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Abstract Stealth solutions of scalar-tensor gravity and
less-known de Sitter spaces that generalize them are ana-
lyzed regarding their possible role as thermal equilibria at
non-zero temperature in the new first-order thermodynam-
ics of scalar-tensor gravity. No stable equilibria are found,
further validating the special role of general relativity as an
equilibrium state in the landscape of gravity theories, seen
through the lens of first-order thermodynamics.

1 Introduction

A surprising and intriguing relationship appears to exist
between thermodynamics and gravitation. Two seminal
works showed that both the Einstein equations of general
relativity (GR) and the field equations of metric f (R) grav-
ity can be recovered from purely thermodynamical consid-
erations, starting with a few assumptions [1,2]. However,
dealing with a modified theory of gravity requires a general-
ization to a non-equilibrium thermodynamical setting. These
works put forward the idea that, in the landscape of gravity
theories, GR could be an equilibrium state and modified grav-
ity a non-equilibrium one. This idea was made more concrete
by the recent proposal [3,4] of a first-order thermodynamics
of scalar-tensor theories, with minimal assumptions and in a
context completely different from that of spacetime thermo-
dynamics [1,2]. Scalar-tensor theories represent prototypical
candidates of modified gravity and were first introduced by
Brans and Dicke in [5] and then extended in [6–8]. The first-
order thermodynamical proposal relies on interpreting the
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scalar contributions as an imperfect fluid [9–11] and apply-
ing a non-equilibrium thermodynamical description [12] to
it. This idea unexpectedly allows one to introduce a con-
cept of “temperature of gravity” (which is clearly no physi-
cal temperature, but simply a temperature relative to the GR
equilibrium state) and an understanding of the dissipative
process leading gravity towards (or away from) the GR state
of equilibrium. This proposition has been applied and tested
on both different classes of theories (such as Horndeski grav-
ity) and specific solutions of scalar-tensor theories, such as
those in Friedmann–Lemaître–Robertson–Walker (FLRW)
spacetime [13,14].

A characteristic feature of scalar-tensor gravity is the exis-
tence of stealth solutions, namely solutions with the same
geometry of GR solutions but with a nontrivial scalar field
profile that does not contribute to the effective stress-energy
tensor. Current motivation to study stealth solutions comes
from the possibility of detecting black hole hair in stealth
black holes through gravitational wave observations [15].
Indeed, “first-generation” scalar-tensor and Horndeski the-
ories allow for stealth solutions that violate some assump-
tions of the no-hair theorems and for which the scalar field
does not gravitate. This would in principle make it possible
to observationally distinguish GR from scalar-tensor theo-
ries. Such solutions include stealth Schwarzschild (-de Sit-
ter) black holes with a scalar field linearly dependent on time
in the context of Horndeski and beyond-Horndeski gravity
[16–21].

Here we are interested in stealth solutions in the frame-
work of scalar-tensor thermodynamics, where they would
correspond to different “states of gravity” away from the GR
equilibrium, as explained in the following. Studying these
solutions would therefore help to clarify the existence of equi-
librium states different from GR and establish which gravity
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theories or specific solutions could approach them, extend-
ing the study of scalar-tensor thermodynamics to uncharted
territory. Assessing the stability of such states is crucial: it is
reasonable to expect that, due to the special status of the GR
equilibrium state in the landscape of gravity theories, these
other equilibria would be unstable, thus less relevant than
GR.

The stability of certain stealth geometries has been previ-
ously studied with the Bardeen–Ellis–Bruni–Hwang [22–26]
approach for cosmological perturbations in modified grav-
ity [27–32]. Here, we propose a complementary criterion
based solely on our thermodynamical formalism. Insights
coming from thermodynamics provide essential guidance to
both approaches, as for the stealth spacetime studied in [33]
with the gauge-invariant formalism. In that case, stability
was assessed with the gauge-invariant criterion, while in the
present work we mostly use the thermal criterion.

Stealth solutions include those of Refs. [15,34–46]. Often
these are degenerate cases of de Sitter spaces with non-
constant scalar fields, which are not as well-known as stealth
solutions of the field equations. de Sitter spaces with con-
stant scalar fields are fixed points of the dynamical system
of scalar-tensor cosmology [47] and are also common in GR
cosmology sourced by scalar fields. On the contrary, de Sitter
spaces with a non-constant scalar field are a signature of mod-
ified gravity. Both stealth solutions and de Sitter universes
with non-constant scalar fields seem peculiar and deserve
investigation in the thermodynamics of scalar-tensor gravity.

