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Description of algebraically constructible functions
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(Communicated by C. Scheiderer)

Abstract. The algebraically constructible functions on a real algebraic set are the sums of signs
of polynomials on this set. We prove a formula giving the minimal number of polynomials
needed to write generically a given algebraically constructible function as a sum of signs. We
also prove a characterization of the polynomials appearing in a generic presentation of the
function with the minimal number of polynomials. Both results are effective.

Introduction

Let V = RY be a real algebraic set. (All the algebraic sets we consider here are zero
sets of polynomials in some IR™.) We will denote by 2(V') and #(V') respectively the
ring of polynomials on ¥ and the ring of regular functions on V. If V is irreducible,
let (V) be the field of rational functions on V. Algebraically constructible functions
on ¥ have been defined by McCrory and Parusinski in [9], as linear combinations,
with integer coefficients, of Euler characteristics of fibres of proper regular mor-
phisms. These authors use them to study the topology of real algebraic sets: in [9]
they reformulate the Akbulut-King conditions of algebraicity in dimension < 3, and
in [10] they give new necessary conditions for dimension 4.

If P is a polynomial function on ¥V (or, more generally, a regular function or a
Nash function), we define the sign of P as the function (sgn P) : V' — Z such that for
allxe V

1 if P(x)> 0,
(sgnP)(x) =< —1 if P(x) <0,
0 if P(x)=0.

Parusinski and Szafraniec on one hand ([12]), and Coste and Kurdyka on the other
([8]), have proved independently that the algebraically constructible functions on V'
are exactly the sums of signs of polynomials on V.

Let ¢ : V' — Z be an algebraically constructible function. There are clearly many
ways to write ¢ as a sum of signs of polynomials on V. For instance, for any
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PeP(V), we have ¢ = ¢ + sgn P + sgn(—P), so we can get a presentation as long
as we want. We are interested here in a presentation as short as possible.

We will work generically, i.e. outside an algebraic subset of V' of dimension strictly
smaller than the dimension of V. We will write =g, for an equality holding generi-
cally on V.

We prove a formula giving the minimal number of polynomials (counted “‘with
multiplicities””) needed to write generically an algebraically constructible function as
a sum of signs of polynomials. This formula allows us to calculate effectively this
minimal number, using an induction on the dimension of the space. The proof is a
transposition to the geometric case of a result for quadratic forms over spaces of
orderings: the isotropy theorem. There is a similar formula for Nash constructible
functions.

Then, using the same type of proofs, we give results about the polynomials appear-
ing in a generic presentation of a given algebraically constructible function with the
minimal number of polynomials. Such polynomials are said to be represented by the
function.

The paper is organized as follows: Section 1 is devoted to a short presentation of
spaces of orderings, Section 2 contains the formula for the minimal number of poly-
nomials, and Section 3 gives a characterization of the represented polynomials.

I wish to thank G. Stengle for rereading this paper, and C. Scheiderer for his helpful
suggestions.

1 Spaces of orderings

1.1 Presentation. We present spaces of orderings in the context of the real spectrum
of a field. For a complete definition we refer to [3] or [11]. Here Z/2Z = {—1,1}, and
we denote by 7 (X, Z/2Z) the set of functions from a set X to Z/2Z.

Let K be a real field. The set of the orderings of K (as a field) is called the real
spectrum of K and denoted Spec, K. If @ is a non-zero element of K, we define the
function (sgna): Spec, K — Z/27Z which maps an ordering o to the sign of a for o.
Denote

G={sgnalae K —{0}} =« #(Spec, K,Z/2Z).

Then (Spec, K, G) is a space of orderings.
A subset C of Spec, K is said to be constructible if it is a finite union of sets of the
form

{o €eSpec, K |(sgnaj)(o) =1,...,(sgna,)(c) =1}

with ay,...,a, € K. We consider the constructible topology on Spec, K, that is, the
topology on Spec, K for which the constructible subsets of Spec, K form a basis.

Consider now a (non-empty) closed subset F of Spec, K. The set F is a fan of
K if
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Voi,02,03 € Fdo e F Vg e G: g(o) = g(a1)g(2)g(03)

i.e. “the product of three elements of F is still in Spec, K and belongs to F”’, where
the product of orderings means the product of signs for these orderings.

Remark 1.1. Any subset of Spec, K of one or two elements is a fan, and is called a
trivial fan. The cardinality of a finite fan is always a power of two, since a fan has a
structure of a (Z/27Z)-affine space, with the product as inner operation, and the nat-
ural scalar multiplication.

Let X be a (non-empty) closed subset of Spec, K. Then the set X is a subspace
of Spec, K if there is no fan F of K such that X N F has exactly three elements. If
H = {(sgna)|y|a e K\{0}}, then the couple (X, H) is a space of orderings.

Example 1.2. Let X be a set with a single element, and let H be the set of the two
constant functions X — {1} and X — {—1}. Then (X, H) is a space of orderings,
called the atomic space and denoted by E.

