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The cumulants of baryon number fluctuations serve as a good probe for experimentally exploring the
QCD phase diagram at finite density, giving rise to characteristic fluctuation patterns associated with a
possible critical endpoint (CEP). We compute the higher-order baryon number susceptibilities at finite
temperature and baryon chemical potential using a holographic QCD model to address the nonperturbative
aspect of strongly coupled QCD matter. The model can accurately confront lattice QCD data on a
quantitative level and the location of the CEP is found to fall within the range accessible to upcoming
experimental measurements. The baryon number susceptibilities up to the twelfth order are computed, and
the collision energy dependence of different ratios of these susceptibilities is examined along the chemical
freeze-out line. The holographic results show quantitative agreement with experimental data and the
functional renormalization group results in a large collision energy range, with all ratios exhibiting a peak
structure around 5–10 GeV. The mismatching between our holographic results with experimental data for
sufficiently low-collision energy is possibly due to nonequilibrium effects and complex experimental
environments. The future experiments with measurements in the low-collision energy range

ffiffiffiffiffiffiffiffi
SNN

p
≈

1–10 GeV and reduced experimental uncertainty could reveal more nonmonotonic behavior signals which
can be used to locate the CEP.

DOI: 10.1103/PhysRevD.108.046008

I. INTRODUCTION

Obtaining a quantitative understanding of the QCD
phase diagram at finite temperature T and baryon chemi-
cal potential μB remains remarkably challenging due to
the strongly coupled nature of the system under extreme
conditions. Significant efforts have been devoted to this
problem over the past few decades. Lattice QCD,

formulated on a grid of points in space and time, provides
reliable information from first principles at small μB
where the sign problem does not hinder numerical
calculations. Lattice QCD calculations indicate that the
chiral and confinement/deconfinement phase transitions
likely occur as an analytic crossover for small μB, with
mixing of the transitions [1–3]. On the other hand, several
effective theories, including the Dyson-Schwinger equa-
tion (DSE) [4–9], the Nambu-Jona-Lasinio (NJL) model
[10–13], and the functional renormalization group (FRG)
[14–16], suggest the existence of a first-order phase
transition at large μB, which would terminate at a critical
point known as the QCD critical endpoint (CEP).
However, the exact location of the CEP is still a matter
of debate, with no conclusive constraints from any model
calculations thus far. Nevertheless, lattice QCD results
disfavor the existence of the CEP for μB=T ≤ 3 and μB <
300 MeV [17–22].
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The critical physics associated with the CEP is expected
to have a localized impact in its vicinity [23]. Numerous
theoretical studies have revealed intriguing nontrivial
patterns in the ratios of conserved charge distributions
Cn around the CEP [12,16,24–30]. Nonmonotonic varia-
tions of conserved charge fluctuations with respect to the T
and μB along the phase boundary could arise from critical
physics in the vicinity of a CEP which can serve as signals
for CEP [31]. Experimental measurement has suggested a
significant overlap between the chemical freeze-out region
and the crossover region for μB=T ≤ 3 [32], implying that
the freeze-out line is likely to pass through the vicinity of
the CEP, provided that the CEP is not far beyond μB=T ≈ 3.
This indicates that Cn and their ratios along the chemical
freeze-out line may take similar nonmonotonic behavior
[12,16,26,28–30,33–35]. Remarkably, these ratios can be
directly linked to measurable quantities in experiments,
such as the mean, variance, skewness, and kurtosis, making
it feasible to locate the CEP by measuring cumulants of
conserved charge distributions in experimental studies.
Indeed, the potential existence of the CEP and the

first-order phase transition has motivated dedicated exper-
imental programs, particularly in relativistic heavy-ion
collisions. In heavy ion collisions, the early nonequili-
brium state of quarks and gluons will become the final
hadronic states after a chemical freeze-out. Moreover,
regions of large μB can be experimentally researched by
lowering the beam energy. In recent years, relativistic
heavy-ion collision experiments have made significant
progress in the search for the CEP [36,37]. Various
cumulants, including net-proton, net-charge, and net-kaon
cumulants, have been measured at different collision
energies. Notably, recent STAR data on net-proton dis-
tributions κσ2 in Auþ Au collisions as a function of
collision energy