We follow the notation of Ref. [48]. The (Jordan frame)
scalar-tensor action reads

SST = 1

16π

∫
d4x

√−g

[
φR − ω(φ)

φ
∇cφ∇cφ − V (φ)

]

+S(m) , (1)

where R is the Ricci scalar, the Brans–Dicke scalar φ >

0 is approximately the inverse of the effective gravitational
coupling Geff , ω(φ) is the “Brans–Dicke coupling”, V (φ) is
the scalar field potential, and S(m) = ∫

d4x
√−gL(m) is the

matter action. The field equations are [5–8]

Rab − 1

2
gabR = 8π

φ
T (m)
ab + ω

φ2

(
∇aφ∇bφ − 1

2
gab∇cφ∇cφ

)

+ 1

φ
(∇a∇bφ − gab�φ) − V

2φ
gab , (2)

(2ω + 3) �φ =
(

8πT (m) + φ V,φ − 2V − ω,φ∇cφ∇cφ
)

,

(3)

where Rab is the Ricci tensor, T (m) ≡ gabT (m)
ab is the trace

of the matter stress-energy tensor T (m)
ab , ω,φ ≡ dω/dφ and

V,φ ≡ dV/dφ.

2 Thermal stability criterion

Assuming ∇aφ to be timelike and future-oriented, it is used
to define the four-velocity of an effective irrotational fluid

ua = ∇aφ√−∇cφ∇cφ
. (4)

The effective stress-energy tensor of φ in the effective
Einstein equations (2) has the form of a dissipative fluid
which, surprisingly, obeys Eckart’s constitutive relations
[12], namely the simplest assumptions to satisfy the covariant
second law of thermodynamics in a non-equilibrium setting.
These relations connect the dissipative quantities to the con-
stitutive variables of the fluid: for example, the heat current
density q(φ)

a is related to the temperature T with the thermal
conductivity coefficient K, through the generalized Fourier
law

q(φ)
a = −K

(
hab∇bT + T u̇a

)
. (5)

Comparing the expressions of the 4-acceleration, u̇a ≡
ub∇bua and the heat flux density q(φ)

a leads to the identi-
fication

q(φ)
a = −

√−∇cφ∇cφ

8πφ
u̇a . (6)

In turn, comparison with the generalized Fourier law (5) leads
to identifying a “temperature of gravity” T , by

KT =
√−∇cφ∇cφ

8πφ
(7)

(see [3,4,10] for details). It is striking that KT is positive-
definite, which was not granted in this formal identification of
quantities. A simple physical interpretation of T for theories
described by the action (1) was elaborated in [4]. One finds

that T = 1

φ
= Geff , thus the effective temperature measures

the strength of the gravitational interaction. Moreover, KT
vanishes in the GR limit where there is no φ-fluid, namely if
φ is constant and Geff is simply the gravitational constant G.
We can thus identify GR with the KT = 0 equilibrium state
in this “thermodynamics of gravitational theories”, whereas
scalar-tensor theories with an additional dynamical degree
of freedom to those of GR represent non-equilibrium states
with KT > 0.

An effective heat equation for the φ-fluid illustrating the
behaviour of KT with time can be found by differentiating

(7). Taking
d

dτ
≡ uc∇c, we obtain

d(KT )

dτ
= 8π(KT )2 − �(KT ) + �φ

8πφ
, (8)
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where � = ∇cuc is the expansion scalar of the effective fluid.
This equation can be studied to understand whether the class
of gravity theories (or a solution thereof) with a given KT
approaches or departs from the GR equilibrium and gives a
precise meaning to the dissipative process leading from non-
equilibrium to equilibrium in the thermodynamical analogy
developed so far. The physical interpretation of this equation
given in [4] for a simple case shows that, for example, KT
diverges at spacetime singularities and there are situations
where the equilibrium state is never approached.

Equation (8) has two fixed points, KT = 0 and KT =
const. > 0. We explore both because, if stable, they could
correspond to equilibrium states other than GR. Gravitational
theories with non-dynamical scalar fields have been shown
to recover KT = 0 in [49], while a state with KT = const.
that never approaches the GR equilibrium state was found
in [33] to be metastable. Here, we complement this analysis
by studying more stealth solutions and assessing their stabil-
ity with a new, purely thermodynamical, criterion found as
follows.

Equation (8) can be recast in a Klein–Gordon-like form
as

�φ − m2
effφ = 0, (9)

where

m2
eff ≡ 8π

[
d (KT )

dτ
− 8π (KT )2 + �KT

]
. (10)

The effective mass meff is clearly not a physical mass,
but simply an effective quantity derived in the context of the
thermodynamical analogy explained above. The sign of m2

eff
can be used to construct a stability criterion, based on the need
to avoid tachyonic instabilities. Indeed, we have instability if
the square of the effective mass (that we call “thermal mass”)
is m2

eff < 0 and stability if

m2
eff ≥ 0. (11)

Since KT is a scalar, this stability criterion is covariant and
gauge-invariant. Of course, this notion of stability is only
meaningful in the context of the thermodynamical analogy at
hand to assess theories or solutions with a given KT , whose
time evolution is described by (8). It is distinct from and
unrelated to an assessment of the perturbative stability of the
solution. This effective mass of scalar-tensor gravity differs
from those explored in [52,53].

