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Abstract
Integration of synaptic currents across an extensive dendritic tree is a prerequisite for com-

putation in the brain. Dendritic tapering away from the soma has been suggested to both

equalise contributions from synapses at different locations and maximise the current trans-

fer to the soma. To find out how this is achieved precisely, an analytical solution for the cur-

rent transfer in dendrites with arbitrary taper is required. We derive here an asymptotic

approximation that accurately matches results from numerical simulations. From this we

then determine the diameter profile that maximises the current transfer to the soma. We

find a simple quadratic form that matches diameters obtained experimentally, indicating

a fundamental architectural principle of the brain that links dendritic diameters to signal

transmission.

Author Summary

Neurons take a great variety of shapes that allow them to perform their different computa-
tional roles across the brain. The most distinctive visible feature of many neurons is the
extensively branched network of cable-like projections that make up their dendritic tree. A
neuron receives current-inducing synaptic contacts from other cells across its dendritic
tree. As in the case of botanical trees, dendritic trees are strongly tapered towards their
tips. This tapering has previously been shown to offer a number of advantages over a con-
stant width, both in terms of reduced energy requirements and the robust integration of
inputs at different locations. However, in order to predict the computations that neurons
perform, analytical solutions for the flow of input currents tend to assume constant den-
dritic diameters. Here we introduce an asymptotic approximation that accurately models
the current transfer in dendritic trees with arbitrary, continuously changing, diameters.
When we then determine the diameter profiles that maximise current transfer towards the
cell body we find diameters similar to those observed in real neurons. We conclude that
the tapering in dendritic trees to optimise signal transmission is a fundamental architec-
tural principle of the brain.
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Introduction
Integration of synaptic inputs relies on the propagation of currents arising from sources across
the dendritic tree. Whilst active processes strongly contribute to current flow in most neurons
[1–3], understanding the passive backbone to transmission is key to an intuitive grasp of den-
dritic function; the results of Wilfrid Rall in highlighting the properties of cylindrical dendrites
[4–6] are of foundational importance in compartmental modelling and computational neuro-
science. Dendrites are, however, not generally cylindrical. The distal taper seen in the majority
of all cases appears to both increase passive current flow towards the soma [7–9], thus reducing
the energy requirements of active compensatory processes, and to contribute to the phenome-
non of dendritic democracy, where somatic voltage amplitudes are equalised between different
synaptic sites [10–12].

Common numerical approaches to modelling taper treat a dendritic cable as a series of cyl-
inders or linearly tapering frusta [5,13–18]. Whilst these techniques are accurate and powerful,
there is much to be gained from an analytical solution to the voltage in terms of intuition and
computational speed. A number of solutions for the voltage in non-uniform cables exist [19–
21], but these involve either the more tractable cases of varying electrotonic properties with
constant radius or are limited to a few forms of radius taper.

We present an asymptotic approximation to the voltage in dendrites with any given taper
profile using the insight that voltage attenuation is substantially faster than radius change in
realistic morphologies. A particularly appealing prospect for such an approach is that the
optimal taper profile to transfer distal synaptic currents to the soma can then be derived
using variational calculus. The optimal taper profile is shown to match the results of numeri-
cal optimisation and predict radii measured experimentally from a number of different cell
classes.

Results

Accurate approximation of voltage in a cable with arbitrary radius profile
A length of passive dendrite tapers with radius at distance x given by r(x). The leak conduc-
tance per unit area is denoted gl, the axial resistance ra, and the membrane time constant τ.
Then the voltage above equilibrium v(x, t) at location x and time t obeys the generalised cable
equation

t
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The rate of voltage attenuation is generally significantly steeper than the rate of change of
dendritic radius, allowing use of the method of multiple scales [22] to accurately approximate
the voltage evolution. We introduce X = �x as the ‘slow’ taper variable and treat it as indepen-
dent of x. Large regions of most dendritic trees admit small values of � (~0.01, S1 Fig).

