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Autophagy is a process of regulated degradation. It eliminates damaged and

unnecessary cellular components by engulfing them with a de novo-generated

organelle: the double-membrane autophagosome. The past three decades have

provided us with a detailed parts list of the autophagy initiation machinery,

have developed important insights into how these processes function and have

identified regulatory proteins. It is now clear that autophagosome biogenesis

requires the timely assembly of a complex machinery. However, it is unclear

how a putative stable machine is assembled and disassembled and how the dif-

ferent parts cooperate to perform its overall function. Although they have

long been somewhat enigmatic in their precise role, HORMA domain pro-

teins (first identified in Hop1p, Rev7p and MAD2 proteins) autophagy-related

protein 13 (ATG13) and ATG101 of the ULK-kinase complex have emerged

as important coordinators of the autophagy-initiating subcomplexes. Here, we

will particularly focus on ATG13 and ATG101 and the role of their unusual

metamorphosis in initiating autophagosome biogenesis. We will also explore

how this metamorphosis could potentially be purposefully rate-limiting and

speculate on how it could regulate the spontaneous self-assembly of the

autophagy-initiating machinery.
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A hallmark of macro-autophagy (autophagy hereafter) is

the de novo formation of double-membrane autophago-

somes. They capture and transport cellular components

to lysosomes, where the captured biomolecules are

degraded for recycling [1]. Autophagy has been proven

to play a wide range of roles in cellular housekeeping,

including the removal of damaged or unneeded organ-

elles, intracellular pathogens and protein aggregates [2].

It is an essential biological pathway that promotes

organismal health, longevity and helps combat cancer

and neurodegenerative diseases [3]. However, de novo

autophagosome biogenesis is complicated. It requires the

generation of intricate proteinaceous membrane contact

sites between a ‘lipid source