It may seem odd that thermal stability reduces to avoiding
tachyonic instabilities determined by an effective mass that
depends on KT and its derivative. However, this is exactly
the same philosophy used to deduce the notorious Dolgov–
Kawasaki stability criterion for metric f (R) gravity [50,51].

Since the effective mass meff is built only out of KT and
its time derivative and is deduced from the effective ther-
mal description of scalar-tensor gravity, this stability criterion
is definitely thermal (in the sense of said effective thermo-
dynamics). It is made possible by the fact that an equation
describing the approach to thermal equilibrium (or departure
from it) exists in the theory. Near states of thermal equi-
librium, it has essentially the same physical content as the
effective heat equation.

The thermal stability criterion (11) is not particularly use-
ful in the general thermodynamics of scalar-tensor gravity
because one does not a priori know the quantities appear-
ing in (10). However, if one wants to assess the stability of
specific solutions (or classes of solutions) of the field equa-
tions, (11) is indeed suitable. This is the goal of the rest of
this work. The criterion was used in [49] to study Nordström
gravity, finding it unstable.

3 Stealth solutions

The stealth solutions we are interested in here are special
cases where Minkowski space results not from the absence
of matter, but from a tuned balance between matter and the
Brans–Dicke scalar or, in vacuo, between different terms in
the scalar contribution to the stress-energy tensor. Stealth
solutions like those studied in [34–37] are interesting since
they show that Minkowski space is not necessarily devoid
of matter, and the effect of gravitational coupling persists
in the energy–momentum tensor even when this coupling is
switched off.

Stealth solutions commonly encountered in the literature
in the context of the scalar-tensor theory (1) are usually of
two kinds:

1. gab = ηab and φ = φ0 eα t ;
2. gab = ηab and φ = φ0 |t |β ,

where ηab is the Minkowski metric in Cartesian coordinates,
φ0, α, β are constants, and φ0 > 0 so that gravity is always
attractive.

Differentiation yields

φ̇ = φ ×
⎧⎨
⎩

α ,

β

t
, if t �= 0 ,

(12)

thus the requirement of future-directed scalar gradient trans-
lates into the conditions

φ > 0 and gab∇aφ (∂t )
b < 0 (13)

or, for the specific scenarios above,

0 > gab∇aφ (∂t )
b = gab

(
ga0φ̇

)
δb0 = g00 g

00φ̇ = φ̇
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= φ ×
⎧⎨
⎩

α ,

β

t
if t �= 0 .

(14)

Thus, enforcing the future orientation of the scalar field gra-
dient, we shall restrict to cases that satisfy the conditions

1. α < 0;
2. β < 0 if t > 0 or β > 0 if t < 0.

In the first case

KT =
√−∇cφ∇cφ

8πφ
= |α|

8π
= const. > 0 , (15)

which means that this solution never approaches the GR equi-
librium state. If we now consider its stability from the point of
view of first-order thermodynamics, we see that the effective
mass is constant and given by

m2
eff = �φ

φ
= ∂μ∂μφ

φ

= ∂μ
(
α δ0

μφ
)

φ
= −α2 < 0, (16)

which makes this stealth solution unstable. A stealth solution
of this type was assessed in [33] with the gauge-invariant
criterion for cosmological perturbations and shown to be a
metastable state.

In the second case, β = 1 and β = 2 are the most relevant
situations encountered in the literature. Therefore, according
to our conventions, in order to have Geff = φ−1 > 0 and
ua = ∇aφ/

√−∇cφ∇cφ future-oriented, it must be φ0 > 0
in conjunction with t < 0 if β > 0.

Then, ifβ > 0 the effective gravitational coupling behaves
as

Geff = 1

φ
= 1

φ0 |t |β → +∞ as t → 0− , (17)

the effective temperature of gravity (7) is

KT = β

8π |t | → +∞ as t → 0− , (18)

and the effective mass reads

m2
eff = �φ

φ
= −β(β − 1)

t2 . (19)

If β = 1, we get m2
eff = 0. Therefore this constant “mass”

solution is marginally stable. As t → 0−, we approach a
singularity of the theory where Geff → +∞, KT → +∞,
gravity becomes infinitely strong and deviates from GR dras-
tically. Indeed, nothing could be further from a GR situation
than infinitely strong gravity with Minkowski spacetime!

