
6 Integrated Process Design
Kai Sundmacher

6.1 Introduction

Chemical process design is a complex task because many decisions have to be taken
on different levels of the process system hierarchy, that is, the molecular level, the
phase level, the process unit level, and the overall process system level. Moreover, the
design procedure has to be performed based on increasing levels of detail and depth of
information for the procedure, which starts from the first chemical synthesis idea and
ends at the final process flow sheet equipped. While computer-aided methods and
tools supporting individual decision-making procedures are discussed in Chapter 5,
Chapter 6 aims at presenting frameworks and workflows that enable the integration of
these methods along the chemical process design pathway with a special focus on pro-
cesses with liquid multiphase systems.

Section 6.2 is dedicated to general selection criteria for multiphase systems suit-
able for given target products or reactions to be performed. A methodology is pre-
sented that allows quantitative comparison of various types of phase systems
during different stages of process design, without the need for extensive experts’
knowledge. The complexity of the considered phase systems is reduced by the system-
atic application of questionnaires and key experiments. Thereby, process engineers are
guided stepwise from the initial formulation of the problem and identification of con-
straints over the selection of required substrates, solvents, and additives to suitable
process candidates. The whole procedure is cast into the modular computer-aided
phase system selection (caPSS) framework which integrates several important aspects
of process development: data acquisition, model generation, conceptual process de-
sign, flow sheet optimization, and evaluation regarding economic feasibility as well as
Green Chemistry criteria.

The most important part of a liquid multiphase system, suitable for a specific
homogeneously catalyzed reaction, is the identification of solvents wherein this re-
action proceeds at both a high rate and high selectivity. Thus, the choice of one or
multiple reaction solvent(s) is a key step in composing a powerful liquid multiphase
system. Section 6.3 presents different approaches from quantum chemistry (QM)
and thermodynamics to support the identification of reaction solvents. Screening of
chemical equilibria or transition state barriers as a function of solvent polarizability
provides insights into the reaction thermodynamics and kinetics, respectively. The
methodologies presented in this section are well suited to generate a set of potential
reaction solvent candidates that are combined with further solvents to obtain mix-
tures featuring a thermomorphic multiphase systems (TMS) behavior.
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Section 6.4 discusses the integration of solvent design and process design. Usu-
ally, these two design tasks are performed sequentially, that is, first, a solvent is se-
lected based on a limited number of desirable thermodynamic properties, and then a
process is developed for this specific solvent. While computer-aided molecular design
(CAMD) can aid in the selection of solvents that possess process-relevant solvent
properties, only the simultaneous consideration of solvent and process design in an
integrated computer-aided molecular and process design (CAMPD) framework en-
sures the identification of optimal process designs and operation points. In the last
two decades, this realization led to the publication of several methodological devel-
opments in the scientific literature for which Section 6.4 provides an overview and
illustrates key aspects in CAMD/CAMPD via selected examples.

According to the caPSS framework, one of the most important integration steps
is the combination of phase system selection with model-based process synthesis.
For this purpose, an integrated model-based process design methodology is pre-
sented in Section 6.5 which combines both aspects by making use of various sour-
ces of knowledge. The methodology involves an iterative workflow wherein suitable
models are identified and calibrated, prior to the evaluation of the final process de-
sign, in terms of reaction and separation performance, sustainability, and economic
potential. This iterative procedure repeatedly creates intermediate process design
candidates based on the available information. In the case of high levels of uncer-
tainty, model-based optimal experimental design (mbOED) is used to improve the
available data basis successively via carefully designed experiments.

6.2 Selection Criteria for Liquid Multiphase Systems
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Markus Illner, Reinhard Schomäcker, Anja Drews, Kai Sundmacher

6.2.1 Introduction

To this point, the potential of innovative liquid multiphase solvent systems for con-
veying chemical reactions have been demonstrated. Based on this, the development
of novel chemical processes adhering to the principles of Green Chemistry is attain-
able. However, the adequate selection of the type of multiphase solvent system, the
choice of respective compounds or additives, as well as process synthesis based on
such systems remains challenging. This is mainly caused by the inherent complex-
ity of multiphase solvent systems regarding thermodynamics, physicochemical
properties, and strong interactions with reactive species. Furthermore, the selection
and design of liquid multiphase systems directly affects process design in terms of
required reaction equipment, separation unit sequences, and operation conditions.
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Even though the reaction performance might be superior for a chosen phase sys-
tem, the actual product separation and recycling of additives might hold severe ob-
stacles, rendering a process economically infeasible or inoperable.

Considering the rather large chemical matrix of liquid multiphase systems, the
necessity of an integrated process development already considering the feasibility of
reaction and separation steps at an early stage and given economic and environmen-
tal constraints (Green Chemistry), process development expands to a large combina-
torial problem. Given a desired target product or reaction, it is a priori unclear which
multiphase solvent system is suited best. Finding optimal process variants is thus
only attainable when profound knowledge on all considered rather complex phase
systems as well as extensive comparative experimental studies is provided. This situ-
ation greatly inhibits process development and the application of such systems.

To overcome this hurdle, a holistic guideline for the systematic selection of liq-
uid multiphase systems as reaction media and process design is presented in the
following. As a major innovation, this methodology allows a quantitative compari-
son of multiple types of phase systems at all stages of process design, without de-
manding the contribution of or application by experts in the respective fields. Its
application is thus designed for the industrial practitioner in the field of reaction
engineering and process development, which demands fast and robust solution ap-
proaches at minimal use of resources.

To achieve this, the complexity of the considered phase systems is broken down
to the systematic application of simplified questionnaires and easy to perform key ex-
periments. The user is thus guided from the initial formulation of the problem and
constraints over the selection of required substrates, solvents, and additives toward
suitable process candidates in a stepwise manner at a possible minimum of required
experimental effort. Simultaneously, questionnaires and key experiments already
aim at identifying critical obstacles regarding the desired reaction performance, prod-
uct separability, chemical stability, and operability of process candidates.

Regarding a holistic guideline, this is merged into a modular framework for the
computer-aided Phase System Selection (caPSS), which systematically deploys the
relevant steps for process development: data acquisition, model generation, conceptual
process design, flow sheet optimization and evaluation regarding economic feasibility
as well as Green Chemistry criteria. caPSS is fundamentally based on the developed
methodologies and tools for the analysis, modeling, and application of phase sys-
tems. Based on these methodologies, the wrapping or deconstruction of the com-
plex phase and reaction behavior of the investigated phase systems regarding
process development is enabled and usability is increased.

The following outlines are hence restricted to the application of thermomorphic
multiphase systems (TMS), microemulsion systems (MES), and Pickering emulsions
(PE), which only represent a subset of possible reactive liquid multiphase systems.
However, caPSS presents a major starting point for a holistic selection and design
workflow for such systems and can readily be extended by adding information and
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methods from respective experts for other solvent systems. As a major competing
phase system, ionic liquids are mentioned by way of example for which several
guidelines on their selection as solvents [19, 81] as well as for process design [63]
are already available.

6.2.2 General Criteria for Phase System Selection

The general selection criteria are the first considerations after the problem statement
and the chemical system definition. Independent of the selected phase system, these
criteria or constraints need to be fulfilled so that they need to be evaluated in the first
step. The constraints can be ordered from low effort for evaluation to higher expendi-
tures, leading to four major steps as shown in Figure 6.1.

First, the operation windows of temperature and pressure must be determined for
both reaction and separation. Here, all chemicals involved in the chemical reaction
are considered, that is, reactants, products, catalysts, and, if present, a ligand. Sol-
vents are not of interest at this stage since solvent considerations are inherently
phase system-specific. Melting points, boiling points, and the thermal decomposition
temperature should be checked. The first lead for this information is material and
safety data sheets (MSDSs). If this information is not available in the MSDSs, it should
be checked if the pure components can be purchased commercially at an acceptable
price to perform these rather simple experiments. If this is not possible, at least the
boiling point and the melting point for reactants and products may be estimated
using group contribution (GC) methods [23], while for common ligands the decom-
position temperature is more relevant. Based on these data, a temperature window
for operation can be roughly derived. Of course, this window may be varying for differ-
ent unit operations: in a reactor, solid reactants may be unwanted, while for separa-
tion, crystallization could be an option. Regarding the pressure, the most important
objective is to check the state of the reactants. The homogeneous catalyst is by defini-
tion dissolved in a liquid; therefore, all reactants need to be present in a liquid phase.
Vaporous reactants may be condensed by pressure increase, or at least the gas solubil-
ity is increased for gaseous components such as synthesis gas. Deriving a pressure win-
dow from this consideration can be only done based on the expert’s experience or by
considering similar reactions.

Operation window
determination

Miscibility 
investigations

Separation 
considerations

Economic 
assessment

Figure 6.1: Steps for the general criteria for phase system selection.
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Second, the miscibility of reactants should be investigated. If only one reactant
is liquid within the operation window, this step can be skipped. Otherwise, it is
worth studying the mutual solubilities preferably experimentally, or, if not possi-
ble, computationally using GC methods for activity coefficients (e.g., universal func-
tional activity coefficient (UNIFAC)) or a quantum-chemical-based method such as
conductor-like screening model for real solvents (COSMO-RS) [51].

Third, potential separation operations are screened for feasibility. The challenge
is to separate desired products and side products from reactants and catalyst species.
The simplest case is probably when the products are gaseous and can be withdrawn
from the top of the reactor, as in the Ruhrchemie/Rhône-Poulenc process. This might
be also achievable by distillation for some specific postreaction mixtures. If such a
separation concept is worthy of consideration, the user of the methodology takes a
shortcut to the systematic process design presented in Section 6.2.4. In many cases,
however, this approach will not be possible, for example, due to temperature-sensi-
tive components, and other separation techniques must be considered. Since, in the
scope of this book, only liquid–liquid-based phase systems are considered, other
separation techniques such as crystallization are not discussed here. In liquid–
liquid-based separation, a “polarity check” must be performed for the components
of interest. The goal is to estimate whether the components can be generally separated
via splitting into two liquid phases. Such an estimation can be done using solubility
parameters or COSMO σ-profiles. With respect to the catalyst, this polarity analysis can
lead to the need to modify the ligand in order make a liquid–liquid separation feasible.
A more detailed investigation cannot be conducted at this point because solvents have
not yet been considered. The phase-system-specific considerations are presented in the
following sections.

Finally, a rough economic analysis should be performed based on material pri-
ces. The prices P per mole for all Nrea reactants (reaÞ, all Npro products (proÞ, the
catalyst (catÞ, and the ligand (ligÞ are identified in order to estimate an upper limit
for the margin m per mole key reactant keyð Þ via

m=Xkey ·
XNpro
j= 1

Sj ·
νpro, j
�� ��
νkey
�� �� ·Ppro, j −

XNrea
i= 1

νrea, ij j
νkey
�� �� ·Prea, i − Lcat ·Pcat − Llig ·Plig. (6:1)

Here, the conversion Xkey and the selectivity S for the desired product can be set to
unity as best-case scenario or be guessed based on experience while the stoichio-
metric coefficients ν are taken from the reaction scheme and one reactant is chosen
as a key reactant for reference. The loss of the catalyst components Li with i ϵ {cat,
lig} describes the amount of catalyst components which need to be replaced due to
bleeding, deactivation, and decomposition. This replacement is done by a make-up
stream in a steady-state process. Hence, the losses can be calculated from the
make-up mole flux of the catalyst components and the mole flux of the key reactant
using
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Li =
_ni
_nkey

, i ϵ cat, ligf g: (6:2)

Of course, these losses cannot be determined with high certainty since they are highly
dependent on the phase system and the specific process configuration applied. How-
ever, typical recovery rates for different phase systems can be found in the literature
and in the case of TMS, MES, and PE, Table 4.18 provides such data. Eq. (6.1) is useful
to estimate the economic potential of the selected reaction and indicates if catalyst
recycling is economically necessary. Second, if the margin m is set to zero indicating
a cost-covering performance, eq. (6.2) can be used to determine the order of magni-
tude needed for the recycling of the catalyst components. After deriving this order of
magnitude, some phase systems could be discarded before advancing toward a more
detailed investigation.

6.2.3 Feasibility and Constraints for Phase Systems Application and Key
Experiments

The evaluation of the general criteria from the previous section limits the number of
possible phase systems so that a finite set of phase system types can be investigated
in more detail. Due to specific requirements for each phase system, the inclusion of
a phase system in the set of feasible phase systems requires the preliminary consid-
eration of key constraints as exemplified in Figure 6.2 and the execution of key ex-
periments. In this section, possible preliminary considerations are discussed for
three example phase systems, TMS, MES, and PE.

6.2.3.1 Thermomorphic Multiphase System
Some critical aspects must be considered for using TMS in homogeneous transition
metal-catalyzed reactions. The chemical resistance of all components, especially
the catalyst complex, toward the solvents and the substrates is essential. Of course,
the solvents used must also be inert. The TMS technique has limitations regarding
substrate concentration, amount of extractant, and limited ranges of reaction and
separation temperatures (see Section 4.4). Additionally, the reaction mixture is
rather diluted due to the presence of a second solvent, potentially lowering the
space–time–yield. In some cases, the phase separation in the decanter is slow,
leading to long residence times. In addition, the heating/cooling procedure of the
reaction mixture is relatively energy-intensive.

Nevertheless, since homogeneous catalysis offers high selectivities and high
catalyst activities under mild reaction conditions, it holds enormous future poten-
tial for the chemical industry. Provided an efficient recovery of the homogeneous
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catalyst, energy and waste treatment costs can be significantly reduced. The TMS
technology offers an efficient way to carry out reactions under homogeneous condi-
tions and simultaneously separate the catalyst while simultaneously being able to
enable catalyst separation in a subsequent processing step.

Research on concepts such as TMSs requires significant experimental effort, im-
plying high costs for a company in the chemical industry. The introduction of suit-
able key experiments can be essential to reduce the effort.

The initial point for the key experiments represents a homogeneously catalyzed
reaction with an already known catalyst system. The first task is to find a suitable
solvent for the reaction itself. Instead of performing experiments in the laboratory,
the solvent can be found, on the one hand, by calculating the activity coefficients of
the used substrates (via e.g., UNIFAC) and, on the other hand, by density functional
theory (DFT) calculations of the catalyst system in different solvents. It is advisable to
reduce the number of possible solvents to a minimum for this initial investigation,
for instance, by a short list of suitable solvents. In the next step, the second solvent
for separating catalyst and product has to be found. This solvent should not inhibit
the reaction itself. Predictive calculations should be used to identify miscibility gaps
between at least two compounds to reduce laboratory work. Furthermore, the solubil-
ity parameters of the used catalyst and ligand have to be calculated in the different
phases along with their respective partition coefficients. These data are used to evalu-
ate whether the solvent system found is potentially suited for separating catalyst and
product in the respective system.

