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Abstract.​ We conducted a comparative analysis of primate cerebral size and neocortical 
folding using magnetic resonance imaging data from 65 individuals belonging to 34 different 
species. We measured several neocortical folding parameters and studied their evolution using 
phylogenetic comparative methods. Our results suggest that the most likely model for 
neuroanatomical evolution is one where differences appear randomly (the Brownian Motion 
model), however, alternative models cannot be completely ruled out. We present estimations of 
the ancestral primate phenotypes as well as estimations of the rates of phenotypic change. 
Based on the Brownian Motion model, the common ancestor of primates may have had a 
folded cerebrum similar to that of a small lemur such as the aye-aye. Finally, we observed a 
non-linear relationship between fold wavelength and fold depth with cerebral volume. In 
particular, gyrencephalic primate neocortices across different groups exhibited a strikingly 
stable fold wavelength of about 12 mm (± 20%), despite a 20-fold variation in cerebral volume. 
We discuss our results in the context of current theories of neocortical folding. 

Introduction 
The human brain is the largest and most folded of those of extant primates. Much discussion 
has surrounded the question of whether its characteristics are due to a specific selection or to 
random drift. On the one hand, the large human brain may be just an expected result of 
descent with modification: That a primate brain has the volume of ours could not be surprising,  
as it would not be surprising to throw 10 times heads if we toss a coin a large enough number  
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of times. On the other hand, a large and profusely folded brain could be a selected trait, 
providing a significant adaptive advantage – the substrate for the sophisticated cognitive 
abilities that have enabled humans to thrive, multiply, and invest almost all ecosystems on 
earth. 
 
The evolution of human neuroanatomy has been studied for many years, with contradictory 
results regarding the question of a human exception. While several studies have suggested that 
different human neuroanatomical traits are outside the general primate trend (Rilling and Insel 
1999, Schoenemann et al 2005, Gazzaniga 2008), many others see a continuation (Prothero 
and Sundsten 1984, Zilles et al 1989, Semendeferi et al 2002, Herculano-Houzel 2009). A 
potential issue of most of these studies was the lack of an appropriate account of phylogenetic 
relationships. Phylogenetic relationships introduce violations of the assumption of statistical 
independence of observations: the phenotypes of closely related species are expected to be 
more similar than those of distant species. Indeed, even 2 completely random variables can 
appear as correlated if they are allowed to vary along a phylogenetic tree (Felsenstein 1985). 
 
Phylogenetic comparative methods aim at using information on the development and 
diversification of species – phylogenies – to test evolutionary hypotheses (Nunn and Barton 
2001, Nunn 2011). Today, gene sequencing allows us to build phylogenetic trees based on the 
differences across homologous genes in various species. It is furthermore possible to use the 
number of changes necessary to match the gene sequences of one species into those of 
another to estimate their time of divergence from a hypothetical common ancestor (Paradis 
2012). The lengths of the phylogenetic tree branches can then be made to represent the time 
of the progressive splits of the species at the tips of the tree, from a series of common 
ancestors (the nodes of the tree). 
 
Given such phylogenetic trees, we can build and test models of the evolution of phenotypic 
traits under different hypotheses. Three influential models of trait evolution are the Brownian 
Motion model (BM), the Ornstein-Uhlenbeck model (OU), and the Early-Burst model (EB). The 
Brownian Motion model supposes that phenotypic changes diffuse randomly along the tree 
(Cavalli‐Sforza and Edwards 1967, Felsenstein 1973, 1985). The phenotype of two species 
having split early from their common ancestor will then be less similar than that of species 
having recently split. The Ornstein-Uhlenbeck model supposes that phenotypic changes are not 
completely random, but tend towards specific values (Lande 1976, Hansen 1997, Cooper et al 
2015). These could be values which are particularly advantageous and have therefore a higher 
probability of being selected. Finally, the Early-Burst model (Harmon et al 2010) considers the 
possibility that phenotypic changes are initially faster (when a new adaptive regime is first 
invested), and then slow-down. 
 
Several recent studies have adopted phylogenetic comparative analysis methods to study the 
evolution of primate neuroanatomy (Smaers et al 2011, Barton and Venditti 2013a, Lewitus et al 
2014, Miller et al 2019). In particular, a series of reports have considered the question of the 
exceptionality of the size of the human prefrontal cortex relative to other primate species 
(Smaers et al 2011, 2017, Barton and Venditti 2013a, b). Some of these reports suggest an 
exceptionally large and significantly more asymmetric prefrontal cortex (Smaers et al 2011, 
2017, Smaers 2013), whereas others find it to be as large as expected (Barton and Venditti 
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2013a, b, Miller et al 2019). The problem does not appear to be settled, but the availability of 
published data on prefrontal grey and white matter volume has allowed researchers to contrast 
their different methodological approaches using the same data. 
 
Here we present a phylogenetic comparative analysis of primate neuroanatomy based on a 
sample of magnetic resonance imaging (MRI) data from 65 specimens coming from 34 different 
primate species. We acquired and made openly available high-resolution MRI data for 33 
specimens from 31 different species. This is part of an ongoing effort to digitise the Vertebrate 
Brain Collection of the National Natural History Museum of Paris. The remaining 33 specimens 
come from different openly accessible sources. All the data has been indexed in the 
collaborative neuroimaging website BrainBox ( ​http://brainbox.pasteur.fr​, Heuer et al. 2016), to 
facilitate access and foster community-driven data analysis projects. This dataset can be used 
to perform detailed analyses of neocortical anatomy, beyond volumetric measurements. We 
looked at several global measurements of neocortical folding, including estimations of global 
gyrification, total folding length, average fold wavelength and average fold depth. After 
considering various alternative evolutionary models, our results indicate that the BM model 
provided the best fit to the data, suggesting that random change may be a main force in 
primate neuroanatomical evolution. Based on the BM model, we provide estimations of the 
ancestral values for the different phenotypes under study, as well as estimations of the 
evolutionary rates of phenotypic change. All our analyses scripts have been made available in 
an accompanying GitHub repository: ​https://github.com/neuroanatomy/34primates​. 

