Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Velocity Distributions after Laser-Induced Desorption of NO from NiO(100)-The Role of the Angular Coordinate

MPG-Autoren
/persons/resource/persons59044

Thiel,  Stephan
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21738

Klüner,  Thorsten
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21524

Freund,  Hans-Joachim       
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Thiel, S., Klüner, T., Freund, H.-J., & Kosloff, R. (1998). Velocity Distributions after Laser-Induced Desorption of NO from NiO(100)-The Role of the Angular Coordinate. Israel Journal of Chemistry, 38(4), 321-327. doi:10.1002/ijch.199800037.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-93CB-8
Zusammenfassung
The experimental velocity distributions of NO desorbing from a NiO(100)-surface are simulated using a time-dependent wave packet method. Including the polar angle between the surface normal and the adsorbate molecular axis yields bimodal distributions in the correct velocity range and reasonable desorption probabilities if a resonance lifetime on the order of 25 fs is assumed. For two-dimensional simulations, an angular-independent charge-transfer-state was chosen as excited state in order to investigate the influence of the electronic ground-state on the final state distributions. We compare our results with wave packet calculations using a representative ab initio angular-dependent excited-state potential energy surface using a three-dimensional Hamiltonian