ffiffiffiffiffiffiffiffi
SNN

p
shows a nonmonotonic variation,

exhibiting a peak structure near
ffiffiffiffiffiffiffiffi
SNN

p
≈ 7 GeV, which

could be an experimental signature of the CEP [38–41].
Furthermore, measurements have been extended to
higher-order cumulants, including the sixth-order [42]
and eighth-order [43] cumulants of net-proton fluctua-
tions. Nonmonotonic dependencies on collision energy
have also been observed in the fifth-order and sixth-order
cumulant data of net-proton fluctuations in 0–40% cen-
trality Au-Au collisions [42].
Given the limited experimental data available that is

confined to the crossover region with μB=T ≤ 3, it is crucial
to deepen our understanding of conserved charge fluctua-
tions at high μB, where lattice simulations face challenges
due to the sign problem. To address this nonperturbative
aspect, we employ holographic duality to map the strongly
correlated physics of the QCD phase diagram to a higher-
dimensional gravity system. Holography offers a conven-
ient framework to incorporate real-time dynamics and
study transport properties at finite temperatures and den-
sities. Our holographic model has been demonstrated to

capture the essential characteristics of realistic QCD and
successfully confront lattice QCD data with 2þ 1 flavors
on a quantitative level [44]. We have constructed the phase
diagram in terms of T and μB, and determined the location
of the CEP at ðTCEP ¼ 105 MeV; μCEP ¼ 555 MeVÞ
which falls within the range accessible to upcoming
experimental measurements [44]. In this study, we shall
investigate the behavior of baryon number fluctuations over
a wide range of temperatures and baryon chemical poten-
tials. We will compare our holographic results with the
experimental measurements and will provide further theo-
retical predictions.1

The rest of this paper is organized as follows. In Sec. II,
we briefly review our holographic QCD model, including
optimized parameters and equations of states. Section III
shows the baryon number susceptibilities up to the twelfth
order at μB ¼ 0. We also compare our holographic results
with the lattice QCD data. Section IV compares our results
to available experimental data from heavy ion collisions
along the chemical freeze-out line. We will present the
prediction for the beam energy dependence of baryon
number susceptibilities for which no experimental data
is available yet. We conclude with some discussion in
Sec. V.

II. HOLOGRAPHIC QCD MODEL

We consider the (2þ 1)-flavor holographic QCD model
established in [44]. The gravitational action takes the
following form.

SM ¼ 1

2κ2N

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∇μϕ∇μϕ

−
ZðϕÞ
4

FμνFμν − VðϕÞ
�
; ð2:1Þ

with gμν the metric of the bulk spacetime, ϕ the scalar field,
and Aμ the gauge field incorporating finite baryon chemical
potential and baryon density. Here VðϕÞ and ZðϕÞ are two
free couplings in our bottom-up model. The nonperturba-
tive effects and flavor dynamics are effectively adopted into
the model parameters by matching up-to-date lattice
QCD data.2

The bulk spacetime metric with matter fields ϕ and Aμ

reads

1Previous studies on the baryon susceptibilities using holo-
graphic QCD can be found in [33,45,46]. The model was fixed by
matching at zero baryon chemical potential to the lattice equation
of state from [2]. It predicts a CEP at a significantly different
location in the phase diagram from our model [44].