Methods 

Data Sources 

Magnetic resonance imaging (MRI) data was obtained for 66 individuals across 34 different 
primate species. Thirty one brains from 29 species were obtained from the Vertebrate Brain 
Collection of the National Museum of Natural History (MNHN) of Paris (see information on Data 
Acquisition below). Eleven MRI datasets were downloaded from our Brain Catalogue website 
( ​https://braincatalogue.org ​): one crab-eating macaque, one gorilla, and 9 chimpanzees 
donated by the National Chimpanzee Brain Resource (NCBR, kindly provided by Chet 
Sherwood and William D. Hopkins, ​http://www.chimpanzeebrain.org ​). The bonobo, gibbon and 
a second gorilla were downloaded from NCBR, from within the data provided by James Rilling 
and Thomas Insel (Rilling and Insel, 1999). Three further macaque datasets, one rhesus 
macaque and two crab-eating macaques, were kindly provided by the Pruszynski Lab and 
downloaded from Zenodo (Arbuckle et al 2018). 8 additional macaque datasets, 4 rhesus and 4 
crab-eating macaques, were downloaded from the IoN site of PrimeDE (Milham et al 2018). 
Finally, the surfaces from 10 human brains were selected and downloaded from the New York 
site of the ABIDE 1 dataset, through the ABIDE preprocessed project 
( ​http://preprocessed-connectomes-project.org/abide​, Craddock et al 2013). These subjects 
were unaffected controls, 20 to 30 years old, and had a good quality surface reconstruction 
upon expert visual examination. A list of the included species can be found in Table 1. Scripts 
to automatically download these datasets are available in the accompanying GitHub repository: 
https://github.com/neuroanatomy/34primates​. 
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Data Acquisition 

The 31 brains from the Vertebrate Brain Collection of the MNHN were scanned at the Center 
for Neuroimaging Research (CENIR) of the Institut du Cerveau et de la Moëlle Épinière (ICM, 
Paris, France). High resolution MRI images were acquired using either a 3T Siemens Tim Trio 
system, a 3T Siemens Prisma, or an 11.7T Bruker Biospec. Each dataset was acquired with a 
3D gradient-echo sequence (FLASH). Parameters (Field of View, Matrix size, TR, TE) were 
adjusted so as to obtain the highest resolution possible with our scanner (from 100 to 450 µm 
isotropic). TR and TE were always chosen as minimum. Flip angle was fixed to 20° at 3T and 
10° at 11.7T. The number of averages was chosen to maintain a scanning time below 12 
hours. 

Data Preprocessing 

The MRI data from the MNHN was converted to Nifti 1 format (Cox et al 2004) using FLS 
5.0.10 (Jenkinson et al 2012, ​https://fsl.fmrib.ox.ac.uk​) and dcm2niix (Chris Rorden, version 
v1.0.20170724, ​https://www.nitrc.org/projects/mricrogl/​). We used our web tool Reorient 
( ​https://github.com/neuroanatomy/reorient​) to rotate the brains so that the sagittal plane was 
always straight, the superior/inferior directions were respected (we cannot verify whether the 
left/right orientations are correct, we only assume they are, and we visually check that no flips 
were introduced by our analysis pipeline), and the axis of the corpus callosum is horizontal. We 
also used Reorient to crop the brains. All this MRI data was uploaded to Zenodo 
( ​https://zenodo.org ​), and the links are provided in the accompanying GitHub repository. 
 
The chimpanzees, the bonobo, the gibbon and the gorilla from the NCBR were converted to 
Nifti 1 format, and we used the DenoiseImage tool included in ANTs (Avants et al 2009) to 
improve the signal-to-noise ratio. The data was then reoriented and cropped using Reorient, 
contrast inhomogeneities were corrected using N4BiasFieldCorrection from ANTS (Tustison et 
al 2010), and finally the intensity range was manually limited to prevent regions with high 
intensity from affecting the global contrast (usually the optic nerves). The chimpanzee data was 
processed using Freesurfer (Dale et al 1999, Fischl et al 2001) using the script 
recon-all-chimps.sh in the accompanying GitHub repository. 

Data quality control 

Our data comprise post mortem as well as in vivo MRI scans and vary in tissue conservation, 
resolution and signal-to-noise ratio. Some of the MRIs include only the extracted brain, others 
include the brain and the skull, and finally a few others include the entire body of the animal. We 
generated images of one coronal, axial and sagittal slice using Nilearn (Abraham et al 2014) to 
perform a first visual quality control. A thorough visual quality control was later performed during 
the manual segmentation stage. 
 
Quantitative indications of data quality were obtained by measuring signal-to-noise ratios: We 
computed the ratio of the signal of interest divided by the standard deviation of the background 
(region without signal). The background region of interest was automatically detected by 
identifying the first peak in the MRI's histogram. 
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The signal of interest was defined based on the histogram of the MRI after removing the voxels 
from the background. We then detected the histogram's peak and selected the position of 
maximum density. When several peaks were detected, we excluded the first one – most often 
related to CSF or the fixative fluid in ex vivo brains – and used the average position of the 
remaining peaks as the mean signal of interest. The results are provided in Supplemental Table 
S1. 