Finally, the TMS developed by predictive methods must be verified in the labora-
tory along with key parameters for its complete description. The first point should be

Figure 6.2: Overview of specific criteria of the considered phase systems.
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to map out the temperature-dependent miscibility gap before and after catalytic con-
version. It needs to be proven whether the mixture is indeed homogeneous under reac-
tion conditions with a high amount of substrate and also with a high amount of
product present. In addition, a separation temperature should be determined by sim-
ple extraction experiments. If the miscibility gap fits the required reaction conditions,
the next step is to carry out the reaction in the TMS. An initial reaction followed by
separation should be conducted in a TMS to obtain as much information as possible
with minimal laboratory effort. In this way, information on the reaction, such as yield,
selectivity, and TOF, and the phase compositions after the reaction can be obtained
with the aid of analytics, for example gas chromatography. In addition, the catalyst
leaching into the product phase can be determined by inductively coupled plasma
(ICP)-optical emission spectroscopy (OES)/MS (mass spectroscopy), so that the catalyst
retention in the TMS can be confirmed. To further verify the feasibility of catalyst reuse
using the TMS technique, the catalyst phase should be reused in a further reaction.

Overall, predictive work cannot replace experiments in the laboratory but it can
significantly reduce the effort and, thus, the cost. The provided key experiments
should form an iterative process. For example, if it is impossible to find a second
solvent for the separation, the first solvent can be changed again. The concept is
designed to verify the feasibility of a catalyst separation for a particular reaction via
TMS. The aim is to evaluate whether further research, considering kinetic data,
long-term studies, mechanistic investigations, and the selection of more environ-
mentally friendly solvents would be appropriate. For all presented steps, specific
basic knowledge is required, for example, to create a list of suitable solvents.

6.2.3.2 Microemulsion Systems
In order to carry out a homogeneously catalyzed reaction in a MES, some aspects
are not predictable and need to be investigated experimentally. The chemical stabil-
ity of all components, especially of the catalyst complex, to water and surfactant
plays a decisive role in this application, as already described in Section 4.2.1. Proba-
bly the most important component in a MES is the surfactant. The type of surfac-
tant, surfactant concentration, and temperature can have an enormous influence
on the phase behavior and, thus, on the reaction performance as explained in Sec-
tion 4.2. Furthermore, the choice of surfactant is described in Section 4.2.3.1. It
must be noted that the given temperature range for the reaction already imposes a
certain restriction on the choice of surfactant since not every surfactant is suitable
for every temperature. Therefore, the desired three-phase area cannot always be
achieved. To determine the phase behavior, it is necessary to have a look at the in-
fluence of the individual components as well as at the influence of the entire reac-
tion mixture on the phase behavior, because the occurring effects can overlap. At
the same time, the phase separation can be examined, and a suitable separation
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temperature can be found in which the phases are completely and quickly separated.
Inevitably, some key experiments are required to evaluate the suitability of the cho-
sen surfactant or the concentrations and parameters. Such key experiments and
suited conditions are suggested in Table 6.1.

With the help of the key experiments, a rough estimation of whether the reaction can
be carried out in the MES can be made. However, first, the desired yields and selectiv-
ities should be defined in the key experiments for a successful implementation. Then,
if necessary, reaction conditions can be adjusted, and new key experiments can be
carried out. The reaction can be optimized using various parameters such as tempera-
ture, concentrations, or a dosing strategy. However, the MES approach should not be
pursued if the key experiments do not provide sufficient results.

It must be noted that the surfactants leach into the other phase, for example,
into the organic phase. As a result, the catalyst complex can leach, too. Once the key
experiments have been carried out successfully, the extent of catalyst leaching must
be determined. This is usually done with ICP-OES but can also be done with any
other common method for elemental analysis.

6.2.3.3 Pickering Emulsions
Nanoparticle-stabilized droplets and their high stability allow a robust mechanical
separation of additives and catalyst via filtration in a single step and, consequently,
a simpler flow sheet (Section 2.3). Also, catalysts being sensitive to mechanical
stress (e.g., enzymes) can be protected [31, 92].

Table 6.1: Key experiments for homogeneously catalyzed reactions in an aqueous microemulsion
system.

Changed parameter Reaction conditions

Choice of surfactant Type of surfactant and surfactant
concentration

Standard concentrations:
 wt% ionic surfactant (e.g., CTAB
and SDS)
 wt% nonionic surfactant (e.g., Marlipal
and Marlophen)

0.25 mol% metal precursor
1.0 mol% ligand
30 mmol substrate
T, p, from literature

α = moil

moil +mwater
=0.5

Variation of substrate
concentration

Adding a cosolvent, for example, octane,
decane, dodecane, . . .
for example: m(oil) =  wt%
substrate +  wt% cosolvent

. mol% metal precursor
. mol% ligand
 mmol substrate
T, p, from literature
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In order to apply PE for liquid–liquid multiphase reactions, the choice of the
particle type is crucial. As introduced in Sections 2.3 and 4.3.1.1, numerous different
nanoparticles are commercially available, but particle synthesis and design are also
possible, which opens up several alternatives for the user, compare Table 6.2.

We recommend starting with fumed silica particles as their impact on characteristic
PE properties (such as drop size distribution, stability, rheology, and mass transfer)
has intensively been studied in literature and Section 4.3.1. To obtain PEs with
superior long-term stability, particles have to be partially wetted by the organic and
the aqueous phase (Section 2.3) and, hence, need to be of intermediate hydrophobicity.
Typical emulsion compositions are given in Table 6.2. The preliminary investigation of
the drop size distribution gives important information about the interfacial area avail-
able for the catalytic reaction as well as the emulsion stability. Sauter mean diameters
in the low micrometer range are desirable. In a simple “drop test,” in which a drop of
emulsion is added to both water and the organic phase, the desired emulsion type
(oil-in-water or water-in-oil) can be checked. For continuous reactions employing hy-
drophilic catalysts and hydrophobic substrates and products, such as the hydroformy-
lation, with a subsequent PE filtration as investigated in Section 4.3.3, a water-in-oil
emulsion is needed. In general, different dispersion devices (Section 2.3) can be applied
for PE preparation. The impact of homogenization conditions using an Ultra-Turrax®

on drop size distribution and rheology was investigated in Section 4.3.1.3 and 4.3.1.4.
Being the least mature of the investigated phase systems (Section 2.3), a sys-

tematic or theoretical selection of reaction conditions is not possible for PE, yet.
Therefore, reaction conditions were adopted from the MES system in a first step
(Table 6.1) and feasibility was demonstrated in Section 4.3.3.

Table 6.2: Possible particle candidates and typical compositions for Pickering emulsion
stabilization.

Alternative  Alternative  Alternative 

Commercially available fumed silica
nanoparticles of intermediate
hydrophobicity (e.g., HDK series by
Wacker Chemie AG)

Other commercially available
particles (e.g., clay, natural
emulsifiers, and spherical silica)

Particle synthesis,
modification or design
(e.g., Section ...)

Well-proven emulsion composition:
. wt% particle mass fraction

.–. dispersed phase (dp) fraction
(e.g.,  mL w/o PE, . wt% nanoparticles, . dispersed phase fraction → . g

nanoparticles or . g Ldp
−)
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PEs are known for their superior stability and are, thus, less sensitive to changes
in the emulsion composition or operating conditions compared to MES and TMS. As
long as the “rules” for particle choice and PE preparation (as introduced at the begin-
ning of this section) are followed, PE stability is maintained. Sedimentation or cream-
ing of droplets does not mean instability of the PE as simple hand-shaking or gentle
stirring can redisperse the droplets. Stability against coalescence exists when the
drop size distribution does not change with time.

A membrane can be chosen, for example, from the list of suitable ultrafiltration
and organic solvent nanofiltration membranes (retention of micrometer-sized droplets
and possibly freely suspended nanoparticle aggregates) presented in Section 4.3.1.6.
Typical operating windows for these membranes are given by the manufacturers. In
Section 4.3.1.6, it was shown that PE filtration is a robust process and the temperature
as well as the type of the continuous phase were identified as the main influencing
parameters. The PE filtration behavior was insensitive to, for example, changes in the
emulsion composition (e.g., presence of reaction products) and drop sizes. This allows
PEs to be optimized for the actual reaction without compromising the feasibility of PE
membrane filtration.

As the catalyst should be immobilized within the dispersed aqueous phase drop-
lets which are in turn retained 100% by the membrane, catalyst leaching is supposed
to be much lower compared to MES and TMS systems (see Section 4.4). Standard
methods for the quantification of catalyst and particle leaching in the permeate can
be applied by the user.

6.2.4 Systematic Phase System Selection and Process Design

The general and phase system specific criteria for the TMS, MES, and PE systems rep-
resent a toolbox or heuristic to check the feasibility of these distinct phase systems
for a reaction system. However, due to the limited number of considered phase sys-
tems, a generalization of these criteria is necessary as well as a systematic framework
that encompasses the heuristics but allows an extension toward alternative solvent
systems and their optimal application in process development.

In the initial stage of process development, information on the chemical reaction
in terms of accurate thermodynamic information and reaction kinetics is limited. Nev-
ertheless, the selection of suitable solvents or solvent systems, especially in homoge-
neous catalysis, is mandatory at this early stage. These solvents need to be compatible
with the catalyst while simultaneously being inert to the reaction, provide favorable
characteristics with respect to product separation and catalyst recovery and, ideally,
possess traits that are compliant with the movement towards Green Chemistry. Due to
all of these constraints, the phase system selection has significant consequences on
the final process costs. Yet, this important decision is still based on expert knowledge
and reference processes in contrast to systematic, model-based investigations in the
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majority of cases. To systematize the selection of phase systems while retaining and
embracing expert knowledge and mechanistic insight in the process, this section
introduces a new and, to the best of the authors’ knowledge, the first framework for
computer-aided phase system selection (caPSS).

The caPSS framework aims at systematizing the process development by incorporating
the steps of data acquisition, model generation, conceptual process design, flow sheet
optimization, and evaluation with respect to economic feasibility and fulfillment of the
goals of Green Chemistry. The practitioner is guided step by step from the initial speci-
fication of the substrates and target products to the final process or process candidates
which adhere to the constraints provided. A visualization of this procedure is given in
Figure 6.3. This procedure is heuristics based and favors simple processes with a mini-
mum of auxiliary substances which are assumed to be more robust and cost-efficient.
Since this heuristic may lead to suboptimal solutions in cases where increased process
complexity yields significantly better economic performance, caPSS incorporates a
mechanism through which the practitioner is able to override the heuristic based on
prior knowledge. However, before introducing this exception, a formalization of the
heuristic procedure is required. For this, we borrow the idea of the elementary process
functions (EPF) methodology (Section 5.3.1.2) and express the entire process includ-
ing the downstream process via an optimal control problem (OCP) in accordance
with eqs. 5.32–5.36. The feasibility of this representation was already proven by Kai-
ser [37] in the reactor–separator network synthesis. In the OCP, u tð Þ 2 U � Rnu and
θ 2 Rnθ denote the dynamic and static control vectors, respectively, which represent
the degrees of freedom (DoF) of the process. Originally, the time coordinate was used
to describe the reaction progress within the fluid element. In this generalization
which encompasses the downstream process as well, the time can be considered as the

Reaction Green Chem. EconomySeparation

Start ++1

DoF
󰑛 ∈󰑁

False

End

FalseFalse False

Multistart

Figure 6.3: Computer-aided phase system selection (caPSS) framework. N denotes the set of
auxiliary degrees of freedom (DoF), in particular auxiliary substances, which may be added to the
reaction system. These auxiliary substances comprise catalyst ligands, solvents, surfactants,
particles, and many more.
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progress of the fluid element through the process or flow sheet. For the heuristic, the
DoF are partitioned into inherent (inh) uinh, θinh and auxiliary (aux) uaux, θaux DoF. Ex-
amples for inherent DoF are heat fluxes _qA and diffusion fluxes jα of all species which
are part of the reaction network α 2 SPCinh, while auxiliary DoF comprise diffusion
fluxes jα of species which are not native to the reaction network and, therefore, repre-
sent auxiliary substances like solvents α 2 SPCaux. Of course, all inherent and auxiliary
substances form the set of all species in the process SPC= SPCinh ∪ SPCaux. As the
name suggests, the inherent species are inherent to the reaction and process so that
they can always be considered as DoF. Auxiliary DoF, on the other hand, can be
added to the process to achieve a certain goal, that is, process performance, im-
proved separability, and so on. In caPSS, this partition is used in the set N denoting
the number of auxiliary DoF which can be added to the process. For example, if
N = 1, 2f g process configurations are tested with one or two auxiliary DoF, consider-
ing the incorporation of a catalyst ligand in case of processes which face selectivity
problems or, for n= 2, the addition of a solvent, surfactant, or particles when facing
heat or mass transfer issues. With a sufficient number of auxiliary DoF, all phase sys-
tems can be composed including TMS, MES, and PE (see Table 6.3). Additionally, this
concept facilitates the incorporation of prior knowledge since the practitioner defines
N and ensures extensibility due to the parallel or sequential execution of multiple
framework instances using multiple sets Ni as indicated in Figure 6.3.

With the introduction of auxiliary substances, substance databases are required
from which suitable candidates are selected. These databases are categorized with
respect to substance polarity, molecular weight, chemical activity, and so on, and
provided as default databases in caPSS. However, the databases can also be ex-
tended by user-defined databases including data from literature or the key experi-
ments (see Section 6.2.3). Depending on the allowed number of auxiliary DoF n 2 N,
the algorithm iterates through all substances from the databases in each block in Fig-
ure 6.3 to form candidate systems and test them in terms of feasibility of the reaction
and separation as well as process-wide Green Chemistry and economic constraints. It
is important to mention at this point that the customization of the databases allows
for an initial screening with respect to Green Chemistry and economical objectives so
that only promising candidates are evaluated in the framework. As already men-
tioned, reaction system candidates which are formed based on the substances of the
initially known reaction network and the auxiliary substances are evaluated in four
blocks or stages. After each block, the results comprising the set of all reaction sys-
tems passing the stage are passed to the user with additional information like distan-
ces to the constraints against which the reaction system is evaluated. In case of an
empty set which is equivalent to no reaction system passing the requirements, the
algorithm starts anew from the beginning with the number of auxiliary substances
incremented by one according to N. This ensures that simple processes which pass
all stages are preferred while allowing for the investigation of additional potential by
adjusting N.

6.2 Selection Criteria for Liquid Multiphase Systems 521



In the first stage, the feasibility of the reaction is evaluated. With the operation
window (T, p) specified by the user, the reaction system is tested with respect to
temperature, pressure, conversion, and selectivity constraints. The evaluation of
the candidate system in each block is performed on multiple levels. For instance, if
pre-implemented or user-defined models are available, simulation-based analyses
are performed before experimental investigations to focus the time- and cost-inten-
sive experiments on promising candidates. Likewise, simple models and simulations
precede investigations with more sophisticated models. This allows an efficient selec-
tion process.

All auxiliary substances that pass the first stage are combined to new, reduced
databases and evaluated in the second stage for checking the feasibility of the prod-
uct and catalyst separation. Many homogeneously catalyzed processes require an
efficient recovery of the catalyst for economic feasibility. For this task, multiple sep-
aration procedures are possible, such as liquid–liquid extraction, distillation, crys-
tallization, and filtration via membranes to name just a few. Therefore, multiple
separation technologies are investigated by simulation as well as experimentally at
this stage (see Section 6.2.3 for possible key experiments for liquid–liquid separa-
tion). This can be summarized by analyzing the G/L/S-phase diagrams and evaluat-
ing constraints on the product purity and mass flow as well as catalyst recovery.

