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Abstract

Improving model’s generalizability against domain shifts is crucial, especially
for safety-critical applications such as autonomous driving. Real-world domain
styles can vary substantially due to environment changes and sensor noises, but
deep models only know the training domain style. Such domain style gap impedes
model generalization on diverse real-world domains. Our proposed Normalization
Perturbation (NP) can effectively overcome this domain style overfitting problem.
We observe that this problem is mainly caused by the biased distribution of low-
level features learned in shallow CNN layers. Thus, we propose to perturb the
channel statistics of source domain features to synthesize various latent styles, so
that the trained deep model can perceive diverse potential domains and generalizes
well even without observations of target domain data in training. We further
explore the style-sensitive channels for effective style synthesis. Normalization
Perturbation only relies on a single source domain and is surprisingly effective and
extremely easy to implement. Extensive experiments verify the effectiveness of
our method for generalizing models under real-world domain shifts.

1 Introduction

Deep learning has made great progress on in-domain data [, 2], but its performance usually degrades
under domain shifts [3, 4], where the testing (target) data differ from the training (source) data.
Real-world domain shifts are usually brought by environment changes, such as different weather
and time conditions, attributed by diverse contrast, brightness, texture, etc. Trained models usually
overfit to the source domain style and generalize poorly in other domains, posing serious problems in
challenging real-world usage such as autonomous driving. Domain generalization (DG) [5, 6, 7, &],
as well as unsupervised domain adaptation (UDA) methods [9, 10, 11], aims to solve this hard and
significant problem.

Deep models do not generalize well to unseen domains because they only know the training domain
style. Figure 1(b) shows a large gap of feature channel statistics between two distinct domains:
Cityscapes [12] and Foggy Cityscapes [3], especially in shallow CNN layers which preserve more
style information. Deep models trained on the source domain cannot generalize well on the target
domain, due to the discrepancy in feature channel statistics caused by the domain style overfitting.

Ideally, if a model can perceive a large variety of potential domains during training, it can learn
domain-invariant representations and generalizes well. However, it is expensive and even impossible
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Figure 1: Visualizations for feature channel statistics on Cityscapes (source domain, red) and Foggy
Cityscapes (target domain, blue). (a) For two domain images with the same content but different
styles, we show their feature channel statistics and differences on the pretrained backbone at stage 1.
The statistic values of the Foggy Cityscapes image are converted to negative for better visualization.
The feature channel statistics of the target domain image deviate around the source domain statistics.
(b) The t-SNE [19] visualization for the feature channel statistics on different stages. The model is
trained on the source domain and evaluated on both domains. The distance between two domains is
computed by Maximum Mean Discrepancy [20] (MMD). After equipping Normalization Perturbation
(NP) in shallow CNN layers, our model can effectively blend distinct domain style distributions. The
target domain distribution can be properly covered by the perturbed source domain distribution in the
deep CNN layers. Thus our model generalizes much better on the target domain.

to collect data for all possible domains. Synthesizing new domains is a feasible solution. But existing
domain synthesis methods still require diverse style sources and can only generalize well to limited
domain styles. The image generation based synthesis approach [13, 14, 15] is powerful but inefficient.
The feature-level synthesis approach [16, 17, 18] is efficient but relies on multiple source domains
and the synthesized styles are limited. In this paper, we propose a novel domain style synthesis
approach with high efficiency and effectiveness for real-world DG.

Figure 1(a) shows our motivation: feature channel statistics of the target domain image deviate around
the source domain statistics. Thus by perturbing the feature channel statistics of source domain
images in the shallow CNN layers, we can effectively synthesize new domains. The perturbed feature
statistics correspond to various latent domain styles, so that the trained model perceives diverse
potential domains accordingly. Such perturbation enables deep models to learn domain-invariant
representations where distinct domains can be effectively blended together in the learned feature
space. To further boost the performance, we have also explored the style-sensitive channels for
effective domain style synthesis. Figure 1(b)” shows the distinct domains can be effectively blended
by the perturbed channel statistics in shallow CNN layers. The learned deep CNN representations are
thus more robust to the variations of different domain styles and generalize well on the target domain.
Note that the model is only trained using a single source domain data without any access to the target
domain style or data.