Manual segmentation and surface reconstruction 

All the MRI data, except for the chimpanzees and the humans, were segmented using 
BrainBox (Heuer et al 2016, ​http://brainbox.pasteur.fr​), a Web application for the visualisation, 
annotation and real-time collaborative segmentation of MRI data. Offline, we used 
StereotaxicRAMON, Thresholdmann, Segmentator and ITK-SNAP to generate a first mask of 
the cerebrum. StereotaxicRAMON ( ​https://github.com/neuroanatomy/StereotaxicRAMON​) 
provides manual editing tools, a series of topology-preserving mathematical morphology 
operators, as well as a real-time 3D visualisation of the manual segmentations. Thresholdmann 
( ​https://github.com/neuroanatomy/thresholdmann​) enables the generation of binary 
segmentation masks by using a threshold that can be adjusted locally: the value of the 
threshold at intermediate points is then interpolated using radial basis functions. Segmentator 
(Gulban et al 2018a, b, ​https://github.com/ofgulban/segmentator​) enables the generation of 
binary segmentation masks through the interactive manipulation of a 2-D histogram where the 
x-axis represents grey level and the y-axis represents the magnitude of the gradient at each 
point of the image. Finally, ITK-SNAP (Yushkevich et al 2006, ​http://www.itksnap.org ​) is a 
general tool for manual medical image segmentation. 
 
The semi-automatically obtained masks were uploaded to BrainBox, where we created a 
project centralising all the data. The BrainBox project can be accessed here: 
http://brainbox.pasteur.fr/project/BrainCataloguePrimates​. The main manual segmentation 
tasks performed in BrainBox involved removal of the cerebellum, brainstem and optic nerves; 
delineation of sulci missed by the automatic segmentation; and reconstruction of damaged 
tissue parts (see Figure 1 for examples). After manual segmentation was finished and reviewed 
by at least one more person, we implemented a script in Python 3.6 to download all the data 
using BrainBox’s RESTful API (the script is included in the accompanying GitHub repository). 
The manually segmented masks were then transformed into triangular meshes using the CBS 
tools (Bazin et al 2014, ​https://www.nitrc.org/projects/cbs-tools​). The workflow included the 
following steps: mask binarisation, transformation of the mask into a probability function, and 
extraction of an isosurface using the connectivity-consistent Marching Cubes algorithm (Han et 
al 2003). 
 
All meshes were then processed using the following steps: soft Laplacian smoothing to remove 
the shape of voxels, decimation down to 3 vertices per mm​2 
( ​https://github.com/cnr-isti-vclab/vcglib/tree/master/apps/tridecimator​), removal of isolated 
vertices, and non-shrinking Taubin smoothing (Taubin 1995), implemented in our tool Mesh 
Geometry ( ​https://github.com/neuroanatomy/meshgeometry​), to remove further geometric 
artefacts. 
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Figure 1. ​Examples of segmentation tasks. (a) Cerebrum masks were obtained using different 
semi-automatic methods. These masks often failed to properly segment sulci, as pointed by the white 
arrow. (b) Manual segmentation of the cerebrum involved the removal of the cerebellum, brainstem and 
optic nerves, and the exclusion of the sulci, (c) as well as reconstructing damaged tissue parts as pointed 
by the arrow.  
 

Neuroanatomical measurements 

We used Mesh Geometry to compute the volume, surface, absolute gyrification index, folding 
length, and estimated number of sulci for each mesh. We define the absolute gyrification index 
as the ratio between the surface of a cerebral hemisphere mesh and the surface of a sphere of 
the same volume as the hemisphere’s volume. Because the sphere is the solid with the least 
surface for a given volume, this provides an absolute index of the “excess” of surface of a 
cerebrum: A sphere has then an absolute gyrification index of 1 (the minimum), and in our 
measurements a human cerebrum has an absolute gyrification index of about 4. The folding 
length measures the total length of the curves dividing sulci from gyri (as measured using a 
mean curvature map). This measurement is conceptually similar to the gyral length 
measurement used by Prothero and Sundsten (1984) or the sulcal lengths referenced by Zilles 
et al (1989), however, those measurements were performed only on the surface or even in 
endocasts. The estimated number of sulci is obtained by counting all the regions with negative 
mean curvature (the sulci). 
 
We use the cerebrum mesh surface area ( ​S​), volume ( ​V​) and the folding length ( ​L​) to estimate 
the average wavelength ( ​W​) and depth of the folds ( ​D​) in a cerebrum (see Figure 2). The total 
surface of a cerebrum mesh can be thought as the multiplication of its total folding length times 
the average profile of a fold (the curve that goes from an inflexion point, up to the gyral crest, 
down to the sulcal fundus, and up to the next inflexion point). Furthermore, we can use the 
convex hull of each hemisphere – scaled to have the same volume ​V​ as the hemisphere – to 
estimate the total surface of its hypothetical unfolded version. In this unfolded version of the 
hemisphere the profile of a fold is simply the wavelength of the fold (as the sulcal depth is 0). 
The average wavelength ( ​W​) of folding in the cerebrum can be estimated as the ratio between 
the surface area of the convex hull ( ​S ​h​) and half the total folding length ( ​L​): 

.S /LW ≈ 2 h  
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Figure 2. ​ Neuroanatomical measurements. (a) Absolute gyrification index as the “excess” of the cerebral 
surface over the surface of its convex hull, normalised to have the same volume. Here illustrated over the 
surface of a bonobo brain. (b) Folding length – the total length of the curves dividing sulci from gyri, 
shown as dashed lines over the surface of a bonobo brain. (c) Schematic illustration of the 
neuroanatomical measurements used in our equations.  
 
