日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Ural blocking driving extreme Arctic sea-ice loss, cold eurasia and stratospheric vortex weakening in autumn and early winter 2016-2017

MPS-Authors
/persons/resource/persons229842

Tyrlis,  Evangelos
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37254

Manzini,  Elisa       
Minerva Research Group Stratosphere and Climate, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37088

Bader,  Juergen
Director’s Research Group LES, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37258

Matei,  Daniela       
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
付随資料 (公開)
There is no public supplementary material available
引用

Tyrlis, E., Manzini, E., Bader, J., Ukita, J., Hisahi, N., & Matei, D. (2019). Ural blocking driving extreme Arctic sea-ice loss, cold eurasia and stratospheric vortex weakening in autumn and early winter 2016-2017. Journal of Geophysical Research: Atmospheres, 124, 11313-11329. doi:10.1029/2019JD031085.


引用: https://hdl.handle.net/21.11116/0000-0005-4768-7
要旨
This study investigates the dynamics that led to the repeated cold surges over midlatitude Eurasia, exceptionally warm conditions and sea ice loss over the Arctic, and the unseasonable weakening of the stratospheric polar vortex in autumn and early winter 2016-2017. We use ERA-Interim reanalysis data and COBE sea ice and sea surface temperature observational data to trace the dynamical pathways that caused these extreme phenomena. Following abnormally low sea ice conditions in early autumn over the Pacific sector of the Arctic basin, blocking anticyclones became dominant over Eurasia throughout autumn. Ural blocking (UB) activity was four times above climatological levels and organized in several successive events. UB episodes played a key role in the unprecedented sea ice loss observed in late autumn 2016 over the Barents-Kara Seas and the weakening of the stratospheric vortex. Each blocking induced circulation anomalies that resulted in cold air advection to its south and warm advection to its north. The near-surface warming anomalies over the Arctic and cooling anomalies over midlatitude Eurasia varied in phase with the life cycles of UB episodes. The sea ice cover minimum over the Barents-Kara Seas in 2016 was not observed in late summer but rather in mid-November and December shortly after the two strongest UB episodes. Each UB episode drove intense upward flux of wave activity that resulted in unseasonable weakening of the stratospheric vortex in November. The surface impact of this weakening can be linked to the migration of blocking activity and cold spells toward Europe in early winter 2017.