2This approach involving a bulk nonconformal dilatonic scalar
and a Uð1Þ gauge field has been widely used in holographic
QCD, see e.g., [29,46–60].
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ds2 ¼ −e−ηðrÞfðrÞdt2 þ dr2

fðrÞ þ r2ðdx21 þ dx22 þ dx23Þ;

ϕ ¼ ϕðrÞ; Aμdxμ ¼ AtðrÞdt; ð2:2Þ

where r is the holographic radial coordinate for which r →
∞ corresponds to the AdS boundary. Denoting the location
of the event horizon as r ¼ rh where fðrhÞ ¼ 0, the
Hawking temperature and the entropy density are given by

T ¼ 1

4π
f0ðrhÞe−ηðrhÞ=2; s ¼ 2π

κ2N
r3h: ð2:3Þ

Substituting (2.2) into the action (2.1), one obtains
the equations of motion that have to be solved numerically
to obtain the hairy black holes. Then, the related thermo-
dynamic quantities, including the energy density E, the
pressure P, and the baryon chemical potential μB can be
obtained using holographic renormalization (see [44] for
more technical details).
The two couplings in (2.1) are parametrized to be [44]

VðϕÞ ¼ −12 cosh ½c1ϕ� þ
�
6c21 −

3

2

�
ϕ2 þ c2ϕ6;

ZðϕÞ ¼ 1

1þ c3
sech½c4ϕ3� þ c3

1þ c3
e−c5ϕ; ð2:4Þ

where c1 to c5 are free parameters. The other two free
parameters are the effective Newton constant κ2N and a
characteristic energy scale set by the leading source term of
ϕ, i.e., ϕs ¼ limr→∞ rϕ. The latter breaks the scale invari-
ance of the boundary system to essentially describe the

QCD dynamics as there is no conformal symmetry in real
QCD. All the above parameters are fixed completely by
fitting the lattice QCD data at zero net-baryon density
[3,61,62] and their values are summarized in Table I.
The parameter b is from the holographic renormaliza-

tion and is necessary to satisfy the lattice QCD simulation
at μB ¼ 0. We have made a slight modification to the value
of c4 to enhance the agreement with lattice data compared
to the previous setup [44]. Nevertheless, this modification
yields almost the same location of the CEP as the one of
[44]. We compare various thermodynamic quantities from
our holographic setup with lattice simulation in Fig. 1.
One case sees that the temperature dependence of all those
quantities agrees well with lattice QCD with 2þ 1
flavors [3,61,62].
In addition, the dilaton potential VðϕÞ and gauge

coupling ZðϕÞ employed in our present work yield a
equation of state that exhibits good agreement with the
state-of-the-art lattice QCD data at finite baryon chemical
potential reported in [20] (see [44] for more details).
Figure 2 illustrates the direct comparison of our VðϕÞ and
ZðϕÞ with those utilized in other Einstein-Maxwell-
Dilaton (EMD) models [46,54]. Notably, both functions,
obtained by fitting distinct lattice QCD data, manifest
significant universal characteristics. A recent review [63]
also highlighted a similar comparison and proposed robust
features of VðϕÞ and ZðϕÞ in the EMD description of
lattice QCD results with 2þ 1 flavors and physical quark
masses. Furthermore, the location of the CEP exhibits
variations among these holographic EMD models, with
ðTCEP; μCEPÞ ¼ ð105; 555Þ MeV [44], (89, 724) MeV
[46], and (111.5, 611.5) MeV [54], respectively.

TABLE I. Parameters for our (2þ 1)-flavor QCD model by matching the lattice simulation.

Model c1 c2 c3 c4 c5 κ2N ϕs ½MeV� b

2þ 1 flavor 0.710 0.0037 1.935 0.091 30 2πð1.68Þ 1085 −0.27341

FIG. 1. Thermodynamics at μB ¼ 0 from lattice QCD results [3,61,62] compared to our holographic model (red solid curves). Left
panel: the entropy density s, the pressure P, and the trace anomaly I ¼ E − 3P. Right panel: the specific heat CV , the squared speed of
sound c2s , and the baryon susceptibility χ2B.
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The generalized susceptibilities are closely related to
various cumulants of the baryon number distribution
measured in heavy-ion collision experiments. Here we
focus on the susceptibilities of the baryon number χBn that
are defined through the nth order derivatives of the pressure
with respect to the baryon chemical potential.