If o is an ordering of K and B is a valuation ring of K, we say that ¢ and B are
compatible if for any a in K and any b in the maximal ideal m of B, the relation
0 < a < b for g implies a € m. Then ¢ induces an ordering & on the residue field k& of
B by

(sgna)(a) = (sgna)(o) forae B\m

where a denotes the class of a in k. Conversely, if & € Spec, k, the orderings of K
compatible with B and inducing & are called pullbacks of G via B. If X is a subspace of
Spec, k (respectively a fan of k), then the set of the pullbacks of the elements of X via
B is a subspace of Spec, K (respectively a fan of K).

Example 1.3. We will use the following construction (see [4, Ex. 2.2]). Let 4 be
a regular local ring of dimension d with quotient field K, and let (xi,...,x,) be
a regular system of parameters of 4. Consider the valuation ring B of the place
K=Ky— KjUw — --- — K;Uoo, where K; is the quotient field of the ring
A;=A/(xy,...,x;) and the place K; — K;;1 U oo corresponds to the valuation ring
Ajx) of K;. The ring B is a discrete valuation ring of rank d. It dominates 4 and
has the same residue field k. Any ordering & of k has exactly 2¢ pullbacks ¢ in K via
B, and each of them is determined by the signs given to xi, ..., x4.

We come now to the notion of form over a space of orderings.

Definition 1.4. Let (X, G) be a space of orderings. A form of dimension r over X is a
class of r-tuples of elements of G modulo the relation

fis-n i) ~(g1,--.,9,) iffVoeX: filo)+ -+ fi(6) =g1(0) +--- + g,(0).
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We denote by {fi, ..., f,» the class of (fi,...,f;) € G". If X' is a subspace of X, the
restriction of the form p = {fi,..., fi> to X' is the form p|y. = {fily/,---, filx>
over X,

Example 1.5. If K is an ordered field, a quadratic form (in the usual sense) of dimen-
sion r over K is a symmetric matrix of dimension r with entries in K. We can diago-
nalize this matrix, and the diagonal matrix we get corresponds to the previous defi-
nition for the real spectrum of K. The usual definition of signature of a quadratic
form coincides with the following one.

Definition 1.6. The signature of the form p = {f,..., f,» over the space of orderings
X is the function p : X — Z defined by p(a) = fi(o) + - - + /(o).

A form over X is anisotropic if there is no form over X with the same signature
and a strictly smaller dimension. A form which is not anisotropic is said to be iso-
tropic.

Ifp=<f1,..., fryand p’ =<g1,...,gsy are two forms over X and 4 is an element
ofG,wedeﬁnep—&-pi\: {flyeoos frsgly -5 gsyand hp = {hfy, ..., hf,>. Then we have
p+p' =p+p and hp = hp.

1.2 Structure. We present now two basic operations on spaces of orderings: addi-
tion and extension.

Let (X1, Gy) and (X3, Gy) be two spaces of orderings. The sum (Y, H) = (X1, Gy) +
(X2, Gy) is defined by Y = X U X, (disjoint union) and (g,,92) € H = G x G, act-
ing as

gl(o') ifO'EXla
(91,92)(0) = {gz(g) if o€ X,.

The resulting space is a space of orderings.

If now (Y, H) is a space of orderings and H' is a group of exponent two, the
extension (Y, H)[H'] is the couple (H' x Y,H' x H), where H’ denotes the group
of homomorphisms from H’ to Z/2Z and the functions are defined by

(h',h) (o, 6) = a(h'h(a) for (a,6) e H' x Y and (h',h) e H' x H.
This defines a space of orderings.
Example 1.7. If B is a discrete valuation ring of rank d of a field K, and if Y is a
subspace of the real spectrum of its residue field, then the set of pullbacks of the ele-

ments of ¥ via B is the extension Y|[(Z/2Z)").

These two operations are very important, as the following theorem shows ([3,
IV.5.1], [11, 4.2.2)).
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Theorem 1.8 (Structure theorem). Any finite space of orderings can be built from a
finite number of atomic spaces, by a finite number of additions and extensions by Z/2Z.
This construction is unique up to isomorphism.

We now explain the behaviour of forms under addition and extension of spaces of
orderings. Let X7, X be spaces of orderings. It follows from the definition of the sum
that a form p of dimension r over X; + X can be seen as a couple (p;, p,) where p,
is a form of dimension r over X; for / = 1,2. The form p is anisotropic over X + X>
if and only if p, is anisotropic over X or p, is anisotropic over X;.

If now Y is a space of orderings and H' a group of exponent two, an anisotropic
form p over Y[H'| can be written in a unique way as p = >, h'p;,, where the
py’s are anisotropic forms over Y, and only a finite number of p;,’s are different from
the “empty” form ¢ ).

1.3 Application to algebraically constructible functions. Let 7 = R" be an irreduc-
ible real algebraic set, and let ¢ be an algebraically constructible function on V. Then ¢
is in particular constructible, i.e. there exists a finite semi-algebraic partition of V
such that ¢ is constant on each element of the partition.