Even though Green Chemistry considerations can be included in the database
creation, the entire process needs to be evaluated as well. This is necessary since
substances that should not be used according to the Green Chemistry guidelines
might be encapsulated in the process so that their harmful potential is drastically
reduced.

Similar to the Green Chemistry considerations, the economic evaluation is per-
formed in multiple steps. If a set of reaction system candidates is found which passes
the previous stages, the operating expenses, in particular the material and energy
costs, need to be estimated since they indicate trade-offs in reaction and separation
performance. If the process revenue exceeds a user-defined lower limit, process
development (e.g., by using the framework from Section 6.5) with the remaining

Table 6.3: Example of associations of auxiliary DoF with substance categories for a
homogeneously catalyzed reaction system with selectivity problems and catalyst recovery.

Number of auxiliary DoF n Exemplary substance categories

 –

 Ligand

 Ligand + solvent

 Ligand + two solvents (extraction, TMS)

 Ligand + two solvents + surfactant/particles (MES/PE)
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reaction system candidates commences. These rigorously modeled process candidates
are then compared in terms of economic measures and Green Chemistry indicators,
leading to a Pareto-front from which the user chooses a suitable final process configu-
ration. If no candidate process suffices the user criteria, caPSS may start again with an
incremented number of auxiliary DoF and/or relaxed constraints.

This procedure systematically analyzes multiphase system candidates, includ-
ing various analysis techniques like model-based approaches as well as experimen-
tal investigations and focuses on the development of simple, robust, and economic
processes with the inherent potential for increasing the sustainability and safety of
chemicals production.

6.3 Solvent Selection for Reactions in Liquid Phases

Froze Jameel, Fabian Huxoll, Matthias Stein, Gabriele Sadowski

The choice of solvent is critical for the overall process performance with high rates
and selectivity, as discussed in Section 6.2. Very often, the main emphasis when
aiming at improving catalyst performance (in terms of rate, yield, and selectivity) is
on modifications of the ligand. However, the many roles that solvents play in cata-
lytic processes are receiving less attention but are equally important if not of higher
relevance. The environmental impact is often considered by the incorporation of
health, safety, and environment (HSE) solvent parameters into process design. The
use of organic-immiscible solvents is frequently addressed with respect to catalyst
recovery, product isolation, and recycling and may lead to the design and choice of
a temperature-switchable solvent (a TMS).

The direct role of solvents in reactions is, however, often overlooked. The choice
of solvent may affect solubilities, reaction equilibria, and transition state barriers and
thus may alter kinetics and pathways and also act as a co-catalyst. The solvent mole-
cules interact directly with the catalyst, substrates, products, and transition states,
and all these interactions can increase or decrease the process rate and/or selectivity.
When considering the role of solvents in catalysis, we illustrate their critical role
viewed from a mechanistic approach. Physical solvent properties such as polarity
and hydrogen-bond donating/accepting abilities of solvent molecules strongly influ-
ence the rate and reaction mechanism. Although frequently observed, the underlying
fundamentals behind solvent effects are often not rationalized in detail. In this sec-
tion, methods and tools from QM, plus the sequential incorporation of solvent effects
to give the thermodynamics in ideal and non-ideal solutions, are presented.
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6.3.1 Standard Gibbs Energies of Chemical Reactions
and Transition State Barriers

The difference in Gibbs energies between products and reactants of a chemical reac-
tion at standard-state conditions is the standard Gibbs energy of a reaction ΔRG°
which is directly related to the thermodynamic equilibrium constant Ka:

Ka = e− ΔRG
0

RT (6:3)

Thus, a negative standard Gibbs energy of a reaction refers to a chemical equilibrium
on the product side, whereas a positive ΔRG° indicates that the unreacted substrates
are preferred. Standard Gibbs energies of reactions, and thus chemical equilibrium
constants, for a particular reaction, are often not available experimentally. Qualita-
tive and quantitative approaches to obtain ΔRG° for a new type of reaction from a the-
oretical perspective are then an attractive alternative to time-consuming and difficult
experiments.

The standard Gibbs energy of a reaction ΔRG° is introduced here to describe the
reaction of two compounds “A” and “B” forming the product “C” (Figure 6.4) as the
difference in standard Gibbs energies between product “C” and reactants “A” and
“B”. Before reaching the product state “C”, reactants “A” and “B” form a transition
state [A–B]‡ which further reacts toward the product “C”. The transition state theory
treats the transition state as a quasi-equilibrium state (eq. (6.4)). Thermodynamics
and kinetics of a chemical reaction cannot be treated separately since they are
closely related by changes in standard Gibbs energies, the latter by that of the for-
mation of the transition state [A–B]‡, for example, the transition state barrier ΔRG‡:

k = kB T
h

� �
κ Tð Þ e− ΔRG

‡

RT (6:4)

Here, k is the reaction rate constant, κ(T) represents the collision factor, kB is Boltz-
mann’s, and h is Planck’s constant.

6.3.2 Introducing a Three-Level Description of Chemical Reactions in Solution

In the following, we are introducing a three-level description for systematic incorpo-
ration of solvent effects on the thermodynamics, here the standard Gibbs energy of a
reaction ΔRG°, and the kinetics, here the Gibbs energy of the transition state barrier
ΔRG‡ (Figure 6.4). The top level is the chemical reaction when treated in the absence
of any solvent. ΔRG°,id can be obtained from various theoretical approaches. Reactants
A(g) and B(g) form a transition state [A–B]‡(g) and the product C(g), where (g) denotes
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the neglect of any chemical environment, commonly referred to as the “ideal-gas
phase”. Even for the gas phase, a careful benchmarking of computationally efficient
DFT methods versus wave function-based solutions of the electronic Schrödinger equa-
tion may reveal systematic or non-systematic deficiencies of the former (Section 3.2).
Standard Gibbs energies of reacting species (reactants, transition states, and products)
are obtained by adding thermodynamic corrections to electronic energies via partition
functions from statistical thermodynamics, for example, based on the rigid rotor and
harmonic oscillator assumptions. QM calculations in the gas phase (g) are able to pro-
vide transition state barriers (e.g., the thermodynamics of activation) and the thermo-
dynamics (standard Gibbs energies; chemical equilibria) of the overall reaction in an
ideal gas phase with an uncertainty of 5–10 kJ mol−1.

A(g) B(g) C(g)+

-ΔGA
solv -ΔGB

solv ΔGC
solv-ΔG[A-B]

solv

C
(sol.)

Absence of Solvent

Ideal Solution

ΔGreal

aA aB aC

Infinite Dilution

Non-ideal Solvent
Activities in Solution

A + B

[A-B]‡

[A-B]‡
(g)

[A-B]‡
(sol.)

ΔRG‡

ΔRG0

ΔRG0,id

ΔRG0,∞

C

A(sol.) B(sol.)+

A(real) B(real) C(real)+

Figure 6.4: Three-level workflow of the treatment of chemical reactions in condensed phases. QM
calculations of standard Gibbs energies of activation and standard Gibbs energies of reactions
ΔRG°

,id, in the gas phase (g) are corrected by solvation terms ΔGi
solv in order to describe the

reaction at infinite dilution (ΔRG°
,∞). Thermodynamic activities ai of the reactant and product

species are used to obtain the standard Gibbs energy of a reaction in a real (liquid) solvent (ΔGreal).

6.3 Solvent Selection for Reactions in Liquid Phases 525



6.3.2.1 Taking Quantum Chemical Calculations from the Gas Phase to Infinitely
Diluted Solution

The second level is the incorporation of solvation effects into the QM approach to
obtain the Gibbs energies of the individual species A(sol), B(sol), and C(sol) in solution,
but also the one of the transition state [A–B]‡(sol) (Figure 6.4). Solvation effects can
be incorporated using various approaches (Figure 6.5). The accuracy of QM meth-
ods to calculate standard Gibbs energies of reactions in condensed-phase environ-
ments is still a challenge and ongoing research. The simplest and computationally
most efficient one is the description of solvent effects by a dielectric continuum
such as in COSMO (conductor-like solvation model) [52]. Polarization of the solute
by surrounding solvent molecules is described by an unspecific term depending on
the dielectric constant ε. Continuum solvent models represent an appealing ap-
proach for the calculation of Gibbs energies of solvation, in particular for relative
effects upon change of solvent or temperature.

Such a consideration of solvation gives the infinitely diluted solution of non-in-
teracting species in which molecular solute–solute and solvent–solvent interactions
are not incorporated. This state refers to an “ideal solution at infinite dilution” to
give ΔRGo,∞ or the respective transition state barrier ΔRG‡,∞. Going from accurate
QM calculations in the absence of a solvent to chemical reactions in solution is per-
formed via a Born–Haber cyclic approach. For the thermodynamics and kinetics of
the reaction to be calculated in solvents, reactants A and B are (de)solvated from an
infinitely diluted solution to the gas phase (by –ΔGA,B

solv), and subsequently, the
transition state [A-B]‡ (ΔGsolv

[A-B]‡) and the product C (by ΔGC
solv) are solvated to

yield the standard Gibbs energy at infinite dilution but also the effect of (de)stabili-
zation of the transition state (Figure 6.4).

Figure 6.5 shows different levels of representations of solute–solvent interac-
tions in QM calculations. The dielectric continuum representation (left) is a compu-
tationally affordable approach to incorporate polarization effects into the electronic
Schrödinger equation. The most realistic one is the full explicit atomistic QM treat-
ment of all solute, solvent, and catalyst species in a large simulation box with peri-
odic boundary conditions. The mixed cluster-continuum model (hybrid; right) is an
intermediate level representation in which solvent molecules close to the solute are
treated in full atomistic detail whereas further distant solvents are a dielectric
medium.

6.3.2.2 From Infinite Dilution to Real Solutions with Thermodynamic Activities
of Reacting Species

The third level of solvent treatment is a correction for the “non-ideality” of the previous
stages. The “real solvent” description, which explicitly considers intermolecular inter-
actions among all species in solution, is obtained from experimentally parameterized
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coarse-grained analytical models, for example, perturbed-chain statistical associating
fluid theory (PC-SAFT, Section 3.1.1) or the group-contribution method modified UNI-
FAC-Do. This computationally efficient treatment of chemical species in solution yields
the thermodynamic activities ai of the reactants and products in different solvents
(Figure 6.4). However, this does not include the transition state.

The solvent influence on reaction equilibria in real solutions was already dis-
cussed in Section 3.1.5. The reaction rate r of an equilibrium reaction A + B ⇌ C + D
is defined in a thermodynamic-consistent way using thermodynamic activities in-
stead of concentrations (eqs. (3.70)–(3.72)). At the beginning of the reaction (t = 0),
k− 1 can be neglected if no products are present in the mixture. Thus, eq. (3.70) can
be simplified to

r = k*1· aA ·aB (6:5)

As solvent effects on the reactants are accounted for by the thermodynamic activi-
ties ai, the intrinsic reaction rate constant k*1 does not depend on the solvent as long
as the transition state is not affected by the solvent. In these cases, it is possible to
predict the solvent influence on the reaction kinetics from the reactant thermody-
namic activities only. The highest reaction rates and turnover frequencies are ob-
tained in solvents that cause high reactant thermodynamic activities, that is, large
activity coefficients of the reactants. Thus, potential solvents were screened toward
their effect on the thermodynamic activity of the reactants in a reaction mixture.

Examples of high practical relevance are the hydroformylation of olefins and the
subsequent reductive amination of aldehydes. These are homogeneously catalyzed
liquid-phase reactions with the gases CO and/or H2 as reactant(s). Thus, the thermo-
dynamic activity of these gaseous components in the liquid also needs to be ac-
counted for. However, it could be shown that – except for very high pressure – the

Continuum Explicit Hybrid Dielectric
constantε=

ε ε

Figure 6.5: Different levels of solvent representations in QM calculations. Left: continuum solvent
model with a specific dielectric constant ε; center: the explicit atomistic picture of all solute and
solvent molecules; right: mixed cluster-continuum model in which the solute (here a catalyst) and
directly interacting solvent molecules are embedded in a dielectric medium.
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thermodynamic activity of gaseous components in the liquid phase does only depend
on the composition of the gas phase which is in equilibrium with that liquid [34].
Consequently, in contrast to their solubility, the thermodynamic activities of the
gases CO and H2 neither depend on the solvent nor on the composition of the liquid
phase. Thus, as long as liquid-phase reactions are performed in the presence of an
equilibrium gas phase, the solvent influence on the reaction is only determined by
the solvent influence on the thermodynamic activities of the reactants in the liquid
solution.

6.3.3 Solvent Selection for Chemical Equilibria and Reaction Rates

The rationale to suggest an optimal solvent for a given chemical reaction is based
on the many roles a solvent may play. Differences in Gibbs energies of solvation
between substrates and products affect the standard Gibbs energy of the reaction
ΔRG° and thus the chemical equilibrium. The transition state barrier of the rate-de-
termining step ΔRG‡ should be minimal to yield fast kinetics of the chemical reac-
tion. Likewise, high thermodynamic activities for reactants (ai) are in favor of a
swift catalytic turnover. There may also be direct molecular interactions between
solvent molecules and a catalyst to (i) act as a cocatalyst, (ii) stabilize the transition
state structure, or (iii) inhibit catalytic performance. Here, we present selected ex-
amples of the different roles that solvents may play in catalysis.

6.3.3.1 Modeling Solvent Effects on Standard Gibbs Energies and Chemical
Equilibria

The solvent effects on the hydroformylation reaction of 1-dodecene to n-tridecanal
were investigated at different decane/DMF ratios and different temperatures [55].
Solvent effects were described using those two apparently different approaches:
first, a qualitative prediction and, second, a quantitative prediction, whereas the
qualitative prediction is based on the standard Gibbs energy of reaction at infinite
dilution in liquid solvents. The standard Gibbs energy of reaction at infinite dilution
in liquid solvents was also calculated using the fugacity coefficients at infinite dilu-
tion calculated from PC-SAFT.

Quantum chemically calculated standard Gibbs energies of reaction in absence
of any solvent ΔRG0,id were calculated using various levels of theory, and a high level
of electron correlation was required to obtain results of chemical accuracy (within
4 kJ mol−1). Thermochemical properties for the hydroformylation reaction of 1-dode-
cene were calculated at various levels of accuracy to critically assess their perfor-
mance. DFT calculations and wave function-based methods with different levels of
electron correlation were used for those tasks. Calculation of second derivatives was
performed to consider thermodynamic corrections to the energies at 298 and 378 K.
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Solvent effects were treated using an implicit solvation model to estimate the ef-
fect of solvents on the standard Gibbs energy of reaction at infinite dilution in liquid
solvents. The consideration of solvents at infinite dilution in liquid decane/DMF sol-
vent mixtures (ΔRG0,∞) allowed a qualitative prediction of the solvent effect on the
equilibrium concentrations (Table 6.4). Based on the standard Gibbs energy of reac-
tion at the ideal-gas standard state and on fugacity coefficients ’i calculated using
PC-SAFT, the equilibrium concentrations of reactants and products for the 1-dode-
cene hydroformylation performed in decane/DMF mixtures at different compositions
could be predicted in very good agreement with experimental data (Section 3.1.5).