Our method normalizes features into different scales, thus called as Normalization Perturbation (NP).
Our NP is surprisingly effective and extremely easy to implement. Our NP generalizes well under
various real-world domain shifts and outperforms previous DG and UDA methods on multiple dense
prediction tasks. Besides, our method does not change the model architecture, does not require
any extra input, learnable parameters or loss. In fact, nothing needs to be changed, except that we

2For all t-SNE visualizations in this paper, the features from multiple models are mapped jointly into a
unified space but are separately visualized for clarity.



perform feature channel statistics perturbation on shallow layers during training for synthesizing
diverse potential styles from source domain itself. In summary, our contributions are:

* We investigate the real-world domain shifts and observe that the domain overfitting problem
is mainly derived from the biased feature distribution in low-level layers.

* We propose to perturb the channel statistics of source domain features to synthesize various
new domain styles, which enables a model to learn domain-variant representations for good
domain generalization.

* Our method generalizes surprisingly well under various real-world domain shifts and
is extremely easy to implement, without any extra input, learnable parameters or loss.
Extensive experiments verify the effectiveness of our method.

2 Related Works

Domain Generalization (DG) [21, 22, 23, 24, 25, 26], which targets at generalizing models to unseen
domains, relies on source data typically consisting of multiple distinct domains. DG has been
mainly studied in the context of object recognition task [27, 28, 29, 30, 31, 32, 33, 34]. DG of
dense prediction tasks [35, 36, 37, 38, 39, 40, 41, 42] has attracted increasing interests because of
its wide real-world applications. The closely related unsupervised domain adaptation (UDA) [43,

, 45,46, 47, 48, 49] has been widely studied on dense prediction tasks [50, 51, 52, 53, 54, 55,

, 57,58, 59,60, 61, 62, 63] for real-world applications, which aims to generalize model to the
target domain by accessing its unlabeled images. Both DG and UDA share significant overlap in

technicalities, such as domain alignment [64, 65, 66, 67, 68, 69,70, 71,72,73,74,75], self-supervised
learning [76, 77, 78,79, 80, 81, 82], feature disentanglement [23, 83, 84, 85, 86, 87, 88, §9], and data
augmentation [90, 91, 92, 93, 94, 95, 96, 97, 98]. Our method closely relates to the following works.

Normalization-based Methods. The normalization layers are leveraged to improve model general-
ization ability. Various normalization variants have been proposed, such as domain-specific Batch-

Norm [99, R s ], AdaBN [103], PreciseBN [104], Instance-Batch Normalization [105, 1,
Adversarially Adaptive Normalization [107], Switchable Normalization [108], and Semantic Aware
Normalization [109]. The test-time adaptation [110, s s s s s ] attempts

to estimate accurate normalization statistics for the target domain dur1ng testing. These methods
fit normalization layers to the specific target domains, while our method normalizes features into
different scales to implicitly synthesize arbitrary new domains, and is optimization-free.

Synthesizing New Domains. Data augmentation [36, 90, s s ] has been widely used to
synthesize new domains in DG and UDA. Some methods synthesize new domain images using
image-to-image translation models, such as the random [91] or learnable augmentation networks [ 14,
, , ], and style transfer models [34, 94, 92, 93]. Other works propose to perform implicit
domain synthesis through the feature-level augmentation [16, 17, 18, s , 15] to mix CNN
feature statistics of distinct domains to significantly improve the domain synthesis efficiency.

The above methods rely on image generation or multiple source domains for new domain synthesis,
and thus the efficiency or effectiveness is limited. On the other hand, our method only relies on a
single source domain to diversify by perturbing the feature channel statistics to produce various latent
domain styles.