Denote Xy = Spec, #' (V). As in [7], we identify the algebraically constructible
function ¢ = Z}':l sgn P; considered generically on V, with the signature ¢ of the
form {fi,..., f;> over Zy, where f; = sgnP; on Zy.

Assume ¢ takes the value k € Z on a semi-algebraic subset S of /. Consider the
constructible subset S of Xy defined by the same boolean combination of equations
and sign conditions as S. The set S is well-defined (see [5]). Then, the function ¢ takes
the value k on S.

The minimal number of polynomials needed to describe ¢ generically is the dimen-
sion of the anisotropic form over X with signature ¢. In the same way, a polynomial
P appears in a generic presentation of ¢ with the minimal number of polynomials if
and only if the sign of P is an entry of the anisotropic form over X with signature ¢.
So instead of studying the geometric situation, we will study forms in the algebraic
context of spaces of orderings.

2 Number of polynomials

Let V' = RY be a real algebraic set, and let ¢ : V — Z be an algebraically construc-
tible function. We want to calculate the minimal number N(p) of polynomials needed
to write ¢ generically as a sum of signs of polynomials, i.e.

N(p) :min{reN|EIP17...,P,e,@(V) D0 =gen ngnPj on V}.
=1

This means that if the same polynomial appears several times in the presentation, we
will count it at each appearance. So we count the minimal number of polynomials
“with multiplicities™.
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We will denote by M (p) the maximal generic value of the absolute value of ¢. Since
each polynomial in the presentation contributes the value 1 or —1, we have

N(p) = M(p).

If 11, ..., V, are the irreducible components of V', then we have

v}

Example 2.1. If dim V' = 1, we have N(¢) = M(p) for any algebraically constructible
function ¢. Indeed, by the previous remark, we may assume that V' is irreducible. We
can write generically ¢ as the sum of M(¢) constructible functions, each of them tak-
ing generically the values 1 and —1. The space X is a so-called SAP-space, since its
stability index is s(Xp) = dim V' = 1 (cf. [3, IT11.3.4], [11, 3.3]). Using [3, II1.3.2] or [11,
3.3.1], we get that any constructible function on ¥ with generic values in {1, —1} is
generically the sign of a polynomial.

If dim V' = 2, this equality no longer holds for a general algebraically constructible
function. For instance, consider ¢ : R> — Z defined by

N(p) = max{N (¢l ),...,N(p

2 ifx=0and y>=0,
-2 else.

p(x, y) = {
Then M(p) =2 and N(p) is even. We have ¢ =g, sgnx +sgny + sgn(xy) — 1, so
N(p) < 4. If ¢ was generically the sum of the signs of two polynomials, these poly-
nomials should be generically positive on the first quadrant and generically negative
outside. Such polynomials do not exist, so N(p) =4 > M(p).

To make the presentation clear we start by introducing the algebraic tools we use
to estimate N(¢). Then we will present the formula, and prove it. Finally we will
extend it to the Nash case.

2.1 Algebraic tools. From now on we denote Z/2Z = {1,a} and 272\2 ={l,a},
that is, « is the identity.

Lemma 2.2. Let X be a space of orderings, and let ¢ : X — Z be the signature of a
Jform over X. We denote by N(X, @) the dimension of the anisotropic form over X with
signature @.

If Xisa sum X = X, + Xa, then

N(X,p) = max{N(X1,¢ly,), N(X2,9|y,)}.
If X is an extension X = Y[Z/2Z), we define two functions ' " on Y by y/'(0) =

Hp(1,0) + ¢(a,0)) and ¥" () =1 (p(1,0) — p(0,0)). Then ' and " are signatures
of forms over Y and

N(X,(ﬂ) ZN(YW’)+N(Y7WN)~
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Proof. Let p be the anisotropic form over X such that p = ¢.

Assume first X = X + X,. Write p = (p,, p,) where p; is a form over X; for/ = 1, 2.
Then N(X,¢) = dimp = dim p; = dim p,, and either p, or p, is anisotropic. As p;
represents ¢y, we have N (X}, ¢|y,) < N(X,¢), with equality if p; is anisotropic. This
proves the first point of the lemma.

Assume now that X is the extension X = Y[Z/2Z]. We can write p = p, + ap,
where p, and p, are anisotropic forms over Y. Then ¢(l,0) = p,(g) + p,(0) and
p(a,0) = py(c) — p (o) forae Y, soy' = p, and " = p,. We get

N(X,p) =dimp = dimp, +dimp, = N(Y,y') + N(X,y"). O

The formula of the next paragraph is a geometric version of the following result
(I3, IV.6.4], [11, 4.3.1]):

Theorem 2.3 (Isotropy theorem). Let X be a space of orderings, and p an anisotropic
form over X. Then there exists a finite subspace Y of X such that p|, is still anisotropic.

2.2 The geometric result. Let IV = IRY be a real algebraic set, and let ¢ : V' — Z be
an algebraically constructible function. We use the notion of walls of the function ¢.
This notion has been used by Acquistapace, Andradas, Broglia and Vélez to study
basicness ([2]) and separation ([1]) of semi-algebraic sets, and by the author to char-
acterize algebraically constructible functions ([7]). We recall the definition.