χBn ðT; μBÞ ¼
∂
n

∂ðμB=TÞn
P
T4

: ð2:5Þ

For example, to apply the QCD simulation to a finite
density case, one could consider a Taylor expansion in
baryon chemical potential that underlies the extension of
lattice results that are only available at μB ¼ 0.

PðT; μBÞ − PðT; 0Þ
T4

¼
Xinf
n¼1

χB2nðTÞ
ð2n!Þ

�
μB
T

�
2n

¼ 1

2
χB2 ðTÞμ̂2B

�
1þ 1

12

χB4 ðTÞ
χB2 ðTÞ

μ̂2B þ 1

360

χB6 ðTÞ
χB2 ðTÞ

μ̂4B

þ 1

20160

χB8 ðTÞ
χB2 ðTÞ

μ̂6B þ…

�
; ð2:6Þ

where μ̂B ¼ μB=T is the reduced baryon chemical potential
and χB2nðTÞ are baryon number susceptibilities at μB ¼ 0.
Note that χB2nþ1ðT; μB ¼ 0Þ ¼ 0 due to the CP symmetry.
The corresponding cumulant of baryon distribution is

given by

CB
n ¼ VT3χBn ; ð2:7Þ

with V the freeze-out volume in heavy-ion collisions. The
ratios of these cumulants cancel out volume dependence
and are observable quantities in experiments. In particular,

the skewness SB and the kurtosis κB of baryon distribution
are given by

SB ¼ CB
3

ðσB2 Þ3=2
and κB ¼ CB

4

ðσB2 Þ2
; ð2:8Þ

with the notation MB ¼ CB
1 for the mean and σB2 ¼ CB

2 for
the variance.

III. BARYON NUMBER
SUSCEPTIBILITY AT μB = 0

As a benchmark test, we present the numerical results of
the baryon number susceptibilities at μB ¼ 0 and compare
them with available lattice QCD simulation.
The behavior of χB2 has been depicted in the right panel

of Fig. 1. One can see clearly that the holographic result is
in good agreement with the latest lattice data from HotQCD
group [62]. We compare higher-order susceptibilities in
Fig. 3. The top two plots are for χB4 =χ

B
2 and χB6 =χ

B
2 ,

respectively. The points with error bars are the lattice data
with different Nτ, and the light-blue band represents the
region of continuous extrapolation based on the lattice data
[19,62,64]. The holographic QCD results are given by solid
red curves. Our direct computation matches well with the
lattice data, particularly the results of the continuous
extrapolation. The temperature dependence of χB6 and χB8
is presented in the bottom two plots of Fig. 3. Given that the
uncertainty of the HotQCD data is relatively high. It is still
challenging to analyze the behavior of χB8 . Nevertheless,
our χB8 results qualitatively agree with those from the W-B
data [65] and the FRG result [16].
While χB2 monotonically increases with the temperature

at μB ¼ 0, higher-order susceptibilities versus temperature
yield more complicated behaviors (see Fig. 3). The
ratio χB4 =χ

B
2 remains positive throughout but it initially

increases to a peak at T ≈ 140 MeV, before decreasing to

FIG. 2. Comparison between the dilaton potential VðϕÞ and gauge coupling ZðϕÞ used in our work [44] and those utilized in different
holographic models [46,54]. Both functions obtained by fitting different lattice QCD data exhibit certain universal features.
Furthermore, the CEP locations differ among various models, with the values of ðTCEP; μCEPÞ ¼ ð105; 555Þ MeV [44],
(89, 724) MeV [46], and (111.5, 611.5) MeV [54], respectively.
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approximately 0.1 at high temperatures. Similarly, χB6 =χ
B
2

exhibits an increase to about 2.2 at T ≈ 140 MeV, followed
by a decrease to −0.4 at T ≈ 165 MeV and a subsequent
increase to around 0. Thus, χB6 =χ

B
2 displays a peak and a

dip. The behavior of χB6 is similar to that of χB6 =χ
B
2 due to the

monotonically increasing dependence of χB2 on temper-
ature. For χB8 , our holographic result suggests that it initially
grows from 0 to approximately 0.2 by increasing T, then
decreases to around−0.5, and subsequently increases to 0.2
again at high temperatures.