This solution matches the idea that singularities are “hot”
in the sense of the thermodynamics of scalar-tensor gravity
[3,4]. This situation is stable according to the thermal stabil-
ity criterion (11). Hence, barring instabilities of a different
nature, one expects this behaviour to occur in nature if sin-
gularities are present. The implication is that the GR equi-
librium state is not always approached and gravity indeed
departs from GR near singularities. Of course, the final the-
ory of gravity should remove singularities, but it is clear that
scalar-tensor gravity is not this final theory since it does con-
tain spacetime singularities and singularities of Geff .

The situation where β = 2, exemplified in Sect. 3.2,
entailsm2

eff = −2/t2 < 0, meaning instability from the ther-
mal point of view, while KT = 1/4π |t | and Geff = 1/φ0t2

both diverge as t → 0−, thus departing from GR at this sin-
gularity of Geff . In our formalism the t > 0 branch of the
solution is not meaningful.

Most exact solutions of Brans-Dicke theories in cosmol-
ogy exhibit the power-law behaviour φ = φ0 tβ [54], such
as those found by O’Hanlon and Tupper [55] and Nariai
[56,57]. These were studied from the point of view of first-
order thermodynamics in [14], and in Sects. 3.1 and 3.2 we
consider two degenerate cases of such solutions that reduce
to a Minkowski background with a non-trivial scalar field
profile.

Other types of stealth solutions with Minkowski metric
and non-trivial scalar include those found for a nonmini-
mally coupled φ [35], where the field is inhomogeneous,
wave-like, and does not gravitate. Their stability was stud-
ied in [58] using the Bardeen–Ellis–Bruni–Hwang gauge-
invariant formalism for cosmological perturbations [22–26],
showing mixed stability results depending on the specific
choice of parameters. These solutions either do not corre-
spond to future-oriented four-velocity uc, or are very cum-
bersome to discuss because ∇aφ is timelike only in very
restricted spacetime regions and for special combinations of
their parameters. Therefore, they will not be examined here.

3.1 O’Hanlon & Tupper (OHT) solution with ω = 0

The O’Hanlon & Tupper spatially flat FLRW solution of
Brans–Dicke cosmology is obtained from the action (1) for
ω = const. > −3/2 and ω �= −4/3 and V = 0 [55]. The
scale factor and scalar field read

a(t) = a0

(
t

t0

)q±
, (20)

φ(t) = φ0

(
t

t0

)s±
, (21)

with

q± = ω

3(ω + 1) ∓ √
3(2ω + 3)

, (22)
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s± = 1 ∓ √
3(2ω + 3)

3ω + 4
, (23)

and 3q± + s± = 1. This solution has a “hot” singularity at
t → 0+, where Brans-Dicke theory departs from the GR
behaviour. Although the value ω = 0 was not contemplated
in [55], it is straightforward to check that it corresponds to a
Minkowski space solution of the equations of vacuum Brans-
Dicke cosmology with V = 0, q = 0, a(t) = 1, and linear
scalar field φ(t) = φ0 t (choosing t0 = 1 for convenience).
This is a bona fide stealth solution, which could have been
introduced in Ref. [55] long before solutions with this name
were noticed and appreciated [15,34–46]. In order for the
four-velocity to be future-oriented and for Geff to be positive,
it must be φ0 < 0 and t < 0. This situation is akin to case 2.
with β = 1 considered above, hence the ω = 0 O’Hanlon &
Tupper solution turns out to be marginally stable according
to the thermal stability criterion,1 This universe has

KT = 1

8π |t | → +∞ (24)

as t → 0−, deviating from GR.

3.2 Nariai solution with ω = −1/2

The Nariai solution [56,57] is a particular power-law solu-
tion for a K = 0 FLRW universe with perfect fluid matter
that has P = (γ − 1) ρ (with γ = const.), V (φ) = 0 and
ω �= −4

[
3γ (2 − γ )

]−1
< 0. Here we are interested in a

cosmological constant fluid with γ = 0, P(m) = −ρ(m), and

a(t) = a0 (1 + δt)ω+1/2 , (25)

φ(t) = φ0 (1 + δt)2 , (26)

δ =
[

32πρ0

φ0

1

(6ω + 5) (2ω + 3)

]1/2

. (27)

This solution is an attractor in phase space and was used in
the extended inflationary scenario [59,60]. For ω = −1/2,
δ = √

8πρ0/φ0, the scale factor is constant and H = 0,
making this a Minkowski stealth solution with non-trivial
(polynomial) scalar field profile. It is a straightforward gen-
eralisation of the type 2. stealth solutions described above.2

It must be φ0 > 0, (1 + δt) < 0 and

KT = δ

4π |1 + δt | → +∞ (28)

1 In the analysis at the beginning of Sect. 3, we conventionally denoted
φ(t) = φ0 |t |β with φ0 > 0. In this section we instead employ the usual
notation that can be found in the literature, i.e. φ(t) = φ0 tβ , where φ0
and t can both be either positive or negative, provided that φ remains
positive.
2 Here again we implicitly adapted our notation to the one which is
typically employed in the literature. See footnote 1.

as (1 + δt) → 0−. In the far past t → −∞, KT → 0 and
GR is approached, but the instability prevents this state from
being an equilibrium alternative to GR. In fact, the thermal
stability criterion yields

m2
eff = �φ

φ
= − 2δ2

(1 + δt)2 < 0 (29)

and this solution is thermally unstable.