If S < V is a semi-algebraic set, we denote by S* its regularized version

S* = Int(Adh(Int(S) NReg(V))).

A wall of ¢ is an irreducible component, of codimension one in V', of the Zariski
closure of the Euclidean boundary of a (¢p~!(m))".

By the remark at the beginning of the section, we can work independently on each
irreducible component of V. So from now on, we assume that V' is irreducible.

If V is a one-point compactification of ¥, we can extend ¢ to a function ¢ on
V, by giving any value at the additional point. Then ¢ is algebraically constructible
on V, and we have N(#) = N(p). So from now on, we also assume that V" is com-
pact.

Now, consider 7 : V' — V', a sequence of blowings-up with smooth centers, such
that V' is non-singular, and that the walls in V' of the algebraically constructible
function ¢ o 7 are non-singular with normal crossings intersections. (By this we mean
that there is a family of polynomials Py, ..., P,e 2(V') describing ((po )" (k))",
for k € Z, such that all the P;’s are at normal crossings in V'.) We have N(pon) =
N(p). So we consider from now on this non-singular situation.

Remark 2.4. Since V' is non-singular, ¢ is generically constant on each of the con-
nected components of the complement of the union of the walls.

Indeed, let C be such a connected component. Denote by Y the union of the Eucli-
dean boundaries of the (¢p~'(m))" for me Z, and let p* =", 5z m1 (14 The
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function ¢* is constant on each connected component of V\Y. If x € C, the codi-
mension of the germ Y, in V; is at least two, so (V\Y), is connected and ¢* is con-
stant on (V\Y),. Since ¢ and ¢* are generically equal on V, the function ¢ is generi-
cally constant on a neighbourhood of x.

Fix now x € C. We define a function f : C — {0, 1} by f(y) = 1 if the generic value
of ¢ near y is the same as near x, and f(y) = 0 else. Then f is continuous, so it is
constant and equal to 0, and ¢ is generically constant on C.

Let W be a wall of ¢. We consider the algebraically constructible function 0y ¢ on
W defined in [7]. We only recall here the generic definition in our non-singular case.

Let x be a point of W, such that x belongs to no other wall of ¢. The function ¢ is
generically constant near x on each of the two sides of W. Then, dy¢(x) is the average
of the generic values of ¢ on each of these two sides.

We define another function on W. Let ¢ be a polynomial on J which is an uni-
formizer of the regular local ring #(V') ;). Then we set

Olyp = Ow(p-sgnt).

The function 0}, ¢ is algebraically constructible on W, and is generically equal to the
half of the difference of the generic values of ¢ on the two sides of W. The definition
of dw¢ and 0}, can be compared to the definition of the shadow and countershadow
of a semi-algebraic set on a wall in [1].

Remark 2.5. If 1" € Z(V) is another uniformizer of #(V), ), then the functions
d'yp and l,¢ are a priori different, but N(dlyp) = N(0ly9). Indeed, if 0% p =gen
Z]' ,sgn P; on W, then 0%,¢ =gen  sgn(t-t" - P;) on W. This allows us to talk
about N(0},¢) without making premse the chosen uniformizer ¢.

Theorem 2.6. Let V <= RY be an irreducible real algebraic set which is compact and
non-singular. Let ¢ : V — Z be an algebraically constructible function whose walls are
non-singular with normal crossings intersections. Then

N(p) = max{M(p). max_(N(@wp) +N(}yp))}.

This theorem reduces the problem of calculating N(¢) to a finite number of similar
problems in lower dimension. By induction on the dimension, it is sufficient to cal-
culate this number of polynomials in dimension one. By Example 2.1, in dimension
one we have N(p) = M(p), and we can calculate N(¢p) in an effective way for any
dimension of V.

Remark 2.7. If the generic values of ¢ are contained in an interval [0 — k,J + k] with
0 € Z and k € N, then the generic values of dy ¢ are in [0 — k,J + k], and the generic
values of 0}, ¢ are in [k, k]. As M (p) < k + ||, we get by induction on the dimension
that
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N(p) <29mV=1k 4 5],

This bound was already in [7], where its sharpness is proved if k is even. (For odd
values of k, this bound can be improved a bit to get a sharp one, see [7].)

2.3 Proof of Theorem 2.6. We have seen that N(p) = M(p). Let W be a wall of ¢,
and let 7 be an uniformizer of (V') ;(, which is a polynomial on V. Consider the
space of orderings X = Xy[Z/2Z]. The residue field of Z(V) sy is #' (W), and we
embed X in Xy via this ring %(V)f( W) using ¢, as in Example 1.7. We have clearly
N(p) = N(X,@|,) with the notations of Lemma 2.2, and by the second point of this
lemma we get

This proves the inequality >.

To prove the other inequality, we consider the anisotropic form p over X, such
that p = ¢. We want to calculate N(p) = dim p. By the isotropy Theorem 2.3, there
exists a finite subspace X’ of X such that p|,. is still anisotropic. We choose X’ of
minimal cardinality for this property. Then X’ cannot be a sum X| + X, since then
either p| x; Of Pl X; would be anisotropic, which would contradict the minimality of

the cardinality of X”’. Thus, it follows from the structure Theorem 1.8 that X' is the
atomic space or an extension.