There is no available lattice data for higher-order χBn
with n ≥ 10 thus far. In Fig. 4, we show our theoretical
computation for χB10 (left) and χB12 (right) as a function
of temperature. Both cases display a more intricate
behavior with temperature, featuring both increasing
and decreasing trends, as well as positive and negative
values. It will be of great interest to compare our results
with future lattice QCD data for χB10 and χB12, which
would allow for a quantitative assessment of the accuracy
of our model.

FIG. 3. Baryon number susceptibilities χB4 =χ
B
2 (top left), χB6 =χ

B
2 (top right), χB6 (bottom left), and χB8 (bottom right) at μB ¼ 0 compare

with lattice data [19,62,64]. The light-blue band denotes the region of continuous extrapolation from lattice QCD simulation.

FIG. 4. The temperature dependence of higher order baryon number susceptibilities χB10 (left) and χB12 (right) from our holographic
theory at μB ¼ 0.
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IV. BARYON NUMBER SUSCEPTIBILITY ALONG
CHEMICAL FREEZE-OUT LINES

In this section, we begin by examining the ratios of
various higher-order baryon number susceptibilities at the
collision energies measured by RHIC, following the
chemical freeze-out data determined by Gupta et al.
[66]. We will consider two fitted chemical freeze-out lines,
aiming to capture the key characteristics of the CEP in the
T − μB plane. As we will show, our theoretical predictions
demonstrate some quantitative agreement with the most
recent experimental data [38,39,42,43,67] as well as the
results obtained from the FRG approach [16].
The phase diagram of our holographic QCD model is

presented in the left panel of Fig. 5, wherein the blue dashed
line corresponds to the crossover line determined by χB2
inflection. The location of CEP is marked by a bold red dot.
The thick black line represents the first-order transition line,

while the red and purple lines depict the two chemical
freeze-out lines fitted in our present work (see more details
around Fig. 6 below). The green data, accompanied by
errors, corresponds to the chemical freeze-out data given in
the hadron resonance gas model [66]. In the right panel of
Fig. 5, we present a comparison of the ratio of the fourth-
order to second-order baryon number susceptibilities,
χB4 =χ

B
2 , obtained using our holographic QCD model for

collision energies of
ffiffiffiffiffiffiffiffi
SNN

p ¼ 7.7, 11.5, 19.6, 27, 39, 62.4,
and 200 GeV, with experimental data of net-proton distri-
butions for 0–5% centrality Au-Au collisions from STAR
[39]. The gray and brown error bars represent the statistical
and systematic uncertainties of the experimental data points,
respectively. The fitted positions on the T − μB phase
diagram for various collision energies have been obtained
from [66]. It is worth noting that the uncertainty in our
theoretical results is attributed to the imprecision in deter-
mining the location of the fixed collision energy on the

FIG. 5. Left panel: The phase diagram of our holographic QCD model, where the blue dashed line corresponds to the crossover line
determined by χB2 inflection. The CEP is shown as a bold red dot. The thick black line represents the first-order transition line, while the
red and purple lines depict the two fitted chemical freeze-out lines utilized in this study. The green data, accompanied by errors,
corresponds to the chemical freeze-out data extracted from [66]. Right panel: χB4 =χ

B
2 along the chemical freeze-out line compares with

STAR data of net-proton distributions in 0–5% centrality Au-Au collisions [39]. The gray and brown error bars represent the statistical
and systematic uncertainties, respectively. We have taken the position of chemical freeze-out directly from the HRG model [66].

