Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Macromolecular and electrical coupling between inner hair cells in the rodent cochlea

MPG-Autoren
/persons/resource/persons238096

Jean,  P.
Auditory Neuroscience, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons229531

Steyer,  A. M.
Electron microscopy, Neurogenetics, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons239996

Nardis,  C.
Electron microscopy, Neurogenetics, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons182306

Möbius,  W.
Electron microscopy, Neurogenetics, Max Planck Institute of Experimental Medicine, Max Planck Society;
Neurogenetics, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons15548

Moser,  T.
Auditory Neuroscience, Max Planck Institute of Experimental Medicine, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

3315847.pdf
(Verlagsversion), 14MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jean, P., Anttonen, T., Michanski, S., de Diego, A. M. G., Steyer, A. M., Neef, A., et al. (2020). Macromolecular and electrical coupling between inner hair cells in the rodent cochlea. Nature Communications, 11: 3208. doi:10.1038/s41467-020-17003-z.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-65F0-7
Zusammenfassung
Inner hair cells (IHCs) are the primary receptors for hearing. They are housed in the cochlea and convey sound information to the brain via synapses with the auditory nerve. IHCs have been thought to be electrically and metabolically independent from each other. We report that, upon developmental maturation, in mice 30% of the IHCs are electrochemically coupled in ‘mini-syncytia’. This coupling permits transfer of fluorescently-labeled metabolites and macromolecular tracers. The membrane capacitance, Ca2+-current, and resting current increase with the number of dye-coupled IHCs. Dual voltage-clamp experiments substantiate low resistance electrical coupling. Pharmacology and tracer permeability rule out coupling by gap junctions and purinoceptors. 3D electron microscopy indicates instead that IHCs are coupled by membrane fusion sites. Consequently, depolarization of one IHC triggers presynaptic Ca2+-influx at active zones in the entire mini-syncytium. Based on our findings and modeling, we propose that IHC-mini-syncytia enhance sensitivity and reliability of cochlear sound encoding.