If X’ is the atomic space, X' = {a}, then N(p) = |¢(a)| < M(p).

If X' is an extension, we write X’ = Y'[(Z/2Z)"], where Y' is not an extension.
There is a valuation ring B of #°(V) such that Y’ is a subspace of the real spectrum
of the residue field k of B, and such that X’ is a subspace of the pullback of Y’ in X}
via B. As V' is compact, we have Z(V) < B. Let p be the intersection with (V) of
the maximal ideal of B. It is a prime ideal of Z(V). Denote by Z the zero set of p
in V: this is an irreducible algebraic set, and by construction #'(Z) is a subfield of k.
Let Y be the subspace of £, generated by the restrictions to #'(Z) of the elements of
Y’. Note that if ¢ € X’ is a pullback of the element y € Y’, and 7 € Y is the restriction
of y, then 7 is a specialization of ¢ in Spec, Z(V). Indeed, if f € Z(V) is such that
(sgn f)(z) = 1, then (sgn f)(y) = 1, and so (sgn f)(o) = 1.

We claim that at least one wall of ¢ contains Z. (Note that we do not claim that
two orderings in X’ have a common specialization on a wall.) For, otherwise, each
element 7 in ¥ would be in the constructible subset C of Spec, 2(V') for some con-
nected component C of the complement of the union of the walls. But then, all the
elements of X’ specializing to r would be in C too. Since ¢ is generically constant on
C by Remark 2.4, the value of ¢ would be the same on the 2" elements of X’ which
are pullbacks of the same element of Y’, and the restriction of p to the subspace
X"={(,...,)} x Y of X' = (Z/2Z)" x Y' would be anisotropic. Indeed, the res-
idue form (ply/); ;) would be anisotropic of dimension dimp over Y’, and the
image of this form via the isomorphism between Y’ and X" is p|,.. This way we
would get again a contradiction with the minimality of the cardinality of X”.
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Denote by W,..., W, the walls containing Z, and by d the codimension of Z in
V. As the walls have normal crossings intersections, we have d > d’. Let Py,..., P,
be polynomials on V' describing the (¢~!(m))* for m € Z. Since by assumption all
the P;’s are at normal crossings, there is a regular system of parameters (xi, ..., Xy)
of #(V), such that each P; is a monomial in #(V), for this system, i.e.
Py =wux™ ... x;" with u; a unit of #(V),, and m j,...,my; some integers. For
i=1,...,d', at least one of the P;’s vanishes on ;. So we may assume that {x; = 0}
corresponds to the wall W; fori=1,...,d".

Consider now the discrete valuation ring C dominating #(V'), with the same resi-
due field, as explained in Example 1.3, using the parameters (xi,...,xs). Let X be
the pullback of Y via C. In particular, X is the pullback of a subspace X of Xy, via
AV) 4 (w,)- We will prove that p|y is anisotropic.

We con51der the mapping 6 : X’ — X, which maps an element ¢’ of X’, pullback
of 7/ € Y’, to the element ¢ of X, which is a pullback of the restriction of ' in ¥ and
satisfies (sgn x;)(o) = (sgnx;)(¢’) fori =1,...,d. We want to prove that ¢ is a mor-
phism of spaces of orderings (cf. [11, 2.1]).

Let f: X — {—1,1} be the restriction to X of the sign of an element of #"(V"). We
have to prove that g = f o8 : X' — {—1, 1} is the restriction to X' of the sign of an
element of 27 (V). If this were not the case, by [3, [V.7.2.a)], there would be a four-
element fan F' of X’ such that g is positive on exactly an odd number of elements of
F'. Denote F' = {o},03,0%,0,} with, say, g positive on {o],0%,05} and negative on
{g,}. Let ; = 0(a;) for [ = 1,2,3,4 and F = {01, 02,03,04}. Then f would be posi-
tive on {01, 02,03} and negative on {g4}.

We prove that F is a four-element fan of X. Denote by 7; the element of ¥’ induced
by ¢; and by 7, the restriction of 7; in Y, for / =1,2,3,4. As F’ is a fan, we have
7y = 11747} hence 14 = 117273, and if i € {1,...,d} then

(sgnx;)(o4) = (sgnx;)( H sgnx;)(o;)) = H(sgn xi)(ay).
=1 =1

This proves that 4 = g10,03, and F is a fan. The possible cardinalities for F are 1,2
and 4. If the cardinality of F is not four, the value of f implies o1 = g, = g3 # 04.
But on the other hand g4 = 013 = o1, a contradiction. Therefore F is a four-element
fan and we get that f is positive on exactly three elements of F, which is not possible
by [3, I11.3.8]. We conclude that g is the restriction to X' of the sign of an element of
A (V), and that 0 : X' — X is a morphism of spaces of orderings.