The values obtained from the two methods agree qualitatively, but differ in absolute
values and also regarding the magnitude of the solvent effect. While PC-SAFT explic-
itly accounts for binary interactions among the solvents and the reacting species,
COSMO is an implicit solvation model in which the reacting species are embedded in
a dielectric continuum surrounding the molecular cavity. COSMO, in contrast to PC-
SAFT, does not explicitly include solvent molecules. Nevertheless, the standard
Gibbs energies of reaction at infinite dilution decrease with increasing DMF content
for both MP2/COSMO and MP2/PC-SAFT, which leads to increasing Ka. This is in qual-
itative agreement with the experimental observations. This shows that the solvent ef-
fect on the reaction equilibria can be predicted qualitatively via QM calculations
alone as well as via a combination of QM calculations and PC-SAFT without using
any experimental reaction data.

Table 6.4: Standard Gibbs energies for the hydroformylation of 1-dodecene at
infinite dilution in liquid solvent mixtures decane/DMF at 378.15 K.

w/w (decane/DMF) p (bar) ΔRG°
,∞ (kJ mol−)

MP/COSMO PC-SAFT

/ . −. −.

/ . −. −.

Table 6.5: Thermodynamic equilibrium constants
for the hydroformylation of 1-dodecene at ideal-
gas standard state.

T (K) Kf;MP Kf;exp

 . .

 . .

 . .
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A quantitative prediction of the solvent effect on Kx requires the thermody-
namic equilibrium constant Kf. Kf was calculated at different temperatures using
the reaction enthalpy and the Gibbs energy of reaction at the ideal-gas standard
state. The standard Gibbs energy of reaction was used to determine the thermody-
namic equilibrium constant Kf at 378 K. Kf values at 368 K and at 388 K were deter-
mined using the standard reaction enthalpy at 373 K and 383 K, respectively. For
comparison, thermodynamic equilibrium constants Kf;exp were calculated using the
experimentally determined mole fractions of the reactants/products at the solvent
composition 60%/40% (wdecane/wDMF) and the respective fugacity coefficients ob-
tained from PC-SAFT (Section 3.1.5). The resulting two sets of values for the thermo-
dynamic equilibrium constant from both, MP2 (Kf;MP2) and experimental data
combined with PC-SAFT (Kf;exp) are presented in Table 6.5. As can be seen, the
values obtained from MP2 calculations and experimental data/PC-SAFT are in
very good agreement, particularly keeping in mind the complexity of the reaction
system and that QM is purely predictive. The solvent effect observed could not
have been described at all neglecting the fugacity coefficients, as these are the
only physical properties that depend on the solvent and therewith enforce the
change in Kx.

6.3.3.2 Model-Based Screening to Predict Solvent Effects on Reaction Kinetics
Here, we present two examples of the application of the combined solvent screen-
ing using QM and UNIFAC-Do. Both refer to complex reaction systems in homoge-
nous catalysis using substrates from renewable sources.

According to the above-defined criteria, the optimum solvent must simulta-
neously provide high thermodynamic activities of the liquid reactants (eq. (6.5))
and low activation barriers according to eq. (6.4).

Hydroformylation
For the Rh(I)-BIPHEPHOS catalyzed hydroformylation, 12 commonly used polar and
non-polar industrial solvents were screened in terms of their effect on the thermo-
dynamics and kinetics of the reaction (Figure 6.6a). The thermodynamics of the reac-
tion is significantly affected by the choice of solvent. A COSMO screening of the effect
of polarity on the Gibbs energy of the reaction –ΔRG0,∞ was ~ 12 kJ mol−1 [36]. Polar
media, such as DMF, NMP, and methanol, appear to be beneficial for the thermody-
namics of the hydroformylation reaction.

The solvent polarity can also affect the activation energy of the rate-determining
step (Figure 6.6a) when the stabilization of the transition state is more pronounced
than that of the preceding intermediate. In Figure 6.6a, the reduction of the transition
state barrier −ΔΔG[A–B]‡,(sol) upon screening of the dielectric constant ε relative to that
in the absence of solvent is given. The activation energy of the rate-determining step
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in the hydroformylation reaction, that is, the hydride insertion into the olefin double
bond, is not significantly affected by the polarity of solvent (only by ~4 kJ mol−1)
which is in good agreement with the experiment.

UNIFAC-Do calculations were performed to obtain the thermodynamic activity
of 1-decene in reactions mixtures for the same solvents at experimental reaction
conditions (100 °C, 13 wt% 1-decene). The results are depicted in Figure 6.6a, em-
phasizing a significant solvent effect on the thermodynamic activity of 1-decene in
various solvents.

Based on these calculations, DMF, NMP, and short-chain alcohols, especially
methanol, are predicted to be promising solvent candidates for hydroformylation.
Performing the reaction in one of these solvents should lead to a fast conversion
from the reactants to the desired product. In contrast, solvents like THF, toluene, or
n-heptane are expected to result in lower reactant-conversion rates.

Reductive Amination
As a second example, we present results for the reductive amination of undecanal
with diethylamine (DEA) in the presence of Rh(I)-XANTPHOS. While the chemical
equilibrium is hardly affected by the polarity of solvent (only by ~2 kJ mol−1) [7, 34],
the rate of reduction of the enamine is critically dependent on the solvent polarity.
Polar media accelerate the rate of the reaction by lowering the transition state barrier
and thus increase the overall yield of the reaction. The rate constant of the rate-limit-
ing reduction step increases by an order of magnitude depending on the polarity of
solvent (Figure 6.6b), which is in good agreement with the experiment [34].

UNIFAC-Do screening of the solvent effect on the reaction kinetics of the reduc-
tive amination of undecanal was performed. The reductive elimination of the ter-
tiary amine was found to be the rate-determining reaction step [49]. Thus, the
thermodynamic activity of the enamine intermediate in various solvent candidates
was evaluated. UNIFAC-Do calculations were performed for the thermodynamic ac-
tivity of the enamine in the reaction mixture, considering 12 different solvents and
fixed initial reactant concentration (4 wt% undecanal, and fourfold excess DEA).
Short-chain alcohols, NMP, and DMF are predicted to lead to high reactant-conver-
sion rates, similar to the results of the hydroformylation. THF, toluene, and n-hep-
tane, again, perform inadequately for this reaction and should, if possible, not be
considered as solvents for these reactions.

When combining results from QM and UNIFAC-Do solvent screening of the hydro-
formylation and reductive amination reactions, the two, apparently contradictory ap-
proaches give a consistent picture. The combined results are shown in Figure 6.6a for
the hydroformylation and in Figure 6.6b for the reductive amination. As a result of ini-
tial screening, polar solvents are preferred candidates compared to non-polar solvents
for both example reactions. DMF, NMP, and methanol show similar performance in
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terms of reduction of activation energy for the rate-determining step making the recom-
mendation of a single most appropriate solvent not possible at this state. However, as
a result of swift solvent screening, the number of solvents to be considered in a subse-
quent step is significantly reduced.

6.3.3.3 Beyond Implicit Solvation: The Many Roles of Solvent Molecules

Accelerating and Promoting Catalysis
The Pd(II)-catalyst hydroesterification of 1-decene with methanol and 1,2-bis(di-tert-
butylphosphinomethyl)benzene is a prime example for the promotion of catalysis by
solvent molecules (Figure 6.7). In the pre-catalyst, a methanol solvent molecule is co-
ordinating to the central metal atom and blocking the site of catalytic turnover. Here,
methanol plays three different roles in this catalytic process: first, its dissociation is
necessary to activate the pre-catalyst; second, it is the substrate to form methoxy es-
ters; third, it coordinates to the Pd(II)-hydride intermediate complex and occupies
the vacant coordination site. In the rate-limiting final step of methanolysis, the coor-
dination of two additional methanol molecules was investigated in a mixed cluster/
continuum model. The cyclic arrangement of these two additional solvent molecules
is the optimal coordination geometry to form a network of three hydrogen bonds in
addition to the substrate–Pd interaction. The thermodynamically unfavorable single
methanol coordination (Gibbs energy of reaction step +31 kJ mol−1) becomes thermo-
dynamically feasible (by −3.4 kJ mol−1). The explicit solvent methanol molecules form
a cyclic ring cluster which enables an efficient concerted proton transfer from metha-
nol to the palladium center to regenerate the hydride [35].
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Figure 6.6: Solvent effects on (a) the rate-determining step of the hydroformylation (b) and the
reductive amination. Thermodynamic reactant activities were calculated using UNIFAC-Do (left axis,
light gray bars) and reduction of the transition state barrier relative to those in absence of solvent
(right axis, dark gray bars) in 12 different solvents [34].
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One prime example for explicit solvent stabilization of the transition state is the
amination step of undecanal with DEA using methanol as a solvent (Figure 6.7). The
Gibbs energy of the transition state barrier of the hemiaminal formation by the nucle-
ophilic addition of DEA to undecanal is critically dependent on an assisted proton
transfer by explicit solvent coordination. The transition state barrier is +137 kJ mol−1

in the absence of any explicit solvent coordination and reduces to +41 and +19 kJ mol−1

when one or two methanol molecules, respectively, are assisting the proton transfer
from the amine to form the hemiaminal intermediate [34].

Catalyst Inhibition
Solvents in chemical reactions have a multitude of roles: solubilizing substrates, cat-
alysts, and products; stabilizing intermediates and transition states; enabling a facile
separation of catalyst and products, and so on. An aspect that has not received much
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Figure 6.7: Two examples of explicit solvent involvement in catalysis (top). Explicit methanol
solvent molecules acting as proton transfer agents in methanolysis of the acyl species (rate-
determining step) in the hydroesterification of methyl 10-undecenoate (bottom) . Hydrogen bond-
forming methanol solvent molecules in the amination reaction of undecanal with diethylamine.
One methanol molecule is acting as a proton transfer mediator, two methanol molecules from
hydrogen bonds with the carbonyl oxygen and thus assist the nucleophilic addition of the amine.
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attention yet is the inhibition of catalysts by solvent molecules, and the thermal de-
composition of solvents.

Methanol, NMP, and DMF were top-ranked candidate solvents for the reductive
amination (Section 6.3.3.2). Methanol and DMF were chosen for further investigations
as representatives of polar media with and without hydrogen bonding abilities. The
active transition metal catalyst has a vacant binding site where the substrate must
coordinate for the reaction to proceed. This site is, in principle, also solvent accessi-
ble and solvent molecules may approach the central metal atom and thus occupy the
site of catalytic turnover. If such binding is overstabilized, solvent coordination com-
petes with substrate binding. Since the concentration of active transition metal cata-
lysts in solution may be lower than estimated, overall turnover and reaction yields
will be affected.

Table 6.6 shows the DFT calculated binding energies of various species to the
active catalyst for the reductive amination reaction. Enamine is the substrate and
also has high binding energy to the Rh(I) catalyst. Carbon monoxide is an inhibitor
and shows the highest binding energy. For the reduction of the enamine, H2 must
coordinate to Rh(I) and undergo an oxidative addition. DMF, as a frequently used
solvent, has higher binding energy to the active catalyst than hydrogen and is thus
a competitor. Methanol, as an alternative solvent candidate, has lower binding en-
ergy and does not obstruct hydrogen coordination. It is not competitive with either
substrate or H2 binding and is not expected to inhibit the catalytic performance. As
discussed above, the hydrogen bonding ability of methanol also significantly re-
duces the activation barrier for enamine formation.

At elevated temperature and pressure, DMF is not an inert solvent but is also
susceptible to decomposition into dimethylamine and carbon monoxide. These
DMF decomposition products can also potentially bind to the catalytic center, fur-
ther reducing the catalytic activity of Rh(I) (Table 6.6). Hence, the use of DMF as a
solvent is not recommended for the hydrogenation of the enamine.

The reaction performance was confirmed by experiments comparing methanol, DMF,
toluene, n-heptane, and 1-butanol as solvents. The reductive amination of undecanal
with DEA in different solvent systems showed that methanol gave the highest prod-
uct yields and lowest side-product formation [34].

Table 6.6: Calculated binding energies of various species during reductive
amination to the Rh(I)XANTPHOS catalyst in kJ mol−1.

Enamine H MeOH DMF DMA CO

− − − − − −
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6.3.4 Conclusions

The multifaceted roles of solvents in integrated process design need adequate
computational treatment. As outlined above, the development of a generally appli-
cable thermodynamic multistep workflow allows a fast solvent screening without
the need for a priori experimental reaction data. The presented approach can be a
powerful tool in selecting optimal solvents for catalytic transformations and signifi-
cantly reduce time-consuming experimental solvent screening.

Different methods and levels of treating solvent effects in catalytic reactions give
different levels of information. Screening of chemical equilibria or transition state
barriers as a function of solvent polarizability gives initial valuable insight into reac-
tion thermodynamics and kinetics, respectively. Calculating the thermodynamic ac-
tivity of reactants in (mixed) solvents is a complementary approach. Solute–solute,
solvent–solute, and solvent–solvent interaction parameters are included in this “real
solvent” representation whereas the catalyst is not considered.

Ideally, both approaches give a consistent set of solvent candidates of which
only the top-ranked might be evaluated experimentally. Only when explicit coordi-
nation of solvent molecules, their active involvement in transition state stabiliza-
tion, or reaction mechanism appear possible, a final full atomistic representation of
solvent molecules in QM is required. However, for integrated process design, the
methodologies presented in this section are very well-suited to create a list of rea-
sonable solvent candidate molecules.

6.4 Integrated Solvent and Process Design

Steffen Linke, Tobias Keßler, Christian Kunde, Achim Kienle, Kai Sundmacher

As one part of the procedure for selecting an appropriate phase system for homo-
geneously catalyzed reactions, as proposed in caPPS in Section 6.2, the specific
problem of selecting a solvent or a solvent mixture for a particular phase system
must be investigated. Traditionally, in chemical process development, solvents are
selected based on preliminary studies, considering some desirable thermodynamic
properties for decision-making. Subsequently, a process is developed for the se-
lected solvent. This sequential procedure can lead to suboptimal decisions since
complicated trade-offs must be made between different thermodynamic properties
that can only be rationally weighted at the process level for each solvent individu-
ally. Therefore, it is recommendable to develop and establish methodologies that
combine very closely solvent selection with the process design procedure. This in-
tegrated approach and the related frameworks published in the scientific literature
are discussed in the following section and are illustrated by specific examples from
the authors’ research works.
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6.4.1 Introduction to Integrated Solvent and Process Design

Integrated solvent and process design, or CAMPD, means selecting a solvent by
evaluating its performance at the process level so that all interdependencies, for ex-
ample, between different unit operations, are considered. This performance can
usually be defined as economic profit as a rule, but exergetic considerations, eco-
logical criteria, or even multiobjective trade-offs are also possible. Besides the deci-
sion criterion, engineers must choose the solvent design space, a method to predict
thermodynamics, unit operation models, the process flow sheet, an optimization al-
gorithm, and the degree of decomposition. The solvent design space defines what
kind and type of molecules are considered and studied as solvent candidates; in
other words, the design space is the pool of molecular possibilities for the solvent.
Property estimation models are necessary to predict the thermodynamic behavior of
the molecules in mixtures. Therefore, the process performance of a solvent can be
calculated without experimental data, and a selection can be made in the early
stage of process design. Besides physical properties, HSE criteria are also very im-
portant in decision-making, and thus, predictive methods are needed for these
properties as well. Regarding the process, models for the unit operations must be
chosen describing, for example, reactors, separators, and heat exchangers. Obvi-
ously, these unit operations need to be connected resulting in a process flow sheet.
If an economic analysis is performed, cost models for the apparatus and the utilities
must be formulated as well. Since individual process simulations for each solvent
candidate are not sufficient for fair decision-making, an optimization algorithm
must be applied. Such an algorithm must be able to handle and solve the system of
equations representing the process flow sheet for each solvent candidate under
investigation.