While SFA [125] performs the activation-wise feature perturbation, which may destroy meaningful
image contents, our method performs the channel-wise feature statistics perturbation and keeps the
image contents unchanged. Note that A-FAN [126] and FSR [127] also perform feature statistics
perturbation. But A-FAN [126] relies on specially designed adversarial loss, with the hyperparameters
requiring case-by-case tuning. The FSR [127] needs a learnable network to produce diverse styles.
Their effectiveness is also unknown for dense prediction tasks under real-world domain shifts. In
contrast, our method is extremely simple while surprisingly effective for the real-world applications.

3 Problem Analysis

We conduct empirical studies to demonstrate the real-world domain shift problem, so as to motivate
our Normalization Perturbation method on the robust object detection task. The model is trained on
the source domain Cityscapes [ 2] train set and directly evaluated on Cityscapes and two unseen target
domains Foggy Cityscapes [3] and BDD100k [128] validation sets. We use the Faster R-CNN [2]
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Figure 2: Accumulated Maximum Mean Discrepancy (MMD) for the feature channel statistics of
different dataset pairs. Four models are evaluated on different convolutional stages. The smaller
MMD means smaller feature-level domain/style gap among datasets.

Table 1: Four Faster R-CNN models with different settings. They are all trained on Cityscapes train
set and evaluated on Cityscapes (C), Foggy Cityscapes (F) and BDD100k (B) val sets.

Method Description C F B
Baseline The Stagel-2 layers are frozen. 58.1 22.0 21.8
Overfit The Baseline with no frozen layers. 595 163 205
StyleRD The Baseline trained with the style randomization. 51.9 304 26.0
Ours The Baseline trained with our Normalization Perturbation. 58.7 44.0 30.1

model (with ImageNet [ 129]-pretrained ResNet-50 [130] backbone) as the baseline. In our analysis
experiments, the shallow CNN layers (stage 1 and 2) and all BatchNorm parameters are frozen’ by
default following the common object detection practice. Such setting applies to all object detection
experiments. The detection performance is evaluated using the mean average precision (mAP) metric
with the threshold of 0.5. Refer to the supplementary material for full experimental details.

Table | shows four Faster R-CNN models used for analysis and their performance on three datasets.

Biased Model Impedes Domain Generalization. With training data under the same domain style,
the learned model performs well in testing for data under the same distribution as the training data,
with ability of grouping in-domain features together. But the learned model tends to separate distinct
domains and thus hardly generalizes from the source to target domain. Figure 1 shows image feature
channel statistics of the same domain are grouped together, while different domains are separated.
Figure 2 and Table 1 show that the biased distribution in the Baseline and Overfit models causes
large domain feature statistic discrepancy which impedes model generalization to unseen domains.

Shallow CNN Features Matter for Generalization. Figure | and Figure 2 show that shallow CNN
layers exhibit larger domain feature statistic discrepancy. Such discrepancy is propagated from the
shallow to deep layers and finally results in the poor target domain performance. The shallow CNN
layers suffer more from severe biased distribution when they are further trained on the source domain.
Note in particular Figure 2 shows that the Overfit model has larger domain feature gaps on all
layers. Table | further shows quantitatively that this overfitting model generalizes worse on unseen
target domains, while capable of producing better source domain performance. Thus shallow CNN
layers do matter for generalizing model to different domain styles, because they preserve more style
information through encoding local structures, such as corner, edge, color and texture, which are
closely relevant to styles [ 13 1]. While the deep CNN layers encode more semantic information which
are more insensitive to the style effect, if the model is trained on the biased shallow CNN features,
the deep layers cannot effectively calibrate the style-biased semantic information and thus the entire
model overfits to the source domain.

