism that could account for changes in the amplitude of the E-box-directed rhythm. Together, our results imply that several key transcriptional regulatory elements at the core of the zebrafish clock respond to temperature.