4 de Sitter space solutions

Other common solutions of scalar-tensor gravity are de Sitter
ones with line element

ds2 = −dt2 + a2
0 e2H0t

(
dx2 + dy2 + dz2

)
(30)

in comoving coordinates, with scale factor a(t) = a0 eH0t ,
where a0, H0 are constants.

In GR with a minimally coupled scalar field as the only
matter source, the only possible de Sitter spaces are obtained
for a constant scalar field, (H, φ) = (H0, φ0), with both
H0 and φ0 constant. In spatially flat FLRW cosmology, the
independent dynamical variables are3 (H, φ) and the phase
space is a 2-dimensional subset of the 3-dimensional space(
H, φ, φ̇

)
identified by the Hamiltonian constraint. This 2-

dimensional subset is analogous to an energy surface in point
particle mechanics [61,62]. The points (H0, φ0) are then all
the equilibrium points of the dynamical system.

For spatially flat FLRW universes in scalar-tensor cos-
mology, the independent variables are still H and φ and
there can be fixed points (H0, φ0) of this dynamical sys-
tem. The structure of the phase space and the fixed points
for specific scalar-tensor theories are discussed extensively
in [47,61,63], respectively. Gauge-invariant criteria for the
stability of these de Sitter fixed points (and of their degener-
ate Minkowski cases) are given in [64–68]. In addition to de
Sitter fixed points, in scalar-tensor cosmology there can be de
Sitter spaces with non-constant scalar field, usually exponen-
tial or power-law in time. Since these are only admissible in
modified gravity and not in GR, they are interesting for first-
order thermodynamics. Degenerate cases of such de Sitter
solutions can reproduce Minkowski space with a non-trivial
scalar field and are therefore another kind of stealth solutions
similar to those of the previous section.

3 In the field equations for spatially flat FLRW universes, the scale
factor only appears in the combination H ≡ ȧ/a.
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4.1 de Sitter solutions of scalar-tensor gravity

This type of solution, known in many scalar-tensor theories,
is found starting from the action (1) and reads

H = H0 = const., (31)

φ(t) = φ0 eα t , (32)

with φ0 a positive constant. The constants H0 and α are
related to the parameters of the specific scalar-tensor the-
ory. Although these solutions have been known for a long
time, here we consider them from the novel point of view of
scalar-tensor thermodynamics.

In order to get a future-directed four-velocity of the effec-
tive φ-fluid and an attractive gravitational interaction we need
to require, again, that

φ > 0 and gab∇aφ (∂t )
b < 0 , (33)

which implies φ0 > 0 and α < 0.
We have (as in (15))

KT = |α|
8π

= const. (34)

and this solution remains away from the zero-temperature
GR state of equilibrium at all times. Is it thermally stable?
We find

m2
eff = �φ

φ
= − (

φ̈ + 3H0φ̇
)

φ
= −α (α + 3H0)

= |α| (3H0 − |α|) ; (35)

therefore, we have stability for 3H0 ≥ |α| and instability for
|α| > 3H0.

In particular, it is clear that exponentially contracting
FLRW universes (H0 < 0) are always unstable. This con-
clusion, obtained with simple considerations in scalar-tensor
thermodynamics, matches the result found in the literature
on scalar-tensor cosmology [64] with a dynamical systems
analysis which requires the complete specification of the the-
ory.

4.1.1 Kolitch solutions of vacuum Brans–Dicke cosmology
with cosmological constant

Kolitch [69] found solutions of vacuum Brans–Dicke cos-
mology with positive cosmological constant �, equivalent
to the linear potential V (φ) = 2�φ. These solutions were
previously noted in [70,71] and read

a(t) = a0 exp

[
± (ω + 1)

√
2�

(2ω + 3)(3ω + 4)
t

]
, (36)

φ(t) = φ0 exp

[
±

√
2�

(2ω + 3)(3ω + 4)
t

]
. (37)

For ω = −1, they reduce to the stealth solution with

H = 0 , a(t) = 1 , φ(t) = φ0 e±√
2� t, (38)

where, again, we must choose the lower sign to have a future-
oriented four-velocity. This solution deviates from GR at all
times since KT = const. > 0, but it corresponds to m2

eff =
−α2 < 0 and is unstable. Its stability has also been studied
with respect to both homogeneous and inhomogenous metric
perturbations in [58], where the solution with the upper sign
is found to be stable and the one with the lower sign unstable.
However, the solution with the upper sign cannot be analysed
in the framework of scalar-tensor thermodynamics since it
entails a past-oriented ∇aφ.