Reducing Domain Style Overfitting. Diverse training domains would help deep models to learn
domain-invariant representations and thus reduce the domain style overfitting. Our NP efficiently
synthesizes diverse latent domain styles and effectively reduces any inherent domain style overfitting.
Figure | and Figure 2 show our NP significantly reduces the domain feature gap, especially in

3In this case, the shallow CNN layers are biased towards the domain style of the pretrained ImageNet dataset.
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Figure 3: Our Normalization Perturbation (NP) is applied at shallow CNN layers only during training.
NP is enabled with probability p = 0.5.

the shallow and deep CNN layers. Table | shows that Ours model with NP generalizes well on
unseen target domains while simultaneously keeping the source domain performance. The image-
level domain style synthesis method StyeRD also reduces domain style gaps and improves domain
generalization. However, as we will show shortly, this method is not as desirable as ours.

4 Method and Analysis

It has been widely studied that feature channel statistics, e.g., mean and standard deviation, tightly
relate to image styles. Changing feature channel statistics can be regarded as implicitly changing
the input image styles. The Adaptive Instance Normalization (AdaIN) [132] achieves arbitrary style
transfer through the feature channel statistics normalization and transformation. Given a mini-batch
B of CNN features x € REXC>XH*W with C channels and H x W spatial size from the content
images. AdalN can be formulated as:

T — e
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Yy=20s
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where both {jic, 0.} € REXC and {u,, 05} € REXC are feature channel statistics, estimated from
the input content images and style images, respectively. The normalized features y can be decoded
into the stylized content images. AdalN provides a feasible and efficient way to implicitly change
image styles in the feature space.

4.1 Normalization Perturbation Method

Our proposed method, Normalization Perturbation (NP), perturbs the feature channel statistics of
training images by inserting random noises. Formally, NP can be formulated as:

T — [he

C

y=o; + %, o = ao, ws = B 2)
where {p., 0.} € RB*C are the channel statistics, mean and variance, estimated on the input features.
The {, 3} € RE*C are random noises drawn from the Gaussian distribution. This equation can be
further simplified as:

y=ax+ (8 — o). 3)
As shown in Figure 3, NP is applied at shallow CNN layers (following the backbone stage 1 and
stage 2). NP is enabled with probability p only in the training stage.

Our NP method is fundamentally different from conventional normalization methods [132, , ,

], whose affine parameters {p, o} are learned from the training set or estimated from extra
input style images. While NP affine parameters { %, 0% } are obtained by perturbing the input feature
channel statistics, they are obtained without relying on extra style inputs and are optimization-free.
The perturbed affine parameters can be regarded as the channel statistics corresponding to diverse
latent domain styles, enabling models to learn domain-invariant representations and preventing them
from style overfitting.

In NP, all channel statistics are randomly perturbed with the same noise distribution. We further
propose Normalization Perturbation Plus (NP+) to adaptively control the noise magnitude in different
channels, based on the feature statistic variance across different images. Such adaptive perturbation
is motivated by the observation that some channels significantly vary as the domain style changes.
We thus apply more noise on these style-sensitive channels. Specifically, we use the mini-batch of B
feature channel statistics . = {2, ..., 4%, ..., uB} to compute the statistic variance A € R'*¢":

B B

1 1
A=) (w—pe)  fe=5 > (1) (4)

b=1 b=1
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Figure 4: The t-SNE visualization for the feature channel statistics of different methods on Cityscapes
(source domain) and Foggy Cityscapes (target domain). The target domain performance is presented.

Table 2: Ablation studies on Normalization Perturbation (NP). SR denotes style randomization.

Method C F B C F B C F B
Baseline 58.0 22.0 21.8 B(0.75,0.75) 59.0 43.0 29.5 Stage 1 59.3 40.7 29.6
Image-level SR 51.9 30.4 26.0 U(0,2.0) 584 42.0 289 Stage 2 58.4 41.5 29.5
Feat-level SR 58.2 42.0 29.0 G(1,0.50) 58.3 40.1 29.6 Stage3 59.7 27.7 24.2
Ours 58.7 44.0 30.1 G(1,0.75) 58.7 44.0 30.1 Stage 12 58.7 44.0 30.1

G(1,1.00) 574 44.3 30.2 Stace 123 58.3 43.8 29.9
(a) Effect of feature-level latent styles. @ ) age

(b) Effect of noise types. (c) Effect of NP positions.