Remark that the value of ¢ at an element of ¥y inducing an ordering on %' (Z), is
determined by this induced ordering, and by the signs given to xi, ..., xs. So for any
o' € X' we have ¢(0(c")) = ¢(d’).

Let {fi,...,fs> be a form over X, of signature ¢|,. Then ¢|, = (go0)|,, =
> -1 fi o0, where fjo0 is the restriction to X" of the sign of an element of #'(V)
since 0 is a morphism of spaces of orderings. We conclude that s > N(¢), and that
ply 1s anisotropic.
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We consider now the space X;. The functions dy, ¢ and (3’W1(p correspond to the
functions ' and " of Lemma 2.2, and we have

N(p) = N(X,9ly) = N(X1,0moly,) + N(X1,0,0ly,) < N(w,p) + N(0y,0).
The proof is complete.

2.4 The Nash case. Recall that a Nash function on IR” is a function which is both
analytic and semi-algebraic, and a Nash subset of R" is a zero set of Nash functions.

Let ¥ = RY be a Nash set. In [9] McCrory and Parusinski introduced Nash con-
structible functions on V' their definition is similar to that of algebraically construc-
tible functions, but now the fibres are restricted to connected components of algebraic
sets. More precisely, ¢ : V' — Z is Nash constructible if for i = 1,...,r, there are an
integer m;, a regular proper morphism f; from an algebraic set Z; to V', and a con-
nected component 7; of Z; such that

p(x) = im,x(ffl(x) NT;) forxeV.
=1

(Here y denotes the Euler characteristic.) In particular, algebraically constructible
functions are Nash constructible.

If p: V — Z is a constructible function, we define a Nash wall of ¢ as a Nash-
irreducible component, of codimension one in V', of the Nash closure of the Euclidian
boundary of a (¢~ !(k))". In [6] we proved that if ' is compact and non-singular, and
if the Nash walls of ¢ are non-singular with normal crossings intersections, then ¢ is
generically Nash constructible on V' if and only if ¢ is generically a sum of signs of
Nash functions on V. If V' is compact, but these regularity assumptions do not hold,
this is not true: in this case, Nash constructible functions coincide with sums of signs
of semi-algebraic arc-analytic functions.

Assume that V' is compact and non-singular, and that the Nash walls of ¢ are non-
singular with normal crossings intersections. In this case, for a Nash wall W, the
functions dy¢ and dj,¢ also are generically sums of signs of Nash functions. We
transpose Theorem 2.6 to this case:

Proposition 2.8. Let V < RY be a compact Nash set which is Nash-irreducible and
non-singular. Let ¢ : V — Z be a Nash constructible function whose Nash walls are
non-singular with normal crossings intersections. Denote by Ny(p) the minimal number
of Nash functions (counted with multiplicities) needed to write generically ¢ as a sum of
signs of Nash functions. Then

Nx(p) = max{ M(g) (Ny(0we) + Ny (o)) }.

s max
W Nash wall of ¢

Proof. We repeat the proof of Theorem 2.6, working with the ring 4"(V') of Nash
functions on V instead of the ring of rational functions.
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The ring A"(V) is noetherian by [5, Theorem 8.7.18]. If m is a maximal ideal of
A(V), then m is the ideal of Nash functions vanishing at a point in M by [5, Cor-
ollary 8.6.3] and ./(V'),, is a regular local ring by [5, Proposition 8.7.15]. So A"(V),
is a regular local ring for any prime ideal p of A"(V), i.e. the ring A"(V) is regular.
This allows us to build the discrete valuation ring denoted by C in the proof of The-
orem 2.6. O

As in the algebraic case, we can determine Ny (¢) by induction on the dimension,
since in dimension one we have Ny(p) = M(p).

Remark 2.9. The formulas given in Theorem 2.6 and Proposition 2.8 are very similar.
However N(p) and Ny(p) are not the same in general, even if ¥ = R" is a com-
pact real algebraic set which is Nash-irreducible and non-singular, and if ¢ is an
algebraically constructible function on V' with non-singular and normal crossings
walls.

For instance, let V = IRIP? with the coordinates (x0 : x1 : x2), and let C be the cubic
of V with the equation xox3 = x(x] — x3). We define an algebraically constructible

function ¢ on V in the following way:

Cy

@ > (s

There is only one (algebraic) wall: the cubic C, and we have N(dy¢p) = N(0}p) = 2,
so N(p) = 4. There is also only one Nash wall: the connected component C; of C,
and we have Ny (dwg) = 0 and Ny(0}9) = 2. So Ny(p) =2 # N(p).

3 Represented polynomials
3.1 Algebraic tools.

Definition 3.1 ([3], III.1.18). Let (X, G) be a space of orderings and p a form of
dimension d over X. We define

DX(p):{g€G|E|gZa"'agd€G:p:<ga927"'7gd> OVerX}.

An element of Dy (p) is said to be represented by p over X.
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Example 3.2. If p is isotropic, then it is clear that Dy(p) = G. Actually, these two
conditions are equivalent ([11, 2.2.6(3)]).

The following lemma explains the behaviour of Dyx(p) under additions and
extensions.