Complexity Trade-offs

Degree of 
decomposition

Optimization 
algorithm

Process 

Solvent design 
space

Property 
prediction

• Computation equipment
• Computation time
• Implementation

Expenditure

Unit operation 
modelsflowsheet

Figure 6.8: Trade-offs in the context of integrated solvent and process design between the scope of
the results, their accuracy, and the effort required to solve the optimization problem.
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In total, engineers face a bundle of different trade-offs between accuracy, reli-
ability, the scope of the results, and the expenditure required including man and
computational power, which are summarized in Figure 6.8. To give an example, a
huge process network consisting of fully spatially resolved unit operations, apply-
ing complex quantum mechanical (QM) calculations for the solvent, and solved to
global optimality is conceivable but not practically viable nowadays. Therefore, rea-
sonable trade-offs must be made by the expertise of the engineers involved, such as
the use of shortcut models for unit operations. A common technique to make the
problem feasible is to apply decompositions, that is, to reduce the level of integra-
tion, and, thus, the complexity. This leads to smaller or simpler problems, which are
solved to identify promising solvent candidates and starting values for the more com-
plex, fully integrated solvent-process problem.

If these challenges are met, unexpected and highly efficient solvent and pro-
cess configurations may be found that lead to benefits on a major scale. However,
from a practical point of view, it must be considered that a solvent is always an aux-
iliary component, which must be cheap and easily available in large quantities. Sec-
ondly, new components being considered for large-scale use must be carefully
studied from a regulatory perspective resulting in costly experiments and authoriza-
tion processes. Thirdly, all side effects that occur in chemistry are up to now not
predictable, so that complex solvents and mixtures may be predicted to be benefi-
cial but will not work in practice. The experimental validation of the prediction is
consequently essential, as well as the initial restriction to predictable chemistry.
Therefore, the direct impact of integrated process and solvent design in practice
may finally be more in the direction of identifying generally useable solvent struc-
tures for many applications, rather than designing one specific solvent for each pro-
cess, or, on the other hand, to replace widely used solvents which have drawbacks
due to their HSE properties and are becoming more strictly regulated.

Mathematically spoken, an integrated solvent-process design problem can be
formulated as optimization problem as shown in eqs. (6.6)–(6.14) adapted from
Austin et al. [3]:

minCðn, p, μÞ (6:6)

p= f n, μð Þ (6:7)

h1 p, μ, nð Þ≤0 (6:8)

h2 p, μ, nð Þ=0 (6:9)

s1 nð Þ≤0 (6:10)

s2 nð Þ=0 (6:11)

pLk ≤ pk ≤ pUk ∀k (6:12)
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nLd ≤ nd ≤ nUd ∀d (6:13)

μLw ≤μw ≤μUw (6:14)

Hereby, the objective function C describing the performance metric depends on the
solvent’s structural information n (e.g., a vector containing several groups when a
GC method is employed), a set of estimated properties p, and the process variables
μ. The molecular properties p are predicted using the model f as shown in eq. (6.7).
General constraints are denoted by h, such as the process model, while structural
constraints for feasible solvent structures are represented by s (e.g., valency). Upper
and lower bounds, denoted by superscripts U and L, are given in eqs. (6.12)–(6.14),
which limits each property in p, the size, structure, and/or the complexity of the sol-
vent identifier n, and the process variables μ. The minimal value of the performance
metric will be determined by choosing the optimal solvent identifier n accompanied
by the optimal process conditions μ. This integration of solvent and process decision
variables makes the optimization problem more complex than either a pure CAMD
problem or a pure process optimization problem. Moreover, due to the solvent deci-
sion variables, the integrated problem usually contains integer variables, resulting in
a challenging mixed-integer nonlinear problem (MINLP). Several solution frameworks
have been proposed for this challenging optimization problem, whereby some ap-
proaches avoid such a mixed-integer formulation to obtain a less complicated nonlin-
ear optimization problem (NLP).

General overviews of the field of integrated solvent-process design can be found
in review articles discussing CAMD methodologies. Detailed reviews summarizing the
state of the art in this field of research were published in the last few years [3, 69].
Shorter communications complete the overview articles with new developments ad-
dressing the field of integrated design directly [11, 99]. Hereby, Gertig et al. focus on
CAMD methods based on quantum chemical approaches, especially discussing the
solvent design for reactive systems and the design of catalyst structures [25]. Re-
cently, the perspective of process systems engineering on material design in general,
including CAMPD, was discussed by Adjiman et al. [1] in an overview article.

6.4.2 Survey of Integrated Solvent and Process Design Methodologies

The various frameworks for integrated solvent and process design can be classified
into manifold categories. These categories may be, for example, the method used to
solve the optimization problem, the thermodynamic prediction method, or the techni-
cal application considered in the case study. However, all of these categories are not
fully selective, and, therefore, hybrid approaches that belong in more than one cate-
gory can always be found. It should be noted that within the scope of this chapter,
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only a selection of contributions to the field of integrated design can be presented,
which are discussed in the following.

The idea of integrated solvent and process design emerged in the late 1990s.
Pistikopoulos and Stefanis presented a solvent design methodology in which the
overarching postulated goal was to minimize the environmental impact. To this
end, a three-step framework was proposed consisting of identification of agent-
based process operations, generation of suitable solvent candidates satisfying en-
vironmental and processing constraints, and verification on the process level to
determine economic costs. The prediction of the molecular properties was done
by use of GC methods, and the methodology was successfully applied to two gas
adsorption tasks as case studies. Trade-offs between economic and ecological cri-
teria were analyzed and discussed. The stepwise approach was evaluated as a
suitable tool for reducing the combinatorial complexity, later denoted as the de-
composition approach. Although the scope of this initial work was even more ho-
listic, the general idea of CAMPD was born: predictive thermodynamics is used to
evaluate a process so that the solvent selection is based on the process perfor-
mance [71]. In follow-up work, this methodology was extended to design binary
mixtures used as solvent systems [9].

On that ground, Hostrup and coworkers [33] proposed an integrated solvent
and process design strategy for separation processes by combining heuristics and
mathematical optimization. A superstructure of alternative separation technologies
was suggested, which was reduced by the application of task specific constraints.
Afterward, solvent candidates were generated for the remaining separation technol-
ogies. The final MINLP was solved by enumeration. Two case studies were pre-
sented. One was the generation of a flow sheet for the separation of an azeotropic
mixture, and the other was a water treatment problem [33]. Marcoulaki et al. ap-
plied stochastic simulated annealing for the optimization and exemplified their
method for liquid–liquid extraction, extractive distillation, retrofit design, and ab-
sorption processes [59]. Two years later, a multiobjective integrated solvent and
process design were published determining Pareto optimal solutions. Environmen-
tal criteria and uncertainties were considered for the design of the solvents. The ap-
plication, the recovery of acetic acid, was modeled and optimized using Aspen Plus
[47]. Eden et al. [17] came up with a different solution strategy: The problem was
reformulated into two reverse problems by decoupling the balance equations and
constitutive equations. The resulting problem could be visualized and solved using
a property clustering technique, which allowed the projection into a ternary dia-
gram. The information from the property cluster diagram was used for a CAMD to
identify solvents that correspond to the desired cluster values [17]. This strategy has
been expanded to the use of GC methods for molecular design [18], and finally, for
the identification of properties that provide optimal process performance [10].
Cheng and Wang [14] developed a two-stage computational scheme for the solution
of integrated design problems. First, a feasible solution was determined using a
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mixed-integer hybrid differential evolution algorithm, which is a genetic algorithm
(GA) for the global optimization of MINLPs. Second, the identified feasible solution
was numerically validated to be optimal using a quadratic programming algorithm.
The approach was used to identify a biocompatible solvent for a fermentation–
separation process for ethanol production consisting of a two-phase fermenter, an
extractive distillation, and a distillation column for solvent recovery [14]. First et al.
[20] dealt with an integrated material and process design by investigating a zeolite
for the separation of methane and CO2. Hereby, the architecture including shape,
size, and pore selectivity was part of a screening step, followed by a process optimiza-
tion to determine the costs. In order to make the partial differential algebraic equa-
tion system manageable in optimization, a Kriging surrogate model was developed to
describe the pressure swing adsorption [20].

A broad framework, which was extended over many years, was developed by
Papadopoulos et al. In a first contribution, a multiobjective CAMD method was pre-
sented to determine a Pareto-optimal set of molecules with respect to desired ther-
modynamic and/or environmental properties using GC methods such as UNIFAC.
The Pareto optimal candidates were evaluated on the process level. Suboptimal de-
cision-making due to the use of a single objective optimization was avoided at the
cost of an increased number of process optimizations [65]. This drawback was tack-
led by introducing a property clustering approach in which one molecule was se-
lected as representative for a cluster of molecules with similar properties in the
Pareto set [66]. The framework was applied to liquid–liquid extraction, extractive
distillation, and a gas adsorption process. A subsequent study investigated prob-
lems of industrial complexity involving reactive systems [67] workflow [68]. Since a
dynamic model was not available, controllability was verified by calculating the
variations of the steady state of the system due to small manipulations of some con-
trol variables. Besides the controllability assessment, a second process design stage
for the most promising candidates was suggested using rigorous process models.

6.4.2.1 Approaches Using Alternative Thermodynamic Models
As an alternative to UNIFAC for describing activity coefficients, Keskes et al. [42] pro-
posed the use of the SAFT-VR model for CO2 capture from methane in a conference
contribution, which was studied in detail afterward [42, 70]. Burger et al. [8] proposed
a hierarchical framework using a GC method for SAFT-γ Mie. In the framework,
reduced unit operation models were considered at the first stage and surrogate
models were developed to estimating contributions to the objective function. The
Pareto optimal candidates were defined via multiobjective optimization, and the
detailed problem was solved for these candidates [8]. SAFT-γ Mie was also applied
for the working fluid selection of an organic Rankine cycle process including
transport properties [91]. Another thermodynamic model was used by Siougkrou
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et al. [82]. GC-VTPR was applied to investigate a Diels–Alder reaction using exper-
imental kinetic data considering three solvent candidates.

A novel methodological approach was proposed by Scheffczyk et al. using the
method COSMO-RS in combination with pinch-based shortcut models [76]. The use
of COMSO-RS eliminated the need for GC methods, thereby increasing the complex-
ity of the molecules in the solvent design space. For the evaluation of the shortcut
models, NRTL parameters were regressed using COSMO-RS generated activity coef-
ficients for solvent mixtures with candidates that passed a prescreening step. In the
case study, a databank of molecules was screened for a solvent with minimum en-
ergy for a hybrid extraction distillation process that reduces the minimum energy
demand by 63%. This concept was further developed to generate new molecules
using a GA that overcomes the limitations of employing a database as solvent de-
sign space [77]. Fleitmann et al. [21] applied this methodology to the CO production
from CO2 captured from natural gas. Hereby, a storage molecule was generated as
an intermediate so that excess energy from renewable energy sources could be
stored chemically [21]. Additionally, a second level for the process design was intro-
duced that evaluates solvent candidates using rigorous process models.

6.4.2.2 Most Recent Contributions
Recently, a multistage design methodology for extractive distillation processes was
proposed. It used a multiobjective CAMD method to identify Pareto-optimal candi-
dates, followed by rigorous thermodynamic calculations and analysis using residue
curves, and final process optimization [98]. Chen et al. [12] published an integrated
ionic liquid and process design approach exemplified by azeotropic separation pro-
cesses. UNIFAC-IL was applied to predict thermodynamics. Ten et al. [86] integrated
safety and health aspects into the integrated design and applied the method to a
gas adsorption problem. In terms of the prediction of reaction kinetics, Gertig et al.
presented approaches to calculate kinetics using DFT and COSMO-RS to select the opti-
mal reaction solvent or respectively catalyst based on process performance [24, 26].
Zhang et al. [93] also predicted reaction kinetics using DFT. However, the design objec-
tive was the identification of an optimal reaction solvent for an antioxidant [93]. Both
contributions point to a novel direction in CAMPD.

6.4.2.3 Direct Optimization of Thermodynamic Parameters: Continuous
Molecular Targeting

The continuous molecular targeting approach addresses the integrated solvent and
process design optimization problem in a conceptually different way and is there-
fore presented in a separate section. Hereby, the parameters describing the solvent
in the thermodynamic model are treated as optimization variables chosen by the
optimizer. This means that the process is optimized together with the solvent pa-
rameters, resulting in an ideal reference case for a virtual solvent. A second step is
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to search for real solvents that exhibit similar thermodynamic behavior to the vir-
tual solvent. To this end, a Taylor approximation can be performed to evaluate the
loss in the objective functions due to deviations from the optimal, virtual parame-
ters. Alternatively, an integer-programming problem is solved using GC methods to
design solvents having the same parameters as the virtual solvent as far as possible.
Since this second step is a matching step for the thermodynamic parameters of the
virtual solvent, the methodology requires a thermodynamic model in which the pa-
rameters are physically meaningful. The advantage of this technique is that the op-
timization needs to be performed only once and not repeatedly for all suitable
solvent candidates. The price of this advantage is, of course, the increasing number
of optimization variables and the verification of the validity of the matching decom-
position step.

The continuous molecular targeting technique was first presented for the de-
sign of an adsorption solvent for carbon capture and storage [4, 5]. PC-SAFT was
used as a thermodynamic model since it has a sound physical basis by considering
repulsion, dispersion, association, and multipole interactions. Detailed information
on this modeling approach is discussed in Section 3.1.1. The process flow sheet for
the CO2 adsorption took into account a high-pressure adsorption unit, a pressure
valve with a subsequent flash unit for desorption, and a pump to close the solvent
recycle connected to the adsorption unit. The objective function to be minimized
was the amount of solvent makeup needed to compensate for solvent losses. For
the mapping step, the Taylor approximation method was used and a database with
PC-SAFT parameters was evaluated to find real-world solvents with minimal devia-
tions from the optimal, virtual solvent. The method identified dimethyl sulfoxide as
the solvent with the lowest predicted solvent loss, representing a reduction of more
than factor 1,000 compared to the reference adsorption solvent methanol.