Expanding in �, gives the first-order steady-state solution (see Methods)
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q
the location-dependent electrotonic length, x0 a site of current injection, and

constants A and B determined by the boundary constraints.
To demonstrate the validity of this approximation, we generated a series of artificial den-

dritic cables and compared the first-order approximation to the numerical solution (Fig 1).
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The artificial cables have periodically changing diameters with a random amplitude for each
period. Increasing the period and reducing the amplitude smooths the artificial cable, reducing
� and improving the approximation. The multiple-scales solution provides an accurate approx-
imation to the voltage in realistic dendritic cables.

The simple form seen here allows for the usual features of cable theory to be reconstructed.
In particular, standard analytic results for voltage propagation in complex dendritic structures
and time-dependence have easy analogies in tapering cables. Greater accuracy can also be
achieved, up to a point, by taking higher-order terms in �. These results are shown in the Sup-
porting Information.

Optimal taper for a single dendritic cable
An analytical expression for the voltage at leading order allows for study of the optimal den-
dritic radius profile to propagate synaptic currents towards the soma. Previous work in this
direction lacked a continuous representation of the voltage profile and used numerical methods
to explore optimality [9]. Calculus of variations provides a framework in which to define the
optimal profile (for the leading-order component of the voltage) continuously.

Given a dendritic cable of length L with volume V and distal (minimal) radius rL, the goal is
to maximise the voltage at the proximal end of a dendritic cable for synaptic currents arising at
all points along the cable. This means maximising the functional

J ¼
ZL

0

1

l
7=2ðx0Þ e

�
R x0

0

1
lðsÞdsdx0 ð3Þ

Fig 1. Cable theory with arbitrary diameters—accuracy of the first-order analytical approximation. (A) Sample radius profiles illustrating the accuracy
of the analytical approximation. The radius profiles are smoothed from top to bottom by increasing the period and reducing the amplitude of the radius
change. Current is injected separately at the three points indicated by arrows. (B) Comparison of numerical (red solid lines) and analytical (black dashed
lines) voltages in dendrites with varying radius profiles. As the radius changes more slowly, the first-order approximation becomes more accurate (from top to
bottom). Note that the large diameters used in this figure emphasize the difference between the numerical and analytical solution. Using smaller diameters as
are usual everywhere but at the most proximal dendrites, the analytical approximation becomes essentially a perfect match.

doi:10.1371/journal.pcbi.1004897.g001
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where the effect of ‘reflected’ current at the distal end has been neglected due to the relatively
fast time course of excitatory potentials.

The maximisation gives an optimal radius profile of (see Methods)

rðxÞ ¼ aðL� xÞ2 þ rL ð4Þ
where α is fitted to match the volume of the cable V. This profile matches the results of numeri-
cal optimisation (Fig 2).

Optimal taper in a dendritic tree
Having found the optimal single cable for voltage propagation, it remains to be shown how far
real dendritic trees correspond to this optimality. Wilfrid Rall [4] showed that if the diameters

of cylindrical sections at dendritic branch points satisfied the relationship d3=2
p ¼ d3=2

c1 þ d3=2
c2 ,

matching the conductance across the branch, then the entire dendritic tree could be collapsed
to a single cylinder. Rall’s relationship is rarely satisfied in real dendrites [20,23,24]. Using a
Rallian diameter ratio at a branch, however, allows us to ensure that the transition between par-
ent and daughter branches obeys the quadratic optimality condition. This makes it possible to
map quadratic radii onto complex dendritic morphologies by constraining dendrites to locally
obey optimality (see Methods). The resulting predicted morphologies show how far dendritic
trees are globally optimised to transmit and equalise current transfer.

We have selected a number of neuronal classes with a broad array of functions to examine
the validity of our predictions (Fig 3A). It should be noted here that obtaining reliable measure-
ments of dendritic radius is experimentally very challenging and this makes exact comparisons
difficult. Different cell types satisfy the equivalent quadratic criterion to different degrees. Of
the cell classes studied, the best agreement was for fly neurons, which might be considered
genetically more hardwired [25,26]. In terms of mammalian neurons, the best agreement was
found for dentate gyrus granule cells. These cells are known to both obey Wilfrid Rall’s branch-
ing criterion [27] and undergo continuous replacement throughout life [28]. These results sug-
gest that our model might best match cells with a stereotypic morphology and therefore an
initially optimal passive backbone.