Then we use the normalized statistic variance § = A /max(A) € R to control the injected noise
magnitude for each channel:

y=ax+0(6 - a)pc, (5)
where max is the maximum operation. When applying NP+, we use the photometric data augmentation

(Color Jittering, GrayScale, Gaussian Blur and Solarize, only for NP+ by default) to generate pseudo
domain styles to facilitate the exploration on style-sensitive channels.

4.2 Normalization Perturbation Advantages

Our Normalization Perturbation can be implemented as a plug-and-play component in modern CNN
models to effectively solve the domain style overfitting problem. NP has multiple advantages.

Effective Domain Blending. Our NP can effectively blend feature channel statistics of different
domains, corresponding to learning better domain-invariant representations. Figure 4 shows that
the Ours model trained with NP can effectively reduce the learned distribution distance between
source and target domains, especially on deep CNN layers. Compared to other methods, NP results in
smaller cross-domain distribution distance and better generalization performance on target domains.

High Content Fidelity. Our NP processes feature channel statistics while keeping image and feature
spatial structures unchanged. Note that image-level domain synthesis methods may destroy the
content structures of the original images in the image generation procedure. Besides, NP trains deep
models with numerous content-style combinations in the high-dimensional feature space, which is
much more efficient and effective than the image-level methods, whose styles are deterministic and
limited and the style augmentation is only performed on the low-dimensional image space.

Table 2(a) shows the comparisons between image- and feature-level domain synthesis methods.
Image-level style randomization [ 3] sacrifices the source domain performance due to its potential
destruction on image contents, although this method effectively improves the detection performance
on unseen target domains. We further compare this method with feature-level style randomization,
which is similar to our NP method except that its affine parameters are obtained from extra input
style images. The feature-level style randomization performs well on both source and target domains,
while our method performs best on all datasets due to our diverse latent styles, even without extra
style information.
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Figure 5: Latent style visualization. Top: the perturbed channel statistics of the training image features
are inverted back to the image space. Bottom: style transfer results of adding our perturbation.

Table 3: Ablation studies on Normalization Perturbation (NP). DA denotes data augmentation.

C F B C F B C F B

Baseline 58.1 22.0 21.8 DA 57.2 35.5 30.5 NP 58.7 44.0 30.1
Spatial  59.6 24.9 22.6 SN & CN[123] 58.1 31.7 26.6 NPw/DA 57.6 452 32.6
Activation 58.1 25.3 264 MixStyle [16] 57.7 30.1 26.5 NP+w/oDA 58.8 432 299
Channel 58.7 44.0 30.1 Ours 58.7 44.0 30.1 NP+w/DA 583 463 32.8

(a) Comparison to other noise types. (b) Comparison to other methods. (c) Ablation on NP+.

Diverse Latent Styles. Our NP effectively diversify the latent styles. For better understanding, we
map the NP perturbed feature channel statistics back into the image space using the feature inverting
technique [136, 131]. Figure 5 shows that the generated latent styles are diverse to effectively enlarge
the style scopes, covering various potential unseen domain styles in real-world environments, e.g.,
dawn, dusk, night times and foggy, rainy, snowy weathers.

4.3 Normalization Perturbation Ablation Studies

Noise types. Our NP is insensitive to the noise types and hyperparameters. Table 2(b) shows our
method works well with Beta, Uniform and Gaussian noises. The only requirement is that the noise
should be generated around one to enable the perturbed affine parameters be around the input feature
channel statistics.