 
If we further approximate, as Prothero and Sundsten (1984), the profile of a fold to be like a 
square function (folds going straight up and down), we have that the total surface of the 
cerebrum mesh should be: 

.W D)L/2S ≈ ( + 2  

In the case of the hypothetical unfolded version of the mesh, the surface should be 

L/2Sh ≈ W  

(because D=0). We then have that 

.S )/LD ≈ ( − Sh  

We used Mesh Geometry to split the left and right hemispheres, and the command line qhull 
(Barber et al 1996, ​http://www.qhull.org ​) to compute their convex hulls. The scripts necessary 
to compute all these measurements are available in the accompanying GitHub repository. 

Statistics and phylogenetic comparative analyses 

We downloaded phylogenetic tree data for our 34 primate species from the 10k trees website 
(Arnold et al 2010, ​https://10ktrees.nunn-lab.org/Primates/downloadTrees.php ​). This website 
provides a Bayesian inference of primate phylogeny based on 17 genes. We obtained the 
consensus tree as well as a sample of 100 trees in proportion to their posterior probabilities. 
 
We used R 3.5.0 (R Core Team 2018, ​http://www.R-project.org ​) for our statistical analysis. 
Measurements of surface area, volume, folding length and folding number varied over several 
orders of magnitude and were log-transformed before analysis. Phylogenetic independent 
contrasts (PICs, Felsenstein 1985) were computed using the packages ape (Paradis 2012) and 
phytools (Revell 2011), with multiple observations per species. 
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We fitted different evolutionary models (Brownian Motion, Ornstein-Uhlenbeck with a single 
alpha, with one alpha per phenotype, with a full multivariate matrix of alpha values, and the 
Early Burst model) using the package Rphylopars (Goolsby et al. 2016), which allows the 
analysis of multivariate phenotypes with multiple observations per species. 
 
The Brownian Motion (BM) model supposes that phenotypes diffuse randomly through the 
branches of the phylogenetic tree with intensity controlled by the parameter σ (σ​2​ is the variance 
of the Brownian process). Under the BM model, phenotypes of species that have diverged 
recently should then be more similar than those of species that have diverged earlier. The 
Ornstein-Uhlenbeck (OU) model supposes that phenotypic variation is not only random, but is 
also attracted to an evolutionarily advantageous value, with a strength controlled by the 
parametre alpha (when alpha=0, the OU model is equivalent to the BM model). Finally, the Early 
Burst (EB, Harmon et al 2010) model supposes that the speed of phenotypic change can be 
faster at some point (when a new adaptive zone is invested) and slow-down after. When the 
rate parametre r in the EB model is r=0, the model reduces to the BM model, and negative 
values indicate rates of change that decrease through time. 
 
We used the Akaike Information Criterion (AIC) values for the fit of each of these models to 
select among them (a smaller value indicates a better fit). Following the criteria of Burnham and 
Anderson (2004), we considered that an AIC difference between 4 to 7 suggests considerable 
less support for the model with larger AIC value, and a difference larger than 10 suggests 
essentially no support for the model with larger AIC value. 