Fig 2. Diameter profiles to optimise current transfer. Comparison of non-parametrically optimised (red
solid lines) and theoretical (black dashed lines) radius profiles for different electrotonic lengths of dendritic
branch. The theoretical profile tapers more strongly in the shortest case as it neglects the increase in distal
input resistance from the sealed end. The scaling parameters α corresponding to Eq 4 are 101.1, 24.08, and
10.81 respectively.

doi:10.1371/journal.pcbi.1004897.g002
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Fig 3. Real dendrites are constrained by current transfer optimality. (A) Scatter plots of measured radius against optimal radius and correlation
coefficients for different cell classes. Different colours denote different cells of the same class. (B) Average current transfer to the root from different cell
classes with (from left to right) constant, measured, and optimal radii. (C) Examples of reconstructed sample morphologies and the same morphologies with
optimal diameter profiles. The neurons shown in this figure are two types of fly neurons (HS cell and VS cell with specific membrane conductance of
gl = 5 × 10−4 S/cm2) and three mammalian neurons (dentate gyrus granule cells with gl = 4 × 10−5 S/cm2, and cerebellar Purkinje cells and neocortical Layer
V neurons with gl = 5 × 10−5 S/cm2).

doi:10.1371/journal.pcbi.1004897.g003
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The diameter profiles of apical and basal dendrites in cortical pyramidal cells match opti-
mality to different degrees. The apical tree appears well described in terms of quadratic equiva-
lent taper, despite differences at the trunk of the apical dendrite. As the apical dendrite might
be more strongly specialised in propagating dendritic spikes, deviations might not be surpris-
ing. The predicted diameter profile for the basal dendrites was less accurate. Here there appear
to be sections of the reconstruction that are much more voluminous than their length relative
to other branches would suggest. This might imply that the relationship between nearby cells
exerts a stronger influence than is seen elsewhere and that local cortical microcircuits display
preferential connections in some directions.

No agreement was found for cerebellar Purkinje cells, where the general taper profile is
much shallower than would be expected and dendrites often exhibit alternate bulges and nar-
rower regions. The distinctive layered structure of the cerebellum means that excitatory synap-
tic inputs arrive in distinct locations, strong synapses from climbing fibres proximally and
individually weaker, but much more numerous, synapses from parallel fibres distally. These
two types of inputs are implicated in different spiking patterns, complex and simple spikes
respectively, and the functional relationship between the two is beyond the scope of our general
optimality principle.

Structurally, the agreement between ideal and observed morphologies therefore varies with
specific function, but the model provides a good fit to large regions of many dendritic trees. We
can, however, show how well the quadratic taper performs for all classes studied (Fig 3B). Plot-
ting the current transfer from all nodes to the soma illustrates the advantages of quadratic
taper against a constant diameter across the tree and provides a slight advantage over observed
morphologies. Our results highlight the importance of a specific form of taper in maximising
current transfer and equalising synaptic inputs.

Interestingly, for the dendrites where current transfer loss was largest because of either the
size (the apical dendrite of the pyramidal cell) or because of a high membrane conductivity (as
was the case in the fly neurons), the diameters tended to be better predicted by optimal current
transfer. Where cells deviate substantially from passive optimality, for example specifically
along the trunk of the apical dendrite of a pyramidal cell or across a Purkinje cell, there is evi-
dence that these sections of dendrite favour functions other than the unidirectional propaga-
tion of excitatory synaptic currents towards the soma.

Discussion
The fact that voltages in dendrites typically decay much more quickly than radii allows us to
make a simple and accurate approximation to the propagation of currents across real dendritic
trees. The compact form of the voltage approximation allows for a straightforward reproduc-
tion of the standard results of cable theory [4–6]. Further, this result allows the continuous
optimum taper profile for transmitting synaptic currents to the soma to be deduced. The opti-
mal radius profile tallies with notions of both dendritic democracy [11,12,29] and energy opti-
misation [9] and provides a close match to reconstructed dendritic morphologies across a
range of cell classes.