Let us consider now the de Sitter spaces (36), (37) for
ω �= −1: taking the lower sign we have

H0 = − (ω + 1)

√
2�

(2ω + 3)(3ω + 4)
≡ − (ω + 1) C (39)

and

α = −
√

2�

(2ω + 3)(3ω + 4)
≡ −C , (40)

where C is a positive real constant if ω < −3/2 and ω >

−4/3. Therefore, the effective mass reads

m2
eff = |α| (3H0 − |α|) = −C2 (3ω + 4) (41)

Then, if ω < −3/2 we have an expanding de Sitter universe
which is thermodynamically stable, although the scalar field
for such values of the coupling is phantom and therefore
suffers from different types of instabilities [72]. Other con-
figurations are otherwise unstable.

4.1.2 O’Hanlon & Tupper solution in the ω → −4/3 limit

It is often mentioned in the literature that the O’Hanlon &
Tupper solution (20)–(23) approaches de Sitter space in the
limit ω → −4/3, recovering

a(t) = a0 exp (H0 t), (42)

φ(t) = φ0 exp (−3H0 t), (43)

with H0 a positive constant. Technically, this statement is not
accurate since the above result is recovered by simultane-
ously choosing the values q+ and s− of the exponents, which
correspond to two distinct solutions. However, the solution
above is the only de Sitter one for flat FLRW and vacuum
[72]. Given that α < 0, the velocity of the scalar field fluid
is future-oriented and 3H0 − |α| = 0, so this solution is
marginally stable according to the thermal criterion.
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This solution describes expanding universes for which the
effective fluid four-velocity is only future-oriented. These
expanding universes are unstable with respect to tensor
modes, as can be concluded using the Bardeen–Ellis–Bruni
gauge-invariant formalism for cosmological perturbations
[22–26] in Hwang’s version adapted to modified gravity [27–
32]. The relevant equations are summarized in Appendix A.
We only need Eq. (A.14) for the gauge-invariant variable HT

associated with the tensor modes which, in the background
(42) and (43), becomes

ḦT +
(

3H + φ̇

φ

)
ḢT + k2

a2(t)
HT = 0 , (44)

where k is the mode’s momentum and the coefficients are
given by the unperturbed a(t) and φ(t), which yields 3 H +
φ̇/φ = 0 to zero order. With H0 > 0, the asymptotic equation
at late times t → +∞ reduces to

ḦT + k2

a2 HT 
 ḦT = 0 , (45)

with linear solution H(t) = α t + const. The tensor pertur-
bation diverges and this universe is unstable.

4.2 Constant curvature spaces in f (R) gravity

Metric f (R) gravity is a subclass of scalar-tensor theories
described by the action

S f (R) = 1

16π

∫
d4x

√−g f (R) + S(m) (46)

and is equivalent [73–75] to a Brans–Dicke theory with φ =
f ′(R) (a prime denotes differentiation with respect to R),
ω = 0, and the potential

V (φ) = R f ′(R) − f (R)

∣∣∣∣
f ′(R)=φ

. (47)

Assuming that ∇c R is timelike and future-oriented, the effec-
tive dissipative fluid associated with f (R) gravity has [3]

KT = f ′′(R)
√−∇c R∇c R

8π f ′(R)
, (48)

where it is required that f ′(R) > 0 in order for the effective
gravitational coupling Geff = 1/φ to be positive and for the
graviton to carry positive kinetic energy, while f ′′(R) ≥ 0
is required for local stability [51] (here ∇cφ is timelike and
future-oriented if ∇c R is).

The fact that the effective Brans–Dicke scalar field φ

in f (R) gravity is tied so intimately with the Ricci scalar

makes all constant curvature spaces in these theories zero-
temperature states indistinguishable from GR, because this
means thatφ = f ′(R) = const. and∇cφ vanishes identically,
together withKT . Furthermore, these states are (marginally)
stable in our thermal sense because �φ = 0 and the effective
mass m2

eff = �φ/φ also vanishes identically.
The condition m2

eff ≥ 0 for the thermal stability of f (R)

gravity does not coincide with the stability condition of
de Sitter space with respect to first order local perturba-
tions, obtained in a gauge-invariant way ([68] and references
therein),

(
f ′
0

)2 − 2 f0 f
′′
0 ≥ 0 , (49)

where a zero subscript denotes a quantity evaluated on the de
Sitter background. Therefore, the thermal stability condition
m2

eff ≥ 0 does not necessarily coincide with other stabil-
ity notions, as could be expected. Indeed, also in Newtonian
systems and in GR one has different notions of stability (ther-
mal, dynamical, etc.) and the thermodynamics of modified
gravity evidently cannot account for all possible notions of
stability.