NP positions. Table 2(c) shows our NP performs best when applied in shallow CNN layers. This is
because shallow CNN layers are more style sensitive, which fundamentally affect the entire model
training as discussed before.

NP probability. Figure 6 shows how NP probability p affects the model performance. When the
NP probability is higher, the generalization performance on target domains tends to be better, but
the source domain performance will suffer when the probability is too large. Interestingly, when
NP probability is lower than 0.5, NP helps model to perform better on the source domain, probably
because NP provides desirable regularization and feature augmentation effect. We set the probability
p as 0.5 in our experiments to achieve the best balance, improving model generalization performance
on unseen target domains and simultaneously keeping the source domain performance.
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Figure 6: Effect of NP probability. Figure 7: The style transfer results with style-
insensitive/sensitive channels.

Table 4: Robust object detection results.

BDD Day — Night | BDD Night — Day | WaymoL — BDD | WaymoR — BDD
AP AP50 AP75| AP AP50 AP75| AP AP50 AP75| AP AP50 AP75

Faster R-CNN [2] | 17.84 31.35 17.68|19.14 33.04 19.16|10.07 19.62 9.05 | 8.65 17.26 7.49

+ Rotation 18.58 32.95 18.15]19.07 33.25 18.83|11.34 23.12 9.65 | 9.25 18.48 8.08
+ Jigsaw 17.47 31.22 16.81]19.22 33.87 18.71| 9.86 19.93 8.40 | 8.34 16.58 7.26
+ CycConsist [42] | 18.35 32.44 18.07 |18.89 33.50 18.31|11.55 23.44 10.00| 9.11 17.92 7.98
+ CycConf [42] |19.09 33.58 19.14|19.57 34.34 19.26 | 12.27 26.01 10.24| 9.99 20.58 8.30

+ NP (Ours) 20.73 36.22 20.85|19.32 34.42 18.63|17.85 3534 15.52|14.97 29.42 13.11
+ NP+ (Ours) |20.97 36.76 21.10|19.73 35.30 19.19 |21.18 42.16 18.67 |19.64 38.69 17.07

Perturbation types. NP perturbs feature channel statistics, which is much better than the spatial-level
and activation-level [125] perturbation as shown in Table 3(a). This is because our channel-level
perturbation fittingly solves the style overfitting problem, without affecting spatial content structures.

Comparison to related methods. As shown in Table 3(b), our method performs better than other
methods. While photometric data augmentation (DA) improves model generalization, its performance
depends on the augmentation and dataset matching degree. Other feature-level domain synthesis
methods [123, 16] also work, but are inferior to our method thanks to our diverse latent styles
generated by the perturbation operation.

NP+. NP+ adaptively applies heavier perturbation on style-sensitive channels containing larger
channel statistic variance. This is motivated by the observation that style information is mainly pre-
served at the style-sensitive channels. As shown in Figure 7, we choose the style-sensitive/insensitive
channels to perform style transfer, based on the channel statistic variance between the content and
style features. The style can be effectively transferred into the content image with only the 20%
highest style-sensitive channels, while the remaining 80% channels with low channel statistic variance
are style-insensitive and are hardly used to transfer styles.

Table 3(c) shows the NP+ performs slightly worse than the NP method without data augmentation
because the in-domain images have minor style difference. But when equipped with photometric data
augmentation, the pseudo domain images enable NP+ to effectively find style-relevant channels and
thus performs better than NP.

S Comparison Experiments

We apply our NP method on two representative real-world dense prediction tasks: object detection
and semantic segmentation. Existing DG and UDA methods mainly focus on one specific task,
segmentation or detection. While our method works on both tasks.