Dendrites perform an array of non-linear computations involving active processes and local
inhibition; the general principle of global passive optimality does not explain every facet of den-
dritic function, but does provide an important new intuition. The simple forms of both voltage
and optimal radius link signal transmission and dendritic diameters, allowing a clearer intuitive
understanding of the function of dendritic trees.

Optimal Current Transfer in Dendrites
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Methods

First-order multiple scales approximation
Consider the homogenous steady-state voltage equation for a cable with arbitrary radius r(x)

@
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�� 1. S1 Fig shows typical values of � for a range of reconstructed morphologies. It is possible
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making the solution appropriately non-oscillatory. We seek solutions of the form
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for μ and σ real. Substituting this into the above equation gives at first order
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Current injection
To determine the response to a current injection of magnitude Iapp at site x0, note that the
Green's function g(x, x0) solves the equation

@
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subject to a given set of boundary conditions. Away from x0, the solution is given by the

homogenous voltage above, namely for x< x0
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using the fact that voltages are required to decay towards the soma. For x> x0
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Here, the sealed-end condition gives the relationship between the constants as
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2þ l0ðLÞ
2� l0ðLÞ

� �
e2
R L

x0
1

lðsÞds ð15Þ

Continuity of voltage at x0 ensures

B1 ¼ A2ð1þ kÞ ð16Þ

for k the ratio between A2 and B2 given by the sealed end condition. Conservation of current at
the point of injection relates all three constants
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giving the coefficients in terms of the initial parameters as
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Note that B1(x0) is the input resistance at site x0.
As we are primarily interested in voltage at the proximal terminal of the dendrite, we focus

on the solution in the region x< x0 and evaluate the voltage at x = 0. The first-order approxi-
mation holds for a region of size �−1 away from the site of current injection. Section 4 of the S1
Text describes how to extend this approximation to account for higher-order terms, which can
allow for greater accuracy (S2 Fig), as well as voltage transients and voltage propagation in
branched structures (S3 Fig).
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Optimality of current transfer
It is possible to use calculus of variations to study the functions r(x) that give extremal values of
a functional J[x, r, r0]. We seek to define the radius profile that maximises current transfer. In
this case we seek to maximise the total current transfer to the proximal end x = 0, from all
injection sites x0 = 0 to x0 = L, under constraints of fixed terminal radii or total cable volume.
Writing the voltage at 0 due to current injection at x0 as v(0, x0) such that

vð0; x0Þ ¼ ra
ffiffiffiffiffiffiffiffiffiffi
lðx0Þp
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We seek to maximise the functional
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J is a functional of the functions λ(x) and
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LðxÞ ¼ R x 1=lðsÞds so that L0 xð Þ ¼ 1=lðxÞ. For J to take a maximal or minimal value, it is

necessary for the integrand K to satisfy the Euler-Lagrange equation
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To solve this in terms of elementary functions we introduce a further assumption that cur-
rent is injected sufficiently far from the distal end for the contribution of ‘reflected' current to
the input resistance to be negligible (this applies more generally when considering responses to
transient current injection). This assumption is equivalent to making C2e

Λ(x) vanishingly small,
giving the equation
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Using the definitions of Λ(x) and λ(x), and the boundary conditions gives (for a constant
C3) ffiffiffiffiffiffiffiffiffi
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where rL is the distal (minimal) radius and α is determined by matching volumes or proximal
radii as required.

It should be noted that whilst the current transfer functional described here is one of a num-
ber of possible functionals to optimise, it provides a straightforward and robust description of
dendritic function. Further, with temporally active conductance-based synapses, there will be a
potential further attenuation of more distal inputs that is beyond the scope of this study.

Algorithm for constructing an optimal equivalent cable
The final comparison of optimal dendritic taper to real morphologies requires an algorithm for
mapping a quadratic taper onto complex branched structures. In particular it requires a princi-
pled consideration of the way to distribute dendritic radius at branch points. We seek to equal-
ise conductance at branch points using Rall's 3/2 power relationship; that for a parent radius r0,

and daughter radii r1 and r2, then r3=20 ¼ r3=21 þ r3=22 . The ratio between r1 and r2 is defined by

the lengths l1 and l2 of the two daughter branches such that r1=l
3=2
1 ¼ r2=l

3=2
2 . The two daughter

branches appear to the parent branch to be a single branch with length l0 ¼ ðl3=21 þ l3=22 Þ2=3. The
algorithm for applying these principles to a real dendritic morphology with complex branching
structure is described below.