5 Conclusions

In the context of the new thermodynamics of scalar-tensor
gravity, the role of GR as the thermal state of equilibrium and
its stability are physically significant. The thermal descrip-
tion of scalar-tensor gravity connects to the broad idea of
gravity being emergent rather than fundamental, setting it
apart from the three other interactions we know. The idea of
alternative gravity as a thermal non-equilibrium state, first
proposed in Jacobson’s thermodynamics of spacetime, adds
to this picture. In spite of the numerous articles citing Jacob-
son’s seminal papers, this subsequent body of work on space-
time thermodynamics has never been able to identify the
“temperature of gravity” (or another order parameter) and to
produce equations describing the approach to equilibrium (or
lack thereof). Our new (and completely different) thermody-
namics of scalar-tensor gravity does that. Then, it becomes
important to identify states of thermal equilibrium and their
stability, which is done here.

Specifically, the significance of the new thermal stability
criterion derived here lies in the fact that it can reject cer-
tain solutions of scalar-tensor gravity that, although math-
ematically possible, cannot occur in nature because they
are unstable. Our stability criterion expresses thermal sta-
bility because it is derived from the equation describing
the approach to thermal equilibrium or the departures from
it in scalar-tensor gravity. Near thermal equilibrium states,
this criterion expresses the physical content of the equation
describing the approach to equilibrium in a way that makes it
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Table 1 Summary of the
analytical solutions studied and
their thermal stability

Solution Type Thermal stability

OHT ω = 0 Minkowski stealth Marginally stable (departs from GR as t → 0−)

Nariai ω = −1/2 Minkowski stealth Unstable

Kolitch ω = −1 Minkowski stealth Unstable

Kolitch ω < −3/2 de Sitter Stable (but φ phantom)

OHT ω → −4/3 de Sitter Marginally stable

f (R) gravity (Anti-)de Sitter, Minkowski Marginally stable

easier and practical to assess the stability of analytical solu-
tions of the scalar-tensor field equations.

In this work, we studied the states of gravity correspond-
ing to KT = const., which are fixed points of the effective
heat equation describing the approach to (or departure from)
equilibrium (8), in the context of first-order thermodynamics
[4]. These states, away from the GR equilibrium, correspond
to different types of stealth solutions, which are not admitted
by the Einstein equations and are thus a signature of alterna-
tive gravity [15,34–46].

Specifically, we studied the scalar field profiles 1. φ =
φ0 eα t (with α < 0) and 2. φ = φ0 |t |β (with t > 0, β < 0
or with t < 0, β > 0), common in the literature. The first case
has KT = const. > 0, which would correspond to a state
of equilibrium at positive temperature. However, this state is
unstable according to the thermal criterion (11). This crite-
rion does not necessarily go hand-in-hand with other stability
criteria, which should not come as a surprise, since a physi-
cal system can be subject to instabilities of different nature,
with different time scales. Sometimes instability in the ther-
mal sense (11) is accompanied by instability with respect to
gravitational perturbations; however, this coincidence should
not always be expected.

In any case, stable equilibrium states of gravity with
KT = const. either do not exist or are fragile and easily
destroyed by perturbations (i.e., metastable).

Stealth solutions with a linear scalar field profile, as in the
second case, require caution because, combining the require-
ments that Geff > 0 and that the effective φ-fluid four-
velocity ua be future-oriented (essential when discussing dis-
sipation associated with an arrow of time), one finds a singu-
larity of the effective gravitational coupling at t = 0, which
can justly be regarded as a “thermodynamical” singularity of
scalar-tensor gravity. These spaces are stable according to the
thermal criterion and are not destroyed by perturbations (as
far as scalar-tensor gravity applies), but KT diverges at this
singularity, as it does in ordinary spacetime singularities, sig-
nalling a drastic deviation from GR predicted in [3,4]. This
result reinforces the idea that gravity strongly deviates from
GR at singularities, but now the concept of “thermodynam-
ical singularity” is extended to include also singularities of
the effective gravitational coupling Geff . These considera-

tions, of course, do not solve the spacetime singularity prob-
lem of relativistic gravity; the temperature T introduced by
scalar-tensor thermodynamics is relative to the GR state and
measures the distance of the actual state of gravity from the
GR state of equilibrium at KT = 0, which is still affected
by the spacetime singularity problem.