The general continuous molecular targeting framework has been refined in
various ways over the last few years: The integrated working fluid and process de-
sign for an organic Rankine cycle was successfully investigated and the mapping
using GC methods was introduced [53, 54]. Besides equilibrium thermodynamics,
transport properties were included for the process design, and the potential of
mixtures as working fluids instead of pure components was investigated [78, 80].
The approach was successfully applied to an antisolvent crystallization process
using PC-SAFT and a convex hull method to reduce the solvent design space [89].
For the crystallization application and the organic Rankine cycle each, a super-
structure optimization approach was developed using continuous molecular tar-
geting [79, 90].
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6.4.2.4 Integrated Solvent and Process Design for the Kinetics of Chemical
Reactions

While solvent selection for reaction kinetics has already been considered in CAMD
approaches [84], the first contribution for selecting a reaction solvent in a CAMPD
was proposed by Zhou et al. [95] and is presented more in detail below. The approach
aims at maximizing the total process profit, as is schematically shown in Figure 6.9.
The prediction of reaction rates can be done on a theoretical basis by searching for
the transition states and their QM calculation as presented in Sections 3.2.2.3 and 6.3.
However, since these investigations are time consuming, a data-based approach was
chosen for the integrated design: Experimentally determined reaction rates were fit-
ted to a linear quantitative structure–property relationship (QSPR) model using quan-
tum chemically based descriptors derived from σ-profiles. The σ-profile of a molecule
is a histogram of the electric charges on the surface of the molecule, which is embe-
dded in an ideal electrical conductor [51]. These σ-profile-based descriptors were
derived by dividing the histogram into six sections and integrating each section
resulting in six descriptors representing each solvent candidate. Eq. (6.15) shows
the structure of the QSPR, where k denotes the reaction rate, Si are the six descrip-
tors, and a denotes the fit parameters. The model enabled the prediction of reac-
tion rates in unknown solvent candidates by using the candidate’s sigma profile:

log kð Þ= a0 +
X6
i= 1

aiSi (6:15)

However, the σ-profiles must be available for all potential candidates. In general,
this means that a geometry optimization and a single point energy calculation must
be performed using the continuum solvation model COSMO [51]. Since the full
σ-profile was not needed, but only the six descriptors representing sections of the
profile, a GC method was established for predicting these six descriptors. Molecules
were encoded into UNIFAC groups, and the contribution of each group to one of the
sections was regressed using molecules with available σ-profiles. In this way, the
time-consuming QM calculation could be avoided. In addition to predicting the re-
action rate, GC models from the literature were taken to estimate the boiling point,
critical point, enthalpy of vaporization, density, and heat capacity of the solvent
candidates. This approach was applied to a Diels–Alder reaction evaluated on a
simple process configuration including a CSTR, a distillation column, and a recycle
of unreacted reactants and solvent. The best performing solvent in experiments,
acetic acid, was outperformed by isopropanol, with a 20% increase in total process
profit, highlighting the potential of integrated solvent and process design.
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This selection approach was refined by applying a robust optimization method
to account for uncertainties in the predictions [94]. The case study was adjusted to
consider a competitive Diels–Alder reaction that distinguishes between the desired
product and an undesired isomeric by-product. Consequently, two reaction con-
stants k1 and k2 were regressed for the desired and the side reaction, respectively,
to receive two QSPR models. The 14 parameters describing the two reactions were
considered in a sensitivity analysis. Hereby, the 90% confidence interval of each
parameter was taken separately without changing the other parameters, and it was
sampled uniformly in this uncertainty region. For each sample point in these re-
gions, the solvent leading to the highest reaction rate was computed. It was as-
sumed that the most sensitive parameters would yield many different solvents with
the highest reaction rate when the uncertainty region was sampled. It turned out
that the fit parameters a3 and a4 for the side reaction are the most uncertain parame-
ters according to eq. (6.15). Due to computational limitations, only these two parame-
ters were included in the robust optimization framework. The objective of the robust
optimization was to find the solvent that maximizes the average concentration differ-
ence between the desired and the side product over all scenarios considered. The
final optimal solvent was the one that showed the largest concentration differen-
ces in most scenarios. The framework suggested new solvent candidates; how-
ever, since the first three most promising solvent candidates contain fluorine, the
inclusion of HSE properties in the solvent design process were suggested for fu-
ture work.

Figure 6.9: Overview of the reaction solvent design approach [95].
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6.4.2.5 Genetic Optimization Approach for Complex Solvent-Process Optimization
Problems

This inclusion of HSE criteria was one aspect in a CAMD approach for a reactive
multiphase system exemplified by an extractive reaction, where biocompatibility
was included as a constraint in the solvent design [96]. This study was a prelimi-
nary work, the results of which were used for an integrated design presented after-
ward. A new methodology was developed to calculate the combined reactive and
liquid–liquid equilibrium simultaneously. To this end, the problem was treated as a
system of ordinary differential equations (ODEs) describing a mass transfer problem
within several phases. The ODEs were solved until the steady state was reached,
indicating that the equilibrium compositions were achieved in all phases. This algo-
rithm was shown to provide robust and efficient solutions for complex phase equi-
libria including equilibrium reactions and was an important achievement for the
calculation of phase equilibria in the following integrated design works. Despite
these achievements, the calculation of phase equilibria was still time-consuming in
the context of optimization, therefore, a GA was applied for the solvent design step
instead of solving the MINLP deterministically. Hereby, a set of solvent candidates
is chosen as starting generation, their performance in the objective function is calcu-
lated, and the most efficient candidates are used with a higher probability for genetic
operations. In this context, genetic operations were alterations of the structure of the
molecules, such as the replacement of a group in a molecule or the creation of a new
molecule from two existing ones. To perform these operations easily, the molecules
had to be encoded flexibly. In the proposed method, molecules were represented as a
tree graph. UNIFAC structural groups served as nodes of the tree and were connected
to form molecules with physically feasible structures. In the case study, the GA
showed its ability to design suitable molecules that maximize the equilibrium conver-
sion of the reactant.

Since these achievements were encouraging in the CAMD, the methods were ap-
plied in an integrated solvent and process design as well. The objective was to de-
velop a solvent for a coupled adsorption–desorption process to remove acetone from
the air [97]. For each solvent generated by the GA, the NLP describing the process
conditions was solved. Using this hybrid solution strategy enabled the solution of
such a complex optimization problem, which was practically not possible with state-
of-the-art MINLP solvers like branch-and-reduce optimization navigator (BARON).
This hybrid framework is schematically shown in Figure 6.10.
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6.4.3 Integrated Solvent and Process Design for Thermomorphic Multiphase
Systems

While the works described above are dedicated to the design of single molecular
components, McBride et al. [60] studied the potential to design novel multicompo-
nent TMS. The hydroformylation of long-chain alkenes was considered as reaction
example of practical relevance. The design methodology is based on COSMO-RS since
a predictive thermodynamic model for the catalyst–ligand complex of rhodium and
BIPHEPHOS was needed. A database approach of successive screening steps was pro-
posed to identify promising catalyst carrier solvents and product extraction agents
before these candidates were composed to multicomponent solvent systems. The re-
sults confirmed that the state-of-the-art TMS, consisting of dimethylformamide (DMF)
and n-decane was very efficient from a thermodynamic point of view and was pre-
dicted to outperform other TMS. Consequently, a process optimization scheme was
set up for the hydroformylation using the DMF-based TMS [61]. Since the cost caused
by the leaching of the catalyst complex was included in the objective function, a mul-
tistage extraction cascade with solvent regeneration by distillation was considered.
The investigation revealed that the optimal number of extraction stages is five. In par-
ticular, it was found that a classical TMS-based process with only a single decanter is
significantly inferior, making such a process design economically infeasible. This
finding opened the door for further solvent-based considerations, as DMF is on the
list of very high concerns of the REACH legislative for being developmental toxic, and
thus should be replaced. When multistage extraction is unavoidable, solvents with
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lower extraction power but “green” properties, that is, appropriate HSE properties,
can be used if an increased number of extraction stages is used to compensate for the
lower extraction power.

For this purpose, a refined solvent screening was established considering HSE
criteria such as fish toxicity, carcinogenicity, or flash point. These properties were
predicted using QSPR models published in the literature and are also applied in
authorization processes for novel chemical compounds under REACH [6, 87]. By
evaluating these models, potential solvents could be excluded from the candidate
list. Preliminary results of this procedure were published, and the most promising
solvent candidates were successfully experimentally validated [62]. The final meth-
odology involved 15 different green properties predicted by more than 30 different
models. Besides that, the methodology included conformers, was completely auto-
mated, and databases for the prediction results were established so that fast relax-
ations of the green screening criteria could be made and examined [56]. Hereby,
diethylsulfoxide (DESO) was identified as a particularly efficient replacement
candidate for DMF, as it showed a remarkably similar thermodynamic behavior.
The identified candidates were used below for an integrated solvent and process
design, as shown later.

First, systematic process optimization was performed for the candidates identi-
fied in the preliminary screening study, namely dimethylsuccinate (DMSU), tetrahy-
dropyranone (THPO), and, for reference purposes, DMF, which are all shown in
Table 6.7 [43]. The process flow sheet is shown in Figure 6.11 along with the overall
approach. The sequence of screening and process design can be seen as strong de-
composition, but the restriction to three solvents offered the chance for rigorous pro-
cess optimization. The main contribution of this study was the automated generation
of surrogate models to efficiently perform the process optimizations for the different
solvents. To this purpose, the techniques presented in Section 5.3.2 were applied. In
order to efficiently calculate the liquid–liquid equilibrium and the partition of the cat-
alyst in the decanter, the surrogate model technique of reduced dimensionality was
used [48]. Next, a surrogate model for the solvent regeneration by distillation was de-
veloped that computes the costs directly from the feed composition [44]. The result-
ing set of equations was solved using the multistart local optimization of BARON to
determine the optimal process cost. The analysis of the different processes revealed
that THPO can compete with DMF within the uncertainty range of the economic ob-
jective function, while DMSU was less efficient due to its reduced catalyst extraction
power. Therefore, THPO was successfully identified as a green alternative solvent
with sufficient efficiency.

However, when this approach is applied, the solvent design space is limited to
molecules available in the screening database. To overcome this limitation, a novel
strategy for the integrated solvent design was introduced to expand the solvent de-
sign space to a region around promising solvents from the screening using QM-
based descriptors. In a preliminary study, a CAMD problem was formulated using a
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GC method to predict σ-profiles and two green properties, while the conductor-like
screening model segment activity coefficient (COSMO-SAC) was applied to predict
equilibrium thermodynamics [45]. The goal was to generate green solvent candi-
dates that form a liquid–liquid equilibrium in the post-reaction mixture of hydrofor-
mylation and separate the catalyst. In a first step, solvents with low boiling points
and appropriate green properties were generated by minimizing a weighted sum of
the boiling point, the permissible exposure limit, and oral rat toxicity. Hereby, 20

Table 6.7: Successfully identified solvent candidates by the screening of
McBride et al. [62], which served as a candidate pool for rigorous
process optimization [43].

Name (abbreviation) Structure

Dimethylsuccinate (DMSU)

Tetrahydropyranone (THPO)

Dimethylformamide (DMF)
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Figure 6.11: Integrated solvent and process design strategy for homogeneously catalyzed reactions
using a decomposition consisted of a solvent screening for the molecular design and subsequent
process optimization.
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candidates were identified. Secondly, these candidates were evaluated by maxi-
mizing the difference of the molar amount of the catalyst in the coexisting liquid
phases.

This design approach yielded feasible green solvents suitable for catalyst sepa-
ration and was therefore extended to an integrated design approach [46] as shown
in Figure 6.12. A set of 17 promising solvents was determined by the final screening
approach. On the one hand, the σ-profiles h σð Þ of these candidates were analyzed
based on their first, second, and third σ-moments, which are the kth moments known
from statistics and defined as Mk =

Ð
σk · h σð Þ dσ. On the other hand, a moment for the

ability of a solvent to act as acceptor for hydrogen bonding was chosen as characteris-
tic: Macc =

Ð
h σð Þ facc σð Þ dσ, where facc describes the part of the σ-profile where the

charge σ is larger than the threshold value σ′hb of 0.01 e Å−1. Interestingly, these
moments laid in distinct domains or bands for the solvent candidates from the
screening, except from two outliers. It was concluded that other relevant solvent
candidates, which were not included in the solvent design space of the screening,
will also lay in these bands. Therefore, a solvent design was introduced, and only
the solvents whose σ-moments were in the target domain were considered in pro-
cess design. The CAMD problem to generate solvents within the desired σ-bands
was solved using a GC method for σ-profiles [57] and a set of appropriate molecular
feasibility constraints [15, 74]. It should be noted that numerous candidates of the
screening were not included in the solvent design space since only groups containing
hydrogen, carbon, and oxygen were considered. This reduction was made under the
assumption that molecules from these elements tend to be less hazardous. At the
same time, the number of candidates was lowered decisively. Six suitable molecules
were obtained from the CAMD problem solution and evaluated at the process level.
The process configuration remained unchanged as shown in Figure 6.11, and again
the process conditions were solved using the multistart local optimization option pro-
vided by BARON.

For four of the solvent candidates, feasible process operation conditions were
found that meet all constraints in terms of molar flow rates, reactor model validity,
and so on. Table 6.8 shows these four candidates, of which EMM and DMG outper-
form the reference solvent DMF regarding the total annualized costs. It is particu-
larly encouraging that DMG is already known as a harmless solvent in the cosmetic
industry, which proves its general suitability as a solvent. In total, this integrated
solvent and process design approach showed its potential to identify new solvent
candidates and to overcome the problem of a limited solvent design space if suit-
able databases are involved.

In conclusion, various approaches ranging from screening to CAMPD can be
used for TMS design. The screening-based methodologies often can provide very
valuable input for the optimization-based methods. It is important to note that differ-
ent methodologies often lead to different solvent candidates for the same process.
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This is due to different solvent design spaces considered, different strictness of HSE
criteria applied, different thermodynamic models used, and/or different decision crite-
ria applied for ranking the candidates. Concerning the latter decision-making aspect,
CAMPD has clear advantages over screening approaches since trade-offs between dif-
ferent thermodynamic properties are rationally made on cost. However, evaluation on
the process level requires some effort and can be tedious. For the hydroformylation
example discussed here, numerous candidates of the screening were not included in

Figure 6.12: σ-Bands approach for integrated solvent and process design. First, a screening
procedure identifies promising molecular structures. The σ-moments of these solvents are used to
define general target domains for newly created solvents using a group contribution method. The
final generated candidates are evaluated at the process level to determine their economic
performance [46].

Table 6.8: Final solvent candidates identified by the integrated solvent and process design
approach according to Figure 6.12 and proposed by Keßler et al. [46].