Lemma 3.3. Let X be a space of orderings and p a form over X.
If X =X, + X; and p = (py, py) where p; is a form over X; for j = 1,2, then

Dy(p) = Dx,(p1) X Dx,(p>)-

If X = Y[H] and p is anisotropic, write p =Y, _ hp;. Then

Dx(p) = || hDy(py).

heH

Proof. The first point is clear, the second one is given by [3, IV.2.12.b)]. O

Remark 3.4. Let X be a space of orderings, and let p,,...,p, be forms over X.
Assume that X = X; + X, and denote p; = (p; 1,p; ). Then (), Dx(p;) = & if
and only if ()", Dx, (p;1) = & or () Dx,(p;2) = &
Assume that X = Y[H| and that the p;’s are anisotropic. Write p; = >, _ 5 hp; -
Then ()", Dx(p) = & if and only if for any h € H, we have (), Dy(p; ;) = &.
These two conditions follow easily from the previous lemma.

The aim of this section is to derive a geometric version of the following result (|3,
IV.6.1.b)], [11, 4.3.2]) in the frame of algebraically constructible functions:

Theorem 3.5 (Local-global principle). Let py,...,p, be forms over a space of order-
ings X. If ﬂ,.n:l Dx(p) = &, then there exists a finite subspace Y of X such that
ﬂ,n:l DY(/)|Y) = .

3.2 The geometric result. Let ' = IR" be an irreducible real algebraic set. If ¢ is an
algebraically constructible function on V, we copy the definition given in Part 3.1 for
forms. We say that a polynomial P e Z(V) is represented by ¢ on V if there exist
Py, ..., Py € 2(V) such that ¢ is generically equal to sgn P + Z/.A:/(;) sgnP; on V.
In this case, we will say also that sgn P is represented by ¢. We denote by Dy (p) the
set of the polynomials represented by ¢ on V.

So, if p is the anisotropic form over Xy representing ¢ and P a polynomial on V,
then P belongs to Dy () if and only if the sign of P (on Xy) belongs to Ds, (p).

Theorem 3.6. Let V = RY be an irreducible real algebraic set which is compact and
non-singular. Let ¢, ..., ¢, be algebraically constructible functions on V such that all
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the walls of the ¢;’s are non-singular with normal crossings intersections. We assume
that none of the ¢,’s is generically equal to zero.

Then (\._, Dy(9;) = & if and only if

s there exist i,i' € {1,...,n}, and S <= V semi-algebraic of dimension dim V| such that
M(p;) = N(9;), M(¢;) = N(py), and ¢}l = —M(¢,), pi|ls = M(p;1),

or

* there is a wall W of one of the ¢;’s such that, if we fix a polynomial uniformizer t of
AV ) gy and if we denote Jy ={ie{l,...,n}|N(p;) = N(Owe;) + N},
then (\;,, Dw(0we;) = & and (\;_, Dw(0ye;) = .

Remark 3.7. The condition (V),_, Dw/(0dj¢;) = & is independent of the chosen 1.
Indeed, let ¢ be another polynomial uniformizer of #(V),,. If a polynomial P
belongs to Dy (3},¢;), then - ¢’ - P belongs to Dy (0},¢;).

Remark 3.8. If there is i € {1,...,n} such that ¢; =g 0 on V, then Dy (9;) = &, so
ml'nzl DV((pl) = @

As Theorem 2.6, Theorem 3.6 reduces a problem in dimension dim V' to a finite
number of similar problems in lower dimension. By induction on the dimension, we
have to solve similar problems in dimension 1. In this case, only the first condition of
Theorem 3.6 remains, and for any function ¢, we have N(p,) = M(p,), so we can
check easily if ()., Dy (p;) = &.

Remark 3.9. Again, we can transpose Theorem 3.6 from the algebraic case to the
Nash case, by working with the ring of Nash functions instead of the ring of poly-
nomials. We get the same results with Nash walls instead of walls.

3.3 Proof of Theorem 3.6. We denote G = {(sgnP) : Zyp — Z/2Z | P € 2(V)\{0}}.
Fori=1,...,n, let p; be the anisotropic form over X representing ¢;.

We assume first that there is a polynomial P € ﬂ;;] Dy (p;). Then, if i satisfies
M(p;) = N(p,), the sign of P and the sign of ¢, must be generically equal on the semi-
algebraic set {|p;| = M(p,)}. So the first point of the theorem is not possible.

Consider a wall W of one of the ¢;’s, and a uniformizer ¢ of Z(V) ;). We embed
the space X =X/ [Z/2Z] into Xy via this ring, so that for any o € £y we have
(sgnt)(l,0) = 1. If i e Jy, then p;|, is anisotropic. For such an i, write p;|, =
pl+apl', where p! and p! are anisotropic forms over Xy representing d¢ and 0}, ¢
respectively. As (sgn P)|, belongs to ﬂieJW Dy (p;), we get that ﬂieJW Ds, (p)) #
or (),. s,y D2y (/') # & by Remark 3.4. In terms of algebraically constructible func-
tions, this means that (),_, Dw(dwe;) # & or (., Dw(dy¢;) # . The first
implication is proved.