The realization that stealth solutions of scalar-tensor grav-
ity are often degenerate cases of de Sitter universes with
non-constant Brans–Dicke-like scalar field prompts the con-
sideration of these spaces (Sect. 4). It is intriguing that the
cosmic no-hair theorem (when valid) can be seen in a new
light from the point of view of scalar-tensor thermodynamics.
(The validity, or lack thereof, of cosmic no-hair in various
scalar-tensor gravities will be examined from the thermal
point of view in future work). On the one hand, de Sitter
spaces with constant scalar field can be attractors of the cos-
mological dynamics (even starting with anisotropic Bianchi
models) but, when φ is constant, KT vanishes and gravity
reduces to its zero-temperature GR state of equilibrium.4 On
the other hand, de Sitter spaces with non-constant scalar field
are known to occur in various scalar-tensor gravities (where
they are not attractors of the cosmological dynamics) but are
impossible in GR and are a signature of alternative gravity. In
this sense, they can be regarded as generalizations of stealth
solutions [78] and as such they were studied here from the
point of view of first-order thermodynamics.

The results obtained for the solutions of scalar-tensor grav-
ity analyzed here are summarized in Table 1. Overall, the two
general principles of first-order thermodynamics of scalar-
tensor gravity are confirmed: (i) gravity deviates wildly from
GR near spacetime singularities and near singularities of the
gravitational coupling; (ii) the convergence of gravity to GR
at late times is marked by KT → 0. No states of equilibrium
KT = const. other than GR (corresponding to KT = 0)
have been found here, except for solutions that are unstable
according to various criteria and are, therefore, physically
irrelevant. This result reinforces the special role of general
relativity as an equilibrium state in the landscape of gravity
theories, seen through the lens of first-order thermodynam-

4 Indeed, de Sitter spaces with constant scalar field are common attrac-
tors in GR according to Wald’s theorem ([76], see [77] for a review).
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ics. The results above will be useful in the following devel-
opments of the first-order thermodynamical formalism.
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Appendix A: Gauge-invariant perturbations for scalar-
tensor cosmology

Consider the modified gravity described by the action

S =
∫

d4x
√−g

[
f (φ, R)

2
− ω̄(φ)

2
∇cφ∇cφ − V (φ)

]

(A.1)

and a spatially flat unperturbed FLRW universe with line
element

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (A.2)

The unperturbed field equations are

H2 = 1

3F

(
ω̄

2
φ̇2 + RF

2
− f

2
+ V − 3H Ḟ

)
, (A.3)

Ḣ = − 1

2F

(
ω̄ φ̇2 + F̈ − H Ḟ

)
, (A.4)

φ̈ + 3H φ̇ + 1

2ω̄

(
dω̄

dφ
φ̇2 − ∂ f

∂φ
+ 2

dV

dφ

)
= 0 , (A.5)

where an overdot denotes differentiation with respect to the
comoving time t , H ≡ ȧ/a is the Hubble function, and F ≡
∂ f/∂R. Quantities denoted with A, B, HL , and HT define
the metric perturbations in the Bardeen–Ellis–Bruni–Hwang
formalism [22–26] according to

g00 = −a2 (1 + 2AY ) , (A.6)

g0i = −a2BYi , (A.7)

gi j = a2 [
hi j (1 + 2HL) + 2HTYi j

]
, (A.8)

where hi j is the 3-metric of the unperturbed FLRW space
seen by the comoving observer, the scalar harmonics Y sat-
isfy the eigenvalue problem ∇̄i ∇̄ i Y = −k2Y with eigenvalue
k, and ∇̄i is the covariant derivative operator of hi j . The vec-
tor and tensor harmonics Yi and Yi j satisfy

Yi = −1

k
∇̄i Y , (A.9)

Yi j = 1

k2 ∇̄i ∇̄ j Y + 1

3
Yhi j . (A.10)

�H = HL + HT

3
+ ȧ

k

(
B − a

k
ḢT

)
, (A.11)

�A = A+ ȧ

k

(
B− a

k
ḢT

)
+ a

k

[
Ḃ − 1

k

(
aḢT

)˙
]

, (A.12)

are the Bardeen gauge-invariant potentials [22],

�φ = δφ + a

k
φ̇

(
B − a

k
ḢT

)
(A.13)

is the Ellis–Bruni variable [23,24], and similar relations
define the other gauge-invariant variables � f, �F, and �R.
We refer the reader to Refs. [27–32] for the complete set
of equations for the gauge-invariant perturbations. Here we
only need the equation for the tensor modes

ḦT +
(

3H + Ḟ

F

)
ḢT + k2

a2 HT = 0 , (A.14)

which is used in Sect. 4.
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