Name
(abbreviation)

Structure Name
(abbreviation)

Structure

-Ethyl -methyl
-methylsuccinate
(EMM)

Ethyl levulinate
(ELL)

Dimethyl glutarate
(DMG)

Methyl
-ethylacetoace-
tate (MEA)
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the solvent design space of the σ-band-based CAMPD (Figure 6.12), which explains
the appearance of different candidates. However, from a physical point of view, the
results obtained from the different methods point in a similar direction, namely that
mid-polar solvents are best suited as catalyst carriers. To answer the question, which
of all molecules proposed is finally the best, it must be noted that such a rigorous
answer cannot be given in terms of green solvents since the weighing of green prop-
erties is, inherently, highly subjective. For example, a rational, clear trade-off be-
tween fish toxicity and carcinogenicity is not possible. Such decisions must be made
based on legal regulations and company policy, but also depend on the opinion of
the individuals taking decisions. In terms of economy, the identification of an opti-
mal solvent is clearer because all decisions can be finally boiled down to cost. The
next step in this identification is the reduction of uncertainty for promising solvent
candidates. Experimental data, in particular on the kinetics of a reaction to be per-
formed in these solvents and the phase equilibria of the most important separation
steps in the process, must be collected. The experiments will also reveal whether un-
foreseen complications may arise, such as unwanted reactions of the candidate sol-
vent, or, related to a TMS process, the formation of an emulsion under separation
conditions, either of which would result in the rejection of the candidate. However,
the candidates evaluated successfully in experiments can subsequently be compared
in a more detailed process optimization study based on the data obtained, so that the
best candidate can be selected on a secure knowledge base. Generally, CAMD/
CAMPD methods are not recommended to be used for final decision making of a sol-
vent, but for isolating a manageable set of very promising candidates which then
should be assessed in detail experimentally.

6.4.4 Conclusions

The concept of integrated solvent and process design is known for its potential to find
novel solvents that are more efficient by making decisions based on process perfor-
mance. This approach helps to avoid wrong decisions in solvent selection since all
complex, hidden interactions at the process level are considered – at least within the
assumptions and simplifications made. Since the optimization problems involved in
combined solvent-process design decisions are very challenging to solve, various solu-
tion strategies and frameworks can be found in the literature. Different approaches
tackling the same task may lead to different solvent candidates due to different design
spaces, constraints, optimization algorithms, decompositions steps, or because of un-
certainties in the thermodynamic prediction methods. Finally, experimental validation
is required due to these uncertainties and possible unforeseen chemical effects.

Overall, integrated solvent and process design are in line with the trend to con-
sider molecular DoF in the design of chemical processes. The levels from molecule
to process addressed in Section 6.1 are more strongly interwoven to overcome the
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classical heuristic-hierarchical design approach. Despite significant progress of
computer-aided solvent-process design, carefully collected and evaluated experi-
mental data remain an indispensable element for designing a final process at the
lowest possible uncertainty. Where measurements need to be made and how the
increasing experimental knowledge should be embedded in the final process de-
sign, is discussed in Section 6.5.

6.5 Integrated Model-Based Process Design Methodology

Stefanie Kaiser, Karsten H. G. Rätze, Fabian Huxoll, Gabriele Sadowski,
Kai Sundmacher, Sebastian Engell

The computer-aided solvent selection and process design approach presented in
Section 6.4 represents one possible formulation of the algorithmic part of caPSS
(Section 6.2, Figure 6.3). Nevertheless, it is based on the assumption that the phase
system and the process structure have been selected before and reliable information
on thermodynamics and kinetics is available. In reality, however, this is part of an
iterative selection and design process in which there is significant uncertainty
about the quantitative description of the underlying phenomena. In this section, we
discuss the interaction between algorithms and process developers including experi-
mental work that is done to reduce the model uncertainties. This builds on the com-
puter-based tools that are described in Chapter 5. Due to the complex nature and
the multitude of viable approaches to the realization of each block in the caPSS
framework, this section can only discuss a limited set of options for integrated de-
sign approaches.

One of the most important integration steps in the caPSS framework concerns the
combination of experimental work with model-based process synthesis (Section 5.3).
Model-based procedures require a thorough understanding of the underlying thermody-
namics (Section 3.1), knowledge about the reaction networks and kinetics (Section 3.2),
insight into the mass transfer mechanisms (Section 3.3) as well as experience in the de-
velopment and operation of chemical production processes (Chapter 4). Therefore, this
integration exemplifies the combination of different sources of knowledge in the inte-
grated design of multiphase chemical processes.

Instead of assuming the availability of accurate models of the thermodynamics, re-
action kinetics, mass transfer coefficients, and separation efficiencies at the beginning
of the process design workflow, an additional loop is added to the caPSS framework in
which suitable models are identified and calibrated iteratively during the evaluation of
the final process design in terms of reaction and separation performance, sustainability
and economic potential (Section 6.2.4). This iterative process contains the repeated cre-
ation of intermediate process design candidates based on all information that is avail-
able at this point in time but taking into account the model uncertainties. To reduce
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the uncertainty, mbOED is integrated into the design procedure to improve the avail-
able data efficiently via systematic and carefully selected experiments.

After a short introduction to experimental design and, in particular, mbOED,
the integrated process design in which process designs under uncertainty and ex-
perimental design are combined is presented. Then, approaches to the integration
of additional tools which are described in Chapter 5 are introduced and discussed.

6.5.1 Experimental Design for Efficient and Accurate Parameter Identification

One crucial aspect in integrated process design is the bridge between fundamental
knowledge and its utilization in process development in the form of mathematical
models as shown in Figure 6.13. These models not only have to accurately repre-
sent the physicochemical phenomena but also require a form and implementation
which keeps the computational load in simulation and optimization to a minimum. If
the general structure of a model is fixed, either based on first-principles or via surro-
gate approximations, the identification of the associated model parameters using ex-
perimental data is required. Due to significant efforts in terms of time, manpower,
and money that are necessary to generate such data, the generation of data that is
most useful with respect to the design decisions is desired.

Experimental design approaches encompass heuristics, statistical design of experi-
ments (DoE) and mbOED. For better differentiation, Figure 6.14 provides a sche-
matic representation of the different design approaches. Whereas heuristics, in
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B C
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Requirements

• Model Formulation
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• Parameter Identification

Determines Quality
of each

subsequent step

Figure 6.13: Schematic representation of the process development procedure for chemical production
plants. Conceptual design: Figure 5.34 adopted from [85]. Plant design: Adopted from [72].
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particular the “one-factor-at-a-time” (OFAT) approach, are not well suited for pa-
rameter identification for nonlinear models, statistical designs like factorial or Latin
hypercube designs as well as tailor-made mbOED approaches are able to capture
nonlinear process behavior and multifactor interactions [88]. Especially, mbOED is
subject to active research because of its wide applicability in model discrimination
and parameter identification [32] via the design of sequential and/or simultaneous,
potentially dynamic, experiments [22]. For parameter identification, mbOED is usu-
ally based on the Fisher information matrix (FIM)

Fθ = Fθ,prior +
XnExp
j= 1

Xnsp
i= 1

dyj, i
dθ

����
θ*

� �` P− 1

y

dyj, i
dθ

����
θ*
, (6:16)

with the sensitivities dyj, i=dθ 2 R ny × nθ denoting the derivative of the measured var-
iables y of experiment j and sampling point i with respect to the uncertain parame-
ters θ. Here, all lowercase variables represent vectors while all uppercase variables
denote matrices. In nonlinear process models, these sensitivity matrices may depend
on the parameters so that they should be evaluated at the true parameter values θ*.
Since the true parameter values are usually unknown, they can be approximated by
the current best guess θ̂. Eq. (6.16) also contains the measurement variance–covari-
ance matrix Σ y and available prior information Fθ,prior. The inverse of the FIM F − 1

θ de-
fines a confidence hyperellipsoid and provides an approximation of the nonlinear
parameter confidence region. According to the Cramér–Rao lower bound, this confi-
dence ellipsoid presents a lower bound to the true confidence region Σ θ [58].

With this representation of the resulting parameter uncertainty, an optimization
problem can be formulated as
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Figure 6.14: Schematic representation of the OFAT approach (left), factorial design with center
point experiments (middle), and mbOED (right) for an exemplary two-factor (T , p) system. While the
OFAT and factorial design provide a-priori schemata for optimally sampling the decision space,
mbOED uses derivative information of the model output with respect to the parameters for a local
approximation of the response surface (blue) to identify a sampling point with high sensitivity and
decorrelating properties.
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min
u1 , u2 , . . ., unexp

ϕ Fθð Þ

Processmodel,
FIMdefinition: eq. ð6:16Þ,
Variational equations,

Path constraints,
x 2 χ,
u 2 U

)
1, 2, . . . , nExp (6:17)

where a scalar metric of the FIM is minimized. In this formulation, the simultaneous
design of nExp experiments are assumed with static control vectors uj 2 U . The states
xj 2 χ may be constrained via additional path constraints and represent the solution to
the process model while the sensitivity matrices in eq. (6.16) follow the variational
equations.

In mbOED, various metrics ϕ are commonly used to scalarize the FIM. The most
prominent of these are summarized in Table 6.9. In order to focus the experiments
to identify specific parameters, weights can be introduced into the FIM yielding the
modified FIM [73]:

~Fθ =W
1
2FθW

1
2, (6:18)

The combination of mbOED according to eq. (6.17) and process design via super-
structure optimization will be discussed in the following.

6.5.2 Integrated Process Design

In the early stage design of new chemical processes, the most cost influencing deci-
sions are taken, which makes it a crucial phase of process development. The pres-
sure to reduce the development time is increasing due to shorter product cycles in
the chemical industry and hence new strategies for fast, efficient, and risk-aware
process development are needed. The established methodologies for process design
can be classified into hierarchical or knowledge-based methods and optimization-

Table 6.9: Subset of FIM optimality criteria
for experiment design [22].

Criterion Definition

A ϕ Fθð Þ= trace F − 1
θ

� �
=nθ

D ϕ Fθð Þ=det F − 1
θ

� �1=nθ
E ϕ Fθð Þ=max eig F − 1

θ
� �� �
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based methods. In knowledge-based process design, the design problem is divided
into smaller subproblems which are then solved by the use of expert knowledge as
introduced by Douglas [16]. Although the use of knowledge-based methods is still
common in the process industries, it may fall short in terms of finding synergies
between the different process units.

Optimization-based methods on the other hand find the optimal process config-
uration by solving an optimization problem [13]. The setup of this optimization
problem however requires reliable process models. These models rely on experi-
mental data to identify model parameters and physical properties. Sequentially per-
forming laboratory experiments, identifying all model parameters and physical
properties, and simulating and optimizing the process leads to long development
cycles. To speed up the development and to reduce the experimental effort, a new
methodology is proposed that integrates these steps.

Only a few works have been reported that focus on the integration of model
identification and process simulation of optimization. Asprion et al. [2] integrated
optimal experimental design in a flow sheet simulator. However, the framework fo-
cuses on model improvement and a good parameter estimation only and does not
include a process design method. Marquardt and coworkers [73] developed integra-
tion of process optimization and optimal DoEs. By weighting the FIM as shown in
Equation 6.18 in the optimal experimental design, they focus the experiments on
the relevant parameters. However, in their approach uncertainties in the process
optimization are neglected.

In this section, we integrate superstructure optimization under uncertainties
(Section 5.3.3) with sensitivity analysis and optimal DoEs. After describing the pro-
posed methodology and the sensitivity analysis as part of the methodology, we apply
it to two case studies. The first case study is the hydroaminomethylation of 1-decene.
In this case study, we show the results of a superstructure optimization under uncer-
tainties and use these results to design a new experiment that reduces the variation
in the prediction of the production costs. In the second case study, the hydroformyla-
tion of 1-dodecene, we will expand the methodology by global sensitivity analysis
and show the improvements that are possible compared to a design methodology
that is not focused on the identification of the cost-driving parameters.

6.5.2.1 Methodology
When first experiments have been performed and the most important elements of
the process, for example, the phase system and the catalyst system, have been iden-
tified, the integrated process design starts. A schematic representation of the pro-
posed methodology is depicted in Figure 6.15.

Starting with the first screening experiments, kinetic and thermodynamic models
are developed that in the beginning will have significant parametric uncertainties.
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These models are used in a subsequent step for superstructure optimization under
uncertainties as explained in Section 5.3.3. At this point, it is checked if one or few
process alternatives can be already identified as optimal. This would be the case if
for all realizations the value of the cost function is lower for one design or a few de-
signs compared to all other design alternatives. For large parametric model uncer-
tainties, this is rather unlikely to happen. If no design could be identified as optimal,
a sensitivity analysis of the cost function with respect to the uncertain parameters is
performed to identify the parameters that have the largest impact on the cost function
which will be explained in Section 6.5.2.2. The computed sensitivities are used as
weights in the optimal DoEs to plan experiments that are focused on the determina-
tion of the most cost-relevant parameters.

6.5.2.2 Methods for Sensitivity Analysis in Process Synthesis
As lab experiments are expensive, process engineers want to identify those uncertain
parameters that contribute most to the cost function of interest, for example, the pro-
duction cost. For this, methods of local or global sensitivity analysis can be used.
Local methods are computationally less expensive but provide reliable information
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Figure 6.15: Schematic representation of the main elements of the integrated process design
methodology.
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only in a small range around the nominal values of the parameters. Global methods
require more computational effort but provide information for the entire parameter
space [75].

Local sensitivity analysis can be performed by linear regression. Here, n uncer-
tain parameters xi are correlated to the regressed value Ẑj:

Ẑj = β0 +
Xn
i= 1

βixi (6:19)

The intercept β0 and the regression coefficients βi are determined via the least
squares method. To standardize the regression coefficients with 0 mean and a stan-
dard deviation of 1, the standardized regression coefficients (SRC) are computed for
N samples as follows [27]:

SRCj =
βjŝi
ŝ

(6:20)

with

ŝ=
XN
j

Zj − �Z
� �2
N − 1

" #1=2

(6:21)

and

ŝi =
XN
j

xi − �xð Þ2
N − 1

" #1=2

(6:22)

Since the SRCs are independent of the regressor, they can be used to compare the
effect of the parameters on the objective function. Large SRCs correspond to a large
impact on the objective. The samples are generated via perturbation from their cor-
responding nominal value. Thus, a linear approximation of the objective function
in this region is generated.

In global sensitivity analysis, samples are taken from the entire parameter
space. The sampling points should be distributed evenly. For this, Latin hypercube
sampling can be used which is explained in Section 5.2.3. According to Sobol [83],
the effect of a single parameter xi can be computed via

Si =
var yjxið Þ
var yð Þ (6:23)

Here, varðyjxiÞ is the conditional variance of the output y with respect to the ith pa-
rameter. var yð Þ is the general variance of y. The total effect, which takes addition-
ally nonlinear and interaction effects into account, can be computed as
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ST;i ¼ 1�
var yjxei

� �
var yð Þ (6:24)

where var yjxei
� �

is the conditional variance of y with respect to all parameters ex-
cept parameter i.

6.5.2.3 Case Study I: Hydroaminomethylation of 1-Decene
The approach presented above is applied to the hydroaminomethylation of 1-dodecene
in a TMS [40]. The process includes unit operations for the reaction, phase separation,
and the removal of the byproduct, water. As hydroaminomethylation can be consid-
ered as the sequence of the steps of hydroformylation and reductive amination, the ki-
netic models described in Hentschel et al. [29] and Kirschtowski et al. [50] (Section 3.2)
are combined in order to get a first structure of the kinetic model. The parameters were
fitted to experimental data of the hydroaminomethylation in a solvent system of meth-
anol and dodecane. 12 different batch experiments where the concentration profiles
were measured over time were used for the initial parameter estimation.