Results 

Data collected 

We obtained cerebrum surface reconstructions for 65 individuals from 34 different primate 
species (we excluded only 1 specimen from the original 66 datasets collected, a red howler 
monkey, due to extensive tissue damage. The MRI is nevertheless available in the BrainBox 
project as well as in Supplemental Table S1). Table 1 displays the complete list of species 
included, the number of individuals per species, and information on provenance. Figure 3 
shows dorsal views of our reconstructions conserving a homogeneous scale (only one 
individual per species). The amount of neocortical folding was strongly related to cerebral 
volume: small ​Strepsirrhini​ primates had a basically unfolded neocortex, as well as several of 
the ​Platyrrhini ​ primates (New World monkeys) in our sample. When folds appeared, their 
pattern was strongly left-right symmetric in small cerebra and became progressively more 
asymmetric in the larger ​Papionini​ and ​Hominoidea​ brains. 
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Name  Binomial Name (GenBank)  N  In vivo  Extracted  Provenance 
Lemuriformes 
    Aye-aye  Daubentonia madagascariensis  1  No  No  MNHN 
    Black-and-white ruffed lemur  Varecia variegata variegata  1  No  No  MNHN 
    Coquerel's mouse lemur  Mirza coquereli  1  No  No  MNHN 
    Grey mouse lemur  Microcebus murinus  1  No  No  MNHN 
    Mongoose lemur  Eulemur mongoz  1  No  No  MNHN 
    Red-tailed sportive lemur  Lepilemur ruficaudatus  1  No  No  MNHN 
    Ring-tailed lemur  Lemur catta  1  No  Yes  MNHN 
Loridae 
    Red slender loris  Loris tardigradus  1  No  Yes  MNHN 
Galagonidae 
    Demidoff's galago  Galago demidoff  1  No  No  MNHN 
Cebidae 
    Black-pencilled marmoset  Callithrix penicillata  1  No  Yes  MNHN 
    Cotton-top tamarin  Saguinus oedipus  1  No  Yes  MNHN 
    Douroucouli  Aotus trivirgatus  1  No  No  MNHN 
    Squirrel monkey  Saimiri sciureus  2  No  Yes  MNHN 
    Tufted capuchin  Cebus apella  1  No  No  MNHN 
    White-faced sapajou  Cebus capucinus  1  No  Yes  MNHN 
Atelidae 
    Black spider monkey  Ateles paniscus  2  No  No  MNHN 
    Woolly monkey  Lagothrix lagotricha  1  No  Yes  MNHN 
Cercopithecini 
    Green monkey  Chlorocebus sabaeus  1  No  Yes  MNHN 
    Moustached guenon  Cercopithecus cephus cephus  1  No  Yes  MNHN 
Papionini 
    Crab-eating macaque  Macaca fascicularis  8  No, Yes, Yes  Yes, No, No  BC, PL, PDE 
    Grey-cheeked mangabey  Lophocebus albigena  1  No  Yes  MNHN 
    Hamadryas baboon  Papio hamadryas  1  No  Yes  MNHN 
    Rhesus monkey  Macaca mulatta  6  No, Yes, Yes  Yes, No, No  MNHN, PL, PDE 
    Sooty mangabey  Cercocebus atys  1  No  Yes  MNHN 
Colobinae 
    Hanuman langur  Semnopithecus entellus  1  No  Yes  MNHN 
    Indochinese lutung  Trachypithecus germaini  1  No  No  MNHN 
    King colobus  Colobus polykomos  1  No  Yes  MNHN 
Hominoidea 
    Bonobo  Pan paniscus  1  Yes  No  NCBR 
    Chimpanzee  Pan troglodytes troglodytes  9  Yes  No  NCBR 
    Gibbon  Hylobates lar  1  Yes  No  NCBR 
    Gorilla  Gorilla beringei  1  No  Yes  BC 
    Gorilla  Gorilla gorilla  1  Yes  No  NCBR 
    Human  Homo sapiens  10  Yes  No  ABIDE 1 
    Orangutan  Pongo pygmaeus  1  No  No  MNHN 
 
Table 1. ​ List of species included. ABIDE 1: Autism Brain Imaging Data Exchange 1. BC: Brain 
Catalogue. MNHN: Muséum Nationale d’Histoire Naturelle de Paris. NCBR: National Chimpanzee Brain 
Resource. PL: Pruszynski Lab. PDE: PRIMate Data Exchange (PRIME-DE).  
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Figure 3. ​ Dorsal view of the reconstructed cerebral hemispheres of 34 different primate species. Colours 
represent the different clades, and brains are represented from largest on top to smallest at the bottom. 
The scale is the same for all brains. High-res version: ​https://doi.org/10.5281/zenodo.2538751 
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Neuroanatomical measurements 

The relationships among all our neuroanatomical measurements are illustrated in Figure 4. 
Surface area and volume correlated strongly (R​2​=0.99, p≪1) with a positive allometric scaling 
coefficient beta=0.82. There was also a strong positive correlation with our absolute gyrification 
index (AbsGI), total folding length, and folding number count. Our estimations of average fold 
wavelength and average fold depth exhibited an interesting, non-linear relationship with cerebral 
volume. Despite a > 3-fold variation in volume between humans and chimpanzees, and a  
> 20-fold variation in volume between humans and the crab-eating macaque, the average fold  
wavelength changed only from about 11 mm in the human sample, 12 mm in the chimpanzee 
sample and the bonobo (less than 1.1-fold), to 14 mm in the crab-eating macaque sample (less 
than 1.3-fold). In the group of primates with small cerebra, the estimation of average fold 
wavelength is to be interpreted cautiously. It was often the case that a few folds would develop 
in a largely smooth cerebrum, rendering the notion of wavelength difficult. This can be observed 
in Figure 5a, which shows the relationship between cerebral volume and average fold 
wavelength. What could be interpreted as very wide folds in the smaller cerebra may reflect 
indeed the presence of a single fold within an essentially lissencephalic cerebrum. Interestingly, 
as cerebral volume increases and the notion of wavelength becomes more relevant, we 
observe a progressive stabilisation of the fold wavelength. A similar but opposite trend can be 
observed for our estimation of the average fold depth (Figure 5b). For small, lissencephalic 
cerebra, the value is close to 0 (as expected), increases rapidly with cerebral volume up to 6 
mm, and tends to stabilise and increase slowly up to 10 mm in humans (8 mm in the 
chimpanzees and the bonobo, 6 mm in the crab-eating macaque, Figure 5b). 

Phylogenetic comparative neuroanatomical analyses 

Figure 6 shows the consensus phylogenetic tree used in our analyses. The branch length 
represents an estimation of time since split from a common ancestor. The number of 
specimens per species is indicated in parenthesis, and we provide a grouping of different  
 
 

Model  AIC 

Brownian Motion (Pagel’s λ=1)  -956.31 

Ornstein-Uhlenbeck, single alpha  -948.97 

Early Burst  -947.10 

Star (Pagel’s λ=0)  -923.41 

Ornstein-Uhlenbeck, diagonal alpha matrix  -909.79 

Ornstein-Uhlenbeck, full alpha matrix  -698.53 

 
Table 2. ​ Phylogenetic model selection. Different models of phenotypic evolution were fitted to the data 
and ranked by their AIC (smaller values indicate a better fit). 
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Figure 4. ​Scatterplots of neuroanatomical measurements. The scatterplots show the correlation 
between all pairs of measurements used in this study. A Log10 transformation was used on 
measurements that varied over several orders of magnitude, such as surface area or volume. The red 
curve is a locally estimated scatterplot smoothing (LOESS). 
 
 
species (tips of the tree) in families and clades. The best fit for the variation of neuroanatomical 
phenotypes along the phylogenetic tree was obtained for the BM model: a random change in 
phenotypes with variability depending on phylogenetic distance. The differences in model fit 
(AIC values) suggest considerably less support for the 2 ​nd ​ and 3 ​rd ​ best models – the OU model 
with a single alpha value, and the EB model – and essentially no support for all the other 
models (see Table 2). Our following analyses focus therefore on the results obtained assuming 
the BM model. 
 