i. Obtaining apparent lengths. Starting at the distal termination points of the tree, path
lengths are found to the most distal branch points. The ‘apparent length' distal to these branch
points is calculated and the process is repeated for every branch point heading towards the root
of the tree. This gives an ‘apparent length' for the entire tree and for the daughter branches at
each branch point.

ii. Distributing radii. The initial radius taper is defined by Eq 4 with L given by the appar-
ent length, rL by the minimal dendritic radius anywhere on the tree and an initial estimate of
the proximal radius from the measured physiological maximum. At every branch point the
parent radius r0 is already defined by construction and daughter radii r1 and r2 are determined
using the ‘apparent lengths' into each branch. This is continued until radii are assigned every-
where on the tree.

iii. Matching volumes. This procedure may produce a predicted tree with volume higher
or lower than the original morphology. The proximal radius is scaled down or up and step ii is
repeated until the volumes are matched and an optimal tree with identical volume is found.

Dendritic morphologies and passive parameters
Five cell classes are discussed in the paper, covering an array of functions and species. All mor-
phologies are publicly available. Blowfly calliphora vicinaHS (25 examples) and VS (30 exam-
ples) neuron morphologies are published with the TREES toolbox [18]. The passive parameters
used are axial resistance ra = 60Ocm and membrane conductance gl = 5 × 10−4S cm−2 for both.
Mouse dentate gyrus granule cells (3 examples) are published on ModelDB (Accession no.
95960)[30]. The passive parameters used are ra = 210Ocm and gl = 4 × 10−5S cm−2. Rat Pur-
kinje cells (2 examples) are published on NeuroMorpho (IDs NMO_00891 and NMO_00892)
[31], with ra = 150Ocm and gl = 5 × 10−5S cm−2. Rat Layer V pyramidal cells (3 examples) are
published on ModelDB (Accession no. 139653)[32], with ra = 150Ocm and gl = 5 × 10−5S cm−2

for both basal and apical dendrites.

Numerical methods
Simulations are carried out in MATLAB using the TREES toolbox package [18]. The numerical
simulations in Figs 1, 3, S1 and S2 use standard functions described in the toolbox. The non-

Optimal Current Transfer in Dendrites

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004897 May 4, 2016 10 / 12



parametric numerical optimisation in Fig 2 follows an algorithm adapted from an earlier
study [9]. The algorithm assigns radii to seven segments of a cable modelled using the TREES
toolbox and uses the MATLAB function ‘fminsearch' to maximise the current transfer to the
proximal end. This is repeated 50 times to produce a maximum over all trials. The radii of the
six distal segments are fitted to a continuous quadratic equation ax2+bx+c (as described in [9])
to produce the numerical results of Fig 2.

A function to map an optimal radius profile onto an arbitrary dendritic morphology will be
published in the TREES toolbox to accompany this paper.

Supporting Information
S1 Text. Overview of supporting information. Derivation of the arbitrary-radius cable equa-
tion. Validity of the multiple scales approximation in real dendrites. Extending the approxima-
tion to account for higher-order terms, transients, and branched structures.
(PDF)

S1 Fig. Regions of reconstructed dendrites where the asymptotic approximation holds
strongly. (A) Example reconstructions with regions where � > 0.001 highlighted in red. (B)
Distribution of � by cell class for the morphologies described in the online material.
(TIFF)

S2 Fig. Second-order approximation provides better results when � is larger. Simulated
(red), leading-order (black), and second-order (blue) voltage profiles for currents injected at
two different points (solid and dashed lines respectively) in the linearly tapering cable (inset).
(JPG)

S3 Fig. Asymptotic approximation allows recovery of classical cable properties. (A) Time
course of voltage at 5, 7.5, and 10ms after current injection at two different sites (solid and
dashed lines respectively) on a quadratically tapering cable (inset). (B) Steady-state voltage pro-
file in a simple branched structure for current injection at the site with the highest voltage.
(JPG)
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