For the prediction of the solubilities of the components of syngas in the reac-
tion medium and the phase separation in the decanter, thermodynamic models are
needed. The gas–liquid and the liquid–liquid equilibrium can be predicted with PC-
SAFT. The required parameters for the syngas, the solvents, and the main compo-
nents are available in Huxoll [34]. Since the equations of PC-SAFT have to be solved
iteratively, it is not suitable to use them directly in optimization [64]. Therefore, ar-
tificial neural networks were trained to predict the concentrations of hydrogen and
carbon monoxide in the liquid phase depending on the temperature, the partial
pressures, and the solvent composition. For describing the liquid–liquid equilib-
rium, the distribution coefficients defined as Ki = _ni,polar= _ni, feed are fitted by artificial
neural networks with respect to the temperature and the composition of the inlet of
the decanter. The removal of water is modeled by a membrane model, using a solu-
tion-diffusion model.

The objective of the superstructure optimization is the minimization of the pro-
duction cost per ton of the long-chain amine. The prediction of the costs includes
the costs of the raw materials, the investments, and the utilities. As it is assumed
that the solvents can be recovered in a further separation step, they are not in-
cluded in the cost function.

The uncertainties considered here are the pre-exponential factors k0, i and the ac-
tivation energies EA, i of the kinetic model resulting in 31 uncertain parameters. 35 dif-
ferent combinations of the uncertain parameters within their 95% confidence regions
are used in the superstructure optimization under uncertainties. As described in Sec-
tion 5.3.3, a two-stage optimization is performed where the design parameters are the
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same for each scenario and are optimized under the assumption that the operating pa-
rameters (called recourse variables) are adapted to the actual values of the parameters
in each scenario by control or online optimization during operation. Here, the design
decisions include the binary decisions if the reaction is performed as a tandem reac-
tion, meaning that all reactants and the catalyst are added into one reactor for the hy-
droaminomethylation, or if the hydroformulation and the reductive amination are
performed in two subsequent reaction steps. The second binary decision is the choice
if the polar and the unipolar solvent are added to the reactor forming a TMS system or
if the nonpolar solvent is added after the reaction for phase separation and catalyst
recycling. The recourse variables are the temperatures and partial pressures in the reac-
tor, the solvent ratio, the temperature in the decanter, and the catalyst concentration.

The results for the four best designs that are structurally different are shown
in Figure 6.16.

From Figure 6.16, it can be seen that no decision about the best design can be made
at this point, which makes further model improvement necessary. The operating con-
ditions can be adjusted depending on the realization of the uncertain parameters.
The scaled operating conditions for design 1 are shown in Figure 6.17. It can be seen
that the optimal operating conditions strongly depend on uncertain parameters.

The results of the sensitivity analysis after the first superstructure optimization
that are presented in Figure 6.18 show that the reaction rate constants of the isomeri-
zation have the largest impact on the cost function. This can be explained by the fact
that the reaction toward the side product iso-decene only occurs to a small extent
and therefore this parameter is the most uncertain. The large variation of the side re-
action leads to a large variation in the yield and hence in the production cost.
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Figure 6.16: Costs for the four best process designs for different combinations of the uncertain
parameters from the first superstructure optimization.
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The results of the weighted mbOED with the temperature, the pressure, the
ratio of H2 and CO, the catalyst concentration, and the sampling times as DoF are
presented in Table 6.10. The optimal sampling times were identified as 6.5, 40.4,
40.4, 60, and 60 min.

The iterative process design is then applied using simulation experiments. The
measurements are generated using a simulation model with the true parameters, cor-
rupted by white noise with a standard deviation of 5%. In each iteration, the model
parameters are updated using the new measurements, a superstructure optimization
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Figure 6.17: Recourse variables scaled with respect to their bounds.
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Figure 6.18: Standardized regression coefficients (SRC) for the kinetic parameters. Reproduced
from [40].
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is performed, the most relevant parameters are identified and a new experiment is
planned. This procedure is repeated until one structurally different design is superior to
the others for all discrete scenarios. For this desired result, eight additional experiments
are needed if they are iteratively planned. The comparison of the iterative procedure
and a model refinement using a full-factorial design with 16 additional experiments is
shown in Figure 6.19. It can be seen that for the factorial design no decision about the
best design can be made because the order is different for different scenarios although
the number of experiments is twice as large as for the iterative procedure. Therefore, it
can be concluded that the proposed model-based iterative process design can reduce
the experimental effort and hence the time and costs for process development.

6.5.2.4 Case Study II: Hydroformylation of 1-Dodecene
In this section, we show the benefits of using global sensitivity analysis in the inte-
grated process development by applying it to the hydroformylation of 1-dodecene
[41]. Here, we focus on the combination of sensitivity analysis and mbOED.

The process model that was used is described in detail by Hernandez et al. [30].
The pre-exponential factors and the activation energies of the hydroformylation and
the isomerization of 1-dodecene of the kinetic model developed by Hentschel et al. [29]
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Figure 6.19: Comparison of the costs for the four best process designs for different combinations of
the uncertain parameters after model refinement using 16 experiments planned by a full-factorial
design on the left and after 8 iteratively designed experiments on the right.

Table 6.10: Optimally designed experiment for the hydroaminomethylation of 1-decene.

Temperature (K) Pressure (bar) Catalyst concentration
(moCat/molSubstrate)

Gas composition (CO: H2)
(mol/mol)

.  . .
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are considered as uncertain parameters. All other parameters of the kinetic model have
been observed as less influencing and are hence fixed to their predefined values.

In the mbOED, isothermal batch experiments are planned that measure the con-
centration profile over the batch time. The reaction temperature, the initial concentra-
tions of 1-dodecene and iso-dodecene, the ratio of H2 to CO, the catalyst concentration,
and the sampling times of the concentration measurements are considered as DoF. The
number of measurements taken during each batch experiment is fixed to six. The cost
function is the yield of tridecanal in the product stream with respect to the 1-dodecene
in the feed stream. Simulation results of a kinetic model with the true parameters, cor-
rupted by white noise with a standard deviation of 5% are used as measurements of
the batch experiments.

Three methods are compared: mbOED with unweighted FIM (normal), mbOED with
the FIM weighted by local sensitivity analysis (local), and mbOED with the FIM weighted
by global sensitivity analysis (global). For the first parameter estimation, the experiment
is performed at two different temperatures and the measurements are taken equi-
distantly. In iterative steps of parameter estimation, mbOED, and a new experiment,
planned according to the applied methods, a sequence of 25 new experiments was
planned. The predicted yield over the number of experiments is evaluated and compared
to a benchmark of a static factorial design where in total 32 experiments are performed
at the lower and upper bounds of 5 DoF. In each iteration, the minimum and maximum
yields are computed for the values of the uncertain parameters within the 95% confi-
dence interval. To reduce the effect of random noise in the predictions, the mean values
of 10 runs are considered. The evolution of the predicted yield is shown in Figure 6.20.
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Figure 6.20: Evolution of the predicted intervals of the yield of tridecanal. The solid line represents
the true yield and the dashed line represents the yield predicted with parameters obtained from a
full factorial design of 32 experiments reproduced from [41].
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The minimum and maximum predicted yields for all three cases are presented
together with the true yield and the yield predicted using factorial sampling. After
only 9 experiments, the prediction of the minimum yield is better compared to the
factorial design in the case of the global sensitivity analysis and after 15 iterations
in the case of the local sensitivity analysis. The standard mbOED performs errati-
cally in comparison. This can be explained by the fact that in this case, it can hap-
pen that experiments are planned that improve a parameter with a low impact on
the yield. It shows that by using weights on the parameters with a large impact on
the cost function, more efficient experiments can be planned. As the global sensitiv-
ity analysis also takes nonlinear effects into account, it performs even better than
the local sensitivity analysis.

It was shown how the integration of the DoEs and optimization under uncer-
tainty can be used to accelerate the early design phase. Superstructure optimization
under uncertainties helps to identify promising process alternatives and the varia-
tion of the predicted cost over the range of the uncertain parameters of a process
design. Sensitivity analysis was applied to identify the model parameters that have
a high impact on the final production costs. These parameters should then be deter-
mined by further experiments. An optimal DoE, in which the FIM is weighted by
either local or global sensitivities, leads to fewer experiments that are required to
reduce the variation in the cost function.

6.5.3 Advanced Integration Potential for Systematic Multiphase Process Design

The methodology presented in Section 6.4.2 can be extended to include further as-
pects in process design. Although only some applications were shown so far, the
approach allows for many future applications. First, the integration in the method-
ology proposed for the selection of the phase system is possible. Simplified process
models can be generated for each possible phase system and can be included in the
superstructure optimization. As stated in Section 6.2, phase systems with the least
possible number of additional substances are preferable. The two objectives – mini-
mizing the process costs and using the least possible number of additional substan-
ces – can be evaluated by drawing the Pareto front, a curve of all results where one
objective cannot be improved without worsening the other. Based on this evalua-
tion, a decision about the best process can be made.

Moreover, methods for model-based solvent selection and optimal reactor de-
sign have been presented in Sections 6.3 and 5.3.1. As these methods are also part
of the process design, the possibilities to include them in the integrated approach
will be discussed in more detail in the following sections.
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6.5.3.1 Model-Based Solvent Selection
Solvent selection is an important issue in the design of processes with liquid multi-
phase systems. Therefore, it is desirable to include solvent selection in the metho-
dology for integrated process design. The proposed integration in the existing
methodology is shown schematically in Figure 6.21.

The superstructure can be extended by thermodynamic models of all potential sol-
vent candidates that have been selected based on expert’s knowledge or by com-
puter-aided solvent design as presented in Section 6.4. As the number of solvents
that have to be considered might be large at this stage and accurate thermodynamic
models will not be available for all of them, group contribution methods such as
UNIFAC-Do can be used for a first approximation of the thermodynamic behavior
(Section 6.3.3). Other options are, for example, the prediction by COSMO-RS as it
was explained in Section 6.3.3.
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Figure 6.21: Proposed integration of solvent selection in process design. Blocks that are not part of
the solvent selection procedure are marked in light gray.
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The selection of solvents can be modeled in the superstructure optimization by
binary variables, that is, one for each solvent. The maximum number of solvents
that are allowed can be restricted using an inequality constraint. Constraints may
have to be formulated to ensure that the desired behavior is reached. For example,
the number of phases during reaction and separation can be predefined, for exam-
ple, to ensure a single-phase reaction medium and a two-phase separation if a TMS
system is used, as it was done in the case study presented in Section 6.5.2.3.

After a first superstructure optimization of the process, more detailed thermo-
dynamic models can be derived for the most promising solvents. As described in
Section 3.1, the application of PC-SAFT provides an accurate prediction of complex
phase behavior, accounting for non-ideal interactions between the reactants/prod-
ucts and the solvents.

If such accurate models are not suitable for optimization, surrogate models as
discussed in Section 5.2.3 can be applied. These models are used to replace the
equations for the thermodynamic behavior in the process model. Following the
methodology discussed in Section 6.4.2, the uncertainties in these thermodynamic
models can then be reduced further until they do not influence the decision of the
optimal process anymore.

This procedure enables not only to identify one optimal solvent but also to con-
sider different numbers and combinations of solvents. Since the complete flow
sheet is considered and optimized, it is possible to select a solvent system that pro-
vides the best overall performance.

6.5.3.2 Model-Based Optimal Reactor Design
While superstructure optimization in process design is able to identify the optimal
interconnection and operation of elements from a set of preestablished, usually
manually selected, unit operations, the EPF methodology from Section 5.3.1 repre-
sents an approach to the design of optimal reactor–(separator) networks without
the necessity of a-priori knowledge about specific process units. This enables the
identification of non-intuitive, non-standard reactor networks and operation strate-
gies which might greatly improve the process performance.

While both approaches can be used for process development sequentially, a com-
bination of superstructure optimization with the EPF methodology as one building
block in the process design cycle represents a powerful addition to the integrated pro-
cess design framework. Figure 6.22 contains a schematic representation of the inter-
action between mbOED and superstructure optimization including reactor network
design via EPF. Two scenarios with different degrees of integration are possible.

Scenario 1: The flux-profile analysis (Section 5.3.1) is able to create reactor net-
work candidates which need to be implemented and analyzed rigorously in terms
of performance and cost [39]. Instead of manually comparing each of the reactor
network candidates, these candidates can be used directly as unit operations in the
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superstructure optimization. This integration enables the systematic evaluation of
all candidates not only with respect to the reaction performance but also on the pro-
cess scale, taking into account the downstream process (Figure 6.22).

Scenario 2: Instead of integrating reactor network candidates in the superstruc-
ture optimization, an “EPF reactor” with the extensions of axial dispersion, as dis-
cussed in Section 5.3.1, can be used as the sole reaction unit as shown by Hentschel
et al. [28]. The simultaneous optimization of the operating conditions of the EPF reactor
in the superstructure optimization replaces the inclusion of other reactor candidates
which have fewer DoF and, therefore, show inferior performance. As a consequence,
the superstructure is mainly used to identify the optimal downstream process and aux-
iliary process units. To incorporate the three-level approach to reactor network design
of the EPF methodology, an additional iteration loop around the superstructure optimi-
zation is necessary to include realistic technical approximations.
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Figure 6.22: Integration of EPF-based reactor network candidates in the integrated process design
framework. The interactions between superstructure optimization and EPF calculations are
highlighted in dark gray. Global parameter sensitivities are only available in the second iteration
cycle and therefore visualized with a dashed arrow.
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The integration of the EPF methodology in this framework also enables syner-
gistic effects. Consideration of uncertainty, especially parameter uncertainty, is of
major importance in reactor design and leads to a more robust reactor and process
performance. While Kaiser et al. [38] only considered the influence of uncertainty
on the reactor performance, the combination of the probabilistic reactor design
using sigma points with weights in the form of the global sensitivities with respect
to the entire flow sheet allows for improved robustness of the process with opti-
mally designed and operated reactor networks.

6.5.4 Summary

In this section, an integrated approach for model-based process development has
been discussed. Model-based Optimal Experimental Design is a useful tool to
identify model parameters with minimal experimental effort. However, usually, it
does not focus on specific parameters, for example, parameters that are relevant
for the uncertainty in the prediction of the final process costs. This can be over-
come by using the integrated approach. By performing superstructure optimiza-
tion under uncertainties, promising process designs can be identified and the
impact of the model uncertainties on the production costs can be estimated via
sensitivity analysis. Applying the computed sensitivities as weights in the mbOED
enables focusing the experiments on the cost-relevant parameters to get a faster
decrease of the parameter uncertainty. In this section, the application of this
methodology was presented for two different processes, namely the hydroformyla-
tion of 1-dodecene and the hydroaminomethylation of 1-decene.

Finally, options for the extension of the methodology to further important as-
pects of the process development, for example, optimal solvent selection and opti-
mal reactor design have been sketched briefly which are interesting fields for
further research.
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