Conversely, assume that (), Dy(¢;) = &, so (), Ds,(p;) = &. By Theorem
3.5, there is a finite subspace X' of £y such that (), Dy/(p;|y/) = &. We choose

ieJw
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!

X’ of minimal cardinality for this property. Then, by Remark 3.4, the space X’
is not a sum. According to the structure theorem, X’ is the atomic space or an
extension.

First case. X' = E. Denote by o the element of X’. There is i€ {l,...,n} such
that p,|y, is anisotropic (else ()., Dx/(pi|y,) would be {X’ — {1}, X’ — {-1}}).
For such an i, we have |p;(¢)] =dimp; = N(p;) = M(p;), and Dy (p,|y,) only
contains the function ¢ — sgn(@;(0)). We deduce from this the first point of the
theorem.

Second case. X' = Y'[(Z/2Z)"] where Y’ is not an extension. We copy the construc-
tion of the proof of Theorem 2.6: let B be a valuation ring of (V) such that Y’ is a
subspace of the real spectrum of the residue field k£ of B, and X" is a subspace of the
pullback of Y’ via B. As before we denote by p the restriction of the maximal ideal
of Bto Z(V'), by Z the zero set of p in V, and by Y the subspace of ¥ generated by
the restrictions to #°(Z) of the elements of Y.

We claim that the set Z is contained in at least one wall of one of the ¢,’s.
Otherwise, as in the proof of Theorem 2.6, the value of ¢; would be the same
on the 27 pullbacks in X’ of the same element of Y/, for i =1,...,n. Consider
X"={(1,...,1)} x Y', and denote J' = {ie{l,...,n}|p;|y, anisotropic}. Then,
for i e J', we would have Dy (p,] /) = Dyr((p,|X,) .... ) As (Niey Dxe(pily) = &,
we would get (),_, Dy ((pil x)a,..1) =, and by the isomorphism between X"
and Y’ we would have (),_, D Xw(p,\ X,,) = (. This would contradict the minimality
of the cardinality of X”.

Let Wy,..., Wy be the walls of the ¢;’s containing Z. We repeat the construction
of the proof of Theorem 2.6. We get a space of orderings X and a morphism of
spaces of orderings 6 : X’ — X. We prove that ﬂ Dx(pily) =

Else, there would be an element f € G such that for every i € {1 ., n}, there exist
9i2s - 9in € G with r; = dimp; and p; y = {f, g2, -, Gir ) x- For every ¢’ € X',
we would have ¢,(0") = (¢; 0 0)(c') = (f 0 0)(a') + > /25(gi;j © 0)(c"). As 0 is a mor-
phism of spaces of orderings, f o 6 and all the g; ;o 6 would be restrictions to X’ of
elements of G, and f o 0 would be in ﬂ Dy p,| ). We would get a contradiction.
So we have ﬂ Dx(pily) = &.

We can wrlte X = X1[Z/2Z] where X, is a subspace of Zy,. Denote J =
{ie{l,...,n} |p,|X anisotropic}. We have (),_, Dx(p;ly) = &. If i € J, the restric-
tion p,|Z [z is a fortiori anisotropic, so i € Jy, and ﬂlEJW Dx(p;|ly) = . By

Remark34 we get ﬂle]w Dy, ((pilx),) = & and ﬂle]w DXI((pI|X) )= &. In terms

of algebraically constructible functions, this means that ﬂle T, Dy, (0w, 9;) = & and
Nie I, Dy, (0y,9;) = &. The theorem is proved.

3.4 Recognizing represented polynomials. If ¢ is an algebraically constructible func-
tion on an irreducible real algebraic set ¥ < R¥, and if P is a polynomial on V, we
can ask if P is represented by ¢. We give the following answer, using Theorem 2.6
and the fact that P is represented by ¢ if and only if N(p —sgn P) = N(p) — 1. Note
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that, if W is an hypersurface, then oy sgn P and 9}, sgn P are generically signs of
polynomials.

Corollary 3.10. Let V < RY be an irreducible real algebraic set which is compact
and non-singular. Let ¢ : V — Z be an algebraically constructible function, and let
P e 2(V)\{0}. We assume that the walls of ¢ and sgn P are non-singular with normal
crossings intersections, and that ¢ is not generically equal to zero.

Then P is represented by ¢ if an only if

* if M(p) = N(p), then P has generically the same sign as ¢ on the semi-algebraic set
where |p| = M(p),

and
« for any wall W of ¢ such that N(p) = N(dwe) + N(0y9),

— if Wis a wall of sgn P, then 0}, sgn P is represented by 0}, 0,

— if Wis not a wall of sgn P, then 0y sgn P is represented by 0w,
and

* for any wall of sgn P which is not a wall of ¢, we have N(p) > N(0wo).

Remark 3.11. In dimension 1, only the first condition remains: P is represented by ¢
if and only if sgn P = sgng on {|p| = M(p)} except at a finite number of points. As
before, using induction on the dimension, we can reduce to this case.
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