The analyses of phenotypic relationships including phylogenetic information (Figure 7) agree in 
essence with the previous analyses of the raw data (Figure 4). The role of phylogeny is, 
however, strong and statistically significant. Pagel (1999) suggested a strategy to test for the 
importance of the phylogenetic signal which relies on a modification of the branch lengths (and 
therefore of the phylogenetic variance-covariance matrix). The out-of-diagonal elements of the 
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variance-covariance matrix are multiplied by a value λ, 0≤λ≤1. When λ=1, the results are 
equivalent to those of the BM model. When λ=0, all species are supposed to be independent 
(producing a phylogenetic tree with a “star” shape). The log-likelihood of the λ=1 model was 
strongly significantly larger than that of the λ=0 model (534.3 versus 517.7, χ​2​=33.1, 
p-value≪1). 
 
The estimation of ancestral neuroanatomical phenotypes based on the BM model suggests a 
general increase in cerebral volume and neocortical surface in the ​Catarrhini​ branch, 
progressing along the ​Hominoidea​ branch and reaching its maximum among ​Homininis​ (Figure 
8). Interestingly, within the ​Platyrrhini​ branch, both within the ​Cebidae​ family (the tufted 
capuchin) and the ​Atelidae​ family, some species exhibit an increase in cerebral volume, which 
corresponds with an increase in the number of folds and the emergence of neocortical folding 
asymmetries. The phenograms (Figure 9) show a different perspective on the same data, where 
the vertical axis represents time, the horizontal axis represents phenotype, and the phylogenetic 
relationships are represented by a branching pattern linking the phenotypes of extant species 
with those predicted for their common ancestors. We can observe a continuous evolutionary 
increase in cerebral volume, surface area, folding length, etc., from the common ancestor of all 
primates to humans (highlighted in red), but more complex patterns of increases and decreases 
for other species. Interestingly, we can also see that for the largest part of species with a highly 
folded neocortex, the average folding wavelength clusters in a small range between 11 to 14 
mm (highlighted in blue). 
 
 

 

Figure 5. ​ Relationship between cerebral volume, fold wavelength and fold depth. (a) Fold wavelength 
versus cerebral volume. Fold wavelength was conserved among almost ⅔ of species with relatively large 
brains. Among the remaining species with small, lissencephalic, brains the estimation of fold wavelength 
is not well defined and provides values which roughly correspond to the size of the brain. (b) Fold depth 
versus cerebral volume. The relationship between fold depth and cerebral volume also shows an inflexion 
point separating species with small and large brains. It increases steeply when brains have only a few 
folds (which become deep rapidly) and more softly when brains have profuse folding. The colours of the 
data points correspond to their clades, and several representative species are annotated to facilitate 
comparison. 
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Figure 6. ​Phylogenetic tree. The phylogenetic tree represents a Bayesian inference of primate phylogeny 
based on genotyping data of 17 genes. The time of split of tree branches is provided in a scale of millions 
of years ago (Mya). The colour bar as well as the colours of the brains represent their clades (as in Fig. 3). 
The number of MRIs used for each species is provided in parenthesis besides each species’ name. 

Discussion 
The study of the evolution of the primate brain should allow us to better understand the origin of 
our own cognition. It should also provide information on the sources of normal and pathological 
variability of human neuroanatomy — a major challenge for neuroscience today (Zilles and 
Amunts 2013). In a similar way as the analyses of genomes for multiple species allow us to 
detect highly conserved or rapidly evolving regions, an analysis of neuroanatomical evolution 
and conservation should allow us to detect the traces of evolution in different brain systems 
and regions. It should also allow us to evaluate the degree of phenotypic conservation across 
species, providing a framework to better understand natural variability, and to distinguish it from 
pathological variability. 
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It is difficult, however, to access and to analyse comparative primate brain data, by contrast to 
genetics where large open access databases such as GenBank (Benson et al 2017) provide 
information on thousands of different species. The series of reports by Stephan and Frahm 
(Stephan et al 1981, 1991, Frahm et al 1982) on regional brain volumes have been an important 
reference for the field, and their data tables have been used by many comparative brain 
analyses through the years. Primate brain MRI data is on the contrary only available for a few 
selected species. Two important resources are the PRIMate Data Exchange Initiative 
(PRIME-DE, Milham et al 2018, ​http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html ​) and the 
National Chimpanzee Brain Resource ( ​http://www.chimpanzeebrain.org ​). PRIME-DE shares 
open MRI data mostly for rhesus and crab-eating macaques, and NCBR shares open MRI data 
for several chimpanzee brains plus 9 other primate species (squirrel monkey, capuchin monkey,  
 
 

 

Figure 7. ​Phylogenetic comparisons of the neuroanatomical phenotypes. Scatterplots comparing each 
pair of neuroanatomical measurements, taking into account the phylogenetic relationships. The 
consensus phylogenetic tree was used to obtain phylogenetic independent contrasts (PIC), which were 
then used in the comparisons. Measurements varying over several orders of magnitude were Log10 
converted. 
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rhesus macaque, sooty mangabey, baboon, gibbon, orangutan, gorilla, and bonobo. Access to 
additional chimpanzee MRI data is available upon request). Another notable open data resource 
is the Macaque Neurodevelopmental Data project (Young et al 2017) which shares open 
longitudinal MRI data for 32 rhesus macaques. Although large MRI data samples have been 
acquired for other species by several groups (for example, Phillips and Sherwood 2008, Fears 
et al 2011, Love et al 2016), their access policy is less clear. 
 