FIG. 6. The two chemical freeze-out lines we used in this work by fitting the dN=dy and 4π yields data [68,69]. The locations of the
two fitted chemical freeze-out lines can be observed in the left panel of Fig. 5, within the context of the phase diagram. Left panel: The
temperature as a function of the collision energy. Right panel: The baryon chemical potential versus the collision energy.
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T − μB phase diagram [66]. The direct comparison of Fig. 5,
without any adjustable parameters, demonstrates a signifi-
cant overlap between our theoretical results and experimen-
tal data at different collision energies.
Different centrality in heavy-ion collisions corresponds to

different positions of chemical freeze-out in the T − μB
phase diagram [32]. Therefore, one should choose an
appropriate freeze-out line for a given centrality [70]. In

the present study, we consider two chemical freeze-out lines
by fitting the dN=dy and 4π yields data in [68,69]. Also note
that our fitting procedure does not yield a unique “optimal”
fit for the data in [68,69], as we aim to optimize both the
range of experimentally fitted freeze-out data and the degree
of agreement between theoretical values of χBm=χBn and
experimental data. Figure 6 displays the chemical freeze-
out lines corresponding to centrality ranges of 0–5% (red
line) and 0–40% (purple line), respectively. The fitting
formula for the two chemical freeze-out lines is given by

μB ¼ a
1þ b

ffiffiffiffiffiffiffiffi
SNN

p ;

T ¼ T lim

1þ exp ½c − ln ðd ffiffiffiffiffiffiffiffi
SNN

p þ eÞ=0.45� ; ð4:1Þ

TABLE II. Parameters for two chemical freeze-out lines in
Fig. 6 by matching the dN=dy and 4π yields data in [68,69].

a ½MeV� b T lim ½MeV� c d e

Fit-1 1307.5 0.35 157.0 3.25 1 0.7
Fit-2 1307.5 0.34 153.6 3.41 1.1 0.6

FIG. 7. Comparison between the baryon number susceptibilities along two fitted chemical freeze-out lines and the STAR data of net-
proton distributions for centrality 0–5% (left) [38,39,67,71] and 0–40% (right) [42] Au-Au collisions, respectively. The error bars in the
left panel (gray and brown) and the right panel (black and cyan) respectively denote the statistical and systematic uncertainties. The FRG
results [16] are shown in green bands.
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with a; b; c; d; e; T lim free parameters. The corresponding
parameters used to fit both lines of Fig. 6 are summarized in
Table II. The resulting freeze-out lines are shown in the
T − μB phase diagram for both cases in the right panel
of Fig. 5.
In Fig. 7, we present a direct comparison between the

baryon number susceptibilities computed using our fitted
chemical freeze-out lines and the experimental data from
STAR with centrality ranges of 0–5% (left) [38,39,67]
and 0–40% (right) [42]. The different error bars of Fig. 7,
gray and brown in the left panel as well as black and cyan
in the right panel, correspond-ing to the statistical
and systematic uncertainties of the experimental data
points, respectively. Moreover, we also include the
FRG results denoted as green bands [16]. Our results
demonstrate quantitative agreement with both STAR
and FRG results for second and third-order baryon
number susceptibilities in the collision energy range offfiffiffiffiffiffiffiffi
SNN

p
≈ 12–200 GeV. Interestingly, at lower-collision

energies (
ffiffiffiffiffiffiffiffi
SNN

p
≈ 5–10 GeV), our results reveal a peak

structure for both χB2 =χ
B
1 and χB3 =χ

B
2 , which is not reflected

in the experimental data. From fourth to sixth order, our
results show quantitative agreement with experimental
data and FRG results in the collision energy range offfiffiffiffiffiffiffiffi
SNN

p
≈ 7.7–200 GeV for both centralities. Remarkably,

the ratios χBm=χBn with m > n in our model form a peak
structure around

ffiffiffiffiffiffiffiffi
SNN

p
≈ 5–10 GeV, with the peak

becoming sharper and larger as we progress to higher
orders.
We also find that at collision energies below

ffiffiffiffiffiffiffiffi
SNN

p
≈

5 GeV, the ratios χBm=χBn obtained from our model approach
zero, which deviates from the STAR data of centrality
0–40% [42] (see the right column of Fig. 7). Such
discrepancy observed at low-collision energies could
stem from several factors, including nonequilibrium
effects of low-energy collisions and complex experimental