Table 6: Semantic segmentation domain generalization results. Train datasets are underlined.
Method C B M S G  mean ‘ G B M S C  mean

Baseline 2895 25.14 28.18 26.23 73.45 36.39|4255 4496 51.68 23.29 77.51 48.00
SW [146] 2991 2748 29.71 27.61 73.50 37.64 | 44.87 48.49 55.82 26.10 77.30 50.52
IBN-Net [106] 33.85 3230 37.75 27.90 7290 40.94 |45.06 48.56 57.04 26.14 76.55 50.67
IterNorm [147] 31.81 32.70 33.88 27.07 73.19 39.73 |45.73 49.23 56.26 2598 76.02 50.64
ISW [37] 36.58 3520 40.33 28.30 72.10 42.50|45.00 50.73 58.64 2620 76.41 51.40

NP (Ours) 40.62 35.56 38.92 27.65 72.02 42.95|47.87 51.09 58.60 27.02 76.24 52.16
NP+ (Ours) 4041 36.34 38.61 29.25 7227 43.38 | 47.18 52.70 60.13 27.15 76.07 52.65

5.1 Robust Object Detection

We follow CycConf [42] to train and evaluate models on the robust object detection benchmark.
Specifically, there are two evaluation settings: Domain Shift by Time of Day, where the model is
trained on BDD100k [128] daytime/night train set and evaluated on BDD100k night/daytime val
set, and Cross-Camera Domain Shift, where the model is trained on Waymo [137] Front Left/Right
train set and evaluated on BDD100k night val set. Table 4 shows our NP outperforms previous SOTA
CycConf [42] on all domain shift settings, especially on the Waymo Front Left/Right to BDD100k
Night setting. Our NP+ further boosts the performance to a new SOTA.

5.2 Unsupervised Domain Adaptive Object Detection T,p1. 5. UDA object detection AP50
) ) ) ) ] performance on ResNet-50 backbone ex-
Unsupervised domain adaptive object detection models cept T which are ResNet-101.
are trained on labeled source domain and unlabeled tar-
. . . . Method Target S—+C C—F
get domain. We consider two popular adaptation settings:

Sim10k [141] to Cityscapes (S — C) and Cityscapes [12] FR-CNN [2] X 319 2238
to Foggy Cityscapes [3] (C — F) adaptations. Table 5 ~ DA-Faster[53] v 41.9 320
shows that our method significantly outperforms other =~ PivMatch [55] v/ 439 349
methods by a large margin even without accessing the SW-DA [56] v 44.6 353
target domain data. Our training setting is more practi- I\S/Ig“(l)alﬁ [[ ]] ; 32 é gg?
cal for real-world applications and surprisingly has much GPA [139] v 476 395
bett.er performancg Our good performance is properily ViSGA [51] v/ 493 433
derived from our improved shgllow CNN layers, while EPM [ 140" v/ 512 402
other UDA methods attempt to improve deep layers unfor- CycConf [42]F v 504 415
tunately based on the biased shallow CNN features. -
Our Baseline X 328 220
NP (Ours) X 54.1 44.0
5.3 Semantic Segmentation Domain Generalization NP+ (Ours) X 87 463

We follow the previous semantic segmentation domain

generalization SOTA method RobustNet [37] to train and evaluate our method. The model is trained
on GTAV/Cityscapes datasets, and evaluated on various datasets, i.e., GTAV (G) [143], Cityscapes
(O) [12], BDD100k (B) [128], Mapillary Vistas (M) [144], and Synthia (S) [145]. Table 6 shows that
our method performs the best.

6 Conclusion

We find that biased shallow CNN layers are one of the main causes of the domain style overfitting
problem under real-world domain shifts. To address the problem, we propose Normalization Pertur-
bation (NP) to perturb the channel statistics of source domain features to synthesize various latent
styles. The trained deep model can perceive diverse potential domains and thus generalizes well
on unseen domains thanks to the learned domain-invariant representations. Our NP method only
relies on a single source domain to generalize on diverse real-world domains. Our NP method is
surprisingly effective and extremely simple, operates without any extra input, learnable parameters or
loss. Extensive analysis and experiments verify the effectiveness of our Normalization Perturbation.
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