Here, we provide open access to a collection of 66 brain MRI datasets from 34 different 
primate species. These MRIs can be directly visualised and annotated in BrainBox using just a 
Web browser. In addition to indexing some of the data already online, we have scanned and 
made available 31 primate brain MRIs from 29 different species (23 species not previously 
available online), most of them with an isotropic resolution of 300 microns. We used Zenodo 
( ​https://zenodo.org ​) for storing the data. By using Zenodo each dataset is assigned a persistent 
identifier (digital object identifier, DOI), which facilitates data citation, tracking authorship and 
provenance. Other researchers willing to share their MRI data could similarly store it in Zenodo 
and index the URL in BrainBox. This would enable the decentralised creation of a 
community-curated collection of primate MRI data (the complete process of uploading the data 
and indexing it in BrainBox should not take more than 15 minutes). Using BrainBox, we were 
able to manually segment our MRI data, and to create topologically correct 3D surface 
reconstructions. The scripts necessary to programmatically download all our data and 
reproduce our statistical analyses are available on GitHub 
( ​https://github.com/neuroanatomy/34primates​). Our aim is to make the data easily accessible 
to facilitate collaborative projects, reproducibility, and to encourage neuroscientists and citizen 
scientists to participate in advancing our understanding of primate brain diversity and evolution. 
 
We have used this collection to study the variation and evolution of neocortical folding in 
primates. Previous comparative analyses of primate brain folding (for example, Prothero and 
Sundsten 1984, Zilles et al 1988, Rilling and Insel 1999, Semendeferi et al 2002, Lewitus et al 
2014) have relied on 2-D measurements of gyrification indices. Using 3D meshes enables an 
extended set of neuroanatomical analyses to be performed, such as shape analyses, spectral 
analyses, surface-based alignment, among others. Here, we used surface-based maps of 
mean curvature to measure total folding length. Folding length varied from less than 4 cm in the 
grey-mouse lemur to up to 16 m in humans. We derived approximations of the average fold 
wavelength and fold depth. A well-known problem of the classical gyrification index (GI, Zilles et 
al 1988, 1989) is its difficulty to distinguish a brain with a few deep folds from one with a 
profusion of shallow folds. Zilles’s GI is computed for a coronal brain slice as the ratio between 
the pial contour and the contour of a hypothetical lissencephalic version of the brain. In 3D, 
Zilles’s GI is often approximated as the ratio between the neocortical surface and the surface of 
its convex hull, which exhibits again the same issue. Spectral analyses of brain folding offer a 
solution to the problem, however, their interpretation is not often trivial or intuitive. Our fold 
wavelength and fold depth estimations combine the measurement of cerebral surface area with 
the measurement of folding length to provide an intuitive decomposition of brain folding, free 
from the problem of GI-like estimations. Given two cerebra with the same surface area, similar 
convex hull (i.e., similar GI), but different number of folds, the one with the largest number of 
folds will also have a larger folding length, and in consequence a smaller fold wavelength and 
fold depth than the other. 
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Figure 8. ​ Estimated ancestral neuroanatomical phenotypes. The ancestral estimations of each 
phenotype were obtained using a Brownian Motion model of phenotypic evolution. Their values are 
represented in colour over the consensus phylogenetic tree. The species at the tip of the tree are 
indicated in the lower-right tree. 
 
 
We observed an interesting, non-linear relationship between fold wavelength and fold depth 
with cerebral volume. The fold wavelength and fold depth estimations were conceived with 
highly folded brains in mind (such as those of humans or other ​Hominoidea​). In smaller, 
smoother brains, such as those of some ​Strepsirrhini ​ and ​Platyrrhini​ primates, there are only 1 
or 2 folds within each hemisphere, and it is not clear sometimes what a “gyrus” would be. In 
these cases, our fold wavelength estimations give estimates of about 3 cm, which corresponds 
more or less to the size of a complete hemisphere (as if the complete hemisphere were a single  

 
 

17 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 13, 2019. ; https://doi.org/10.1101/379750doi: bioRxiv preprint 

https://doi.org/10.1101/379750
http://creativecommons.org/licenses/by/4.0/


 

 
 