environments (such as rotation and magnetic field3 in
noncentric collisions). Therefore, further studies are nec-
essary to investigate the role of these effects on the above-
observed discrepancy.
Thus far, there are few experimental data for higher-

order susceptibilities. Our prediction for χB7 =χ
B
1 and χB8 =χ

B
2

is presented in Fig. 8. The experimental data from STAR
with the centrality of 0–40% [43] and the FRG results [16]
are also included as a comparison. Current STAR data only
includes points with collision energies of 27 GeV,
54.4 GeV, and 200 GeV, and the uncertainty is relatively
high, making it challenging to identify nonmonotonic
behavior from the data. Nevertheless, our results suggest
that higher-order baryon number susceptibilities will
exhibit more pronounced nonmonotonic behavior, with
additional peaks and dips appearing along the freeze-out
line. These features could be potentially observed in future
experiments with improved precision.

V. CONCLUSION

In this study, we have investigated the behavior of
higher-order baryon number susceptibilities (χBn ) at finite
temperature and baryon chemical potential using a quanti-
tative holographic QCD model that has been calibrated
with lattice QCD data. We have observed a quantitative
agreement between our results and the HotQCD lattice data
at μB ¼ 0, see Figs. 1 and 3. The examination of χB10 and χ

B
12

will be possible in the future once relevant lattice data
becomes available.
To investigate the critical physics associatedwith theCEP,

we have analyzed the dependence of various ratios of χBn on
collision energy along the chemical freeze-out line. Our

FIG. 8. Comparison between the baryon number susceptibilities χB7 =χ
B
1 and χB8 =χ

B
2 along fitted chemical freeze-out line “fit-2” and the

STAR data of net-proton distributions in 0–40% [43] centrality Au-Au collisions. The black and cyan error bars correspond to the
statistical and systematic uncertainties of the experimental data points, respectively. The FRG results [16] are denoted by green bands.

3The rotation and magnetic field effects in holographic QCD
was investigated e.g., in [72–77].

ZHIBIN LI, JINGMIN LIANG, SONG HE, and LI LI PHYS. REV. D 108, 046008 (2023)

046008-8



findings demonstrate a quantitative agreement with exper-
imental data from STAR net-proton high moments in 0–5%
centrality and 0–40% centrality Au-Au collisions, as well as
FRG results for second and third-order baryon number
susceptibilities within the range

ffiffiffiffiffiffiffiffi
SNN

p
≈ 12–200 GeV. At

lower collision energies, we have observed a clear peak
structure from χB2 =χ

B
1 and χ

B
3 =χ

B
2 around

ffiffiffiffiffiffiffiffi
SNN

p
≈ 5–10 GeV

(see Fig. 7), while experimental data is accumulating to
check this feature. Regarding the fourth- to sixth-order
ratios, our results have exhibited quantitative agreement
with experimental data and FRG results over a broad
collision energy range of

ffiffiffiffiffiffiffiffi
SNN

p
≈ 7.7–200 GeV. We have

found that all ratios χBm=χBn with m > n display peak
structures around

ffiffiffiffiffiffiffiffi
SNN

p
≈ 5–10 GeV, characterized by

sharper and higher peaks as m is increased.
However, for low collision energies (

ffiffiffiffiffiffiffiffi
SNN

p
< 5 GeV),

the ratios χBm=χBn tend to approach zero, which deviates
from the STAR data. This discrepancy can potentially be
attributed to nonequilibrium effects present in low-energy
collisions, as well as the influence of complex experimental
environments, such as rotation and magnetic field effects in
noncentral collisions. Notably, it has been proposed that

rotation might have a significant impact on the results
obtained from low-energy collisions. Therefore, we suggest
that future experiments with measurements conducted in
the low-collision energy range of

ffiffiffiffiffiffiffiffi
SNN

p
≈ 1–10 GeV,

along with reduced experimental uncertainties, will unveil
further nonmonotonic behavioral signals that could aid in
the precise determination of the location of the CEP.
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