Figure 9. ​ Phenograms of estimated ancestral neuroanatomical phenotypes. Phenograms provide an 
alternative visualisation of ancestral phenotype estimations. The value of each phenotype is represented 
in the x-axis against time in the y-axis. The tree nodes and tips are displaced to their estimated 
phenotype versus time positions. The estimation of phenotypic evolution along the branch leading from 
the common ancestor to humans is highlighted in red. The light-blue region in the phenogram for fold 
wavelength highlights the group of large-brain primate species whose fold wavelength ranges between 
11 and 14 mm. 
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Figure 9 (continuation) 
 
 
fold). As soon as the number of sulci increased, we observed that fold wavelength decreased 
and stabilised at a value of about 12 mm (± 20%) across different primate groups, and despite 
cerebral volumes ranging from ~50cm​3​ (crab-eating macaque) to 1000 cm​3​ (humans) – a 
20-fold variation. This stability in fold wavelength is in agreement with mechanical theories of 
neocortical folding (Toro and Burnod 2005, Toro 2012, Tallinen et al 2014, 2016, Foubet et al. 
2018, Heuer and Toro 2019) which predict that fold wavelength should depend on the bending 
stiffness of the neocortex, strongly determined by cortical thickness. Indeed, the thickness of 
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the neocortex changes very little across mammalian species (Mota and Herculano-Houzel 
2015). In our sample, the cortical thickness of the small Demidoff’s galago was ~1.5 mm 
(similar to that of a mouse), and ~2.5 mm in humans (see also Fischl and Dale 2000). Cortical 
thickness, and consequently cortical bending stiffness should be relatively stable across 
primate species, leading to the stable fold wavelength that we observed in our data. The fast 
initial decrease in fold wavelength should be due to the emergence of new folds as the 
neocortex expands. Once neocortices are fully folded, the following slow decrease in fold 
wavelength could be related to frequency doubling – the formation of folds within folds – as 
observed in swelling gel experiments (Mora and Boudaoud, 2006). Neocortical mechanics 
could lead to the formation of stable neuroanatomical modules – the folds – which could then 
become the basis for the adaptation and selection of advantageous cytoarchitectonic, 
connective and functional organisations, a kind of mechanical canalisation process 
(Waddington 1942, Müller 2007, Foubet et al 2018, Heuer and Toro 2019). A future analysis of 
fold wavelength and thickness, potentially local instead of only global, should allow us to better 
understand this relationship across and within species. 
 
Our phylogenetic comparative analyses suggested that random phenotypic change may be an 
important driving force in the evolution of primate neocortical folding. After fitting several 
alternative evolutionary models, the Brownian Motion (BM) model captured better the variability 
in the data than the Ornstein-Uhlenbeck (OU) and Early-Burst (EB) models ( 2 ​nd ​ and 3 ​rd ​ best 
ones). The difference in fitting quality was not enough, however, to outrule the OU and EB 
models. Future analyses with larger samples should allow us to progress further in this respect. 
While the BM model supposes that phenotypic variation along the phylogenetic tree is random, 
the OU and EB models suppose the presence of advantageous phenotypes which drive 
evolution. It is important to note that the BM model is not incompatible with adaptive evolution 
(Nunn 2011). The driver of the random changes can still be natural selection, but with changes 
in the selective regime independent of previous changes and more common along longer 
branches (probably due to rapidly changing environmental conditions). In all cases, the 
importance of phylogenetic relationships was strong and highly statistically significant: a star 
phylogenetic model – one where all species are considered to be independent – had a 
substantially less good fit to the data than the top 3 models. 
 
Based on the BM model, the common ancestor of all primates, 74 million years ago, may have 
had a cerebrum similar to that of a small lemur: with a surface area of 50 cm​2​, a volume of 12 
cm​3​, an absolute gyrification index of 2, a folding length of 37 cm, and about 25 folds, of an 
average wavelength of 20 mm and with a depth of about 3 mm, that is, not very different from 
that of a mongoose lemur or an aye-aye. Our estimation of global gyrification (AbsGI = 2.1, 
95% CI from 1.3 to 2.8) is not much higher than that provided by the previous phylogenetic 
comparative analysis of Lewitus et al (2014), which gave a GI=1.41 for the common ancestor of 
primates (AbsGI is also expected to be higher than GI). The increase in volume and gyrification 
observed in the large ​Catarrhini​ (the group containing humans but also macaques) may have 
started about 40 million years ago, but probably only about 7 million years ago (about the time 
of the last common ancestor of humans and chimpanzees) in the branch leading to ​Cebidae, 
such as the white-faced sapajou or the tufted capuchin. Lissencephaly, as observed in 
Platyrrhini,​ such as the cotton-top tamarin and the black-pencilled marmoset, may have 
evolved from a gyrencephalic ancestor about 20 million years ago. 
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Lewitus et al (2014) and more recently Lewitus et al (2016) have suggested that the process 
leading to gyrencephaly may have emerged at least twice during mammalian evolution. As an 
example of such process they cite the results of Reillo et al (2010) or more recently De Juan 
Romero et al (2015). These studies suggest that gyri are produced by local bulging due to a 
genetically programmed increase in neurogenesis. Instead of explaining the evolutionary gain or 
loss of folding by a complex readjustment of the genetic patterning of the neocortex, it seems 
to us that mechanical theories provide a more parsimonious explanation for our data: 
neocortical folding would appear and disappear as soon as neocortical growth relative to the 
growth of the white matter substrate goes beyond or under the mechanical buckling threshold. 
The highly conserved fold wavelength that we observed would simply reflect a similar 
neocortical stiffness across species instead of a more complex genetic patterning process 
appearing and disappearing through the ages. Within the context of mechanically produced 
folding, genetics would have a more subtle role, providing a meta-level of regulation and 
selection of structures which appear by physical necessity instead of a detailed prescription of 
each fold. Some small insects are able to stand on top of the water in a pond, an ability that 
larger insects do not exhibit. It seems more parsimonious to explain this through the water’s 
surface tension than by a complex cascade of genetic processes leading to the ability of very 
different species of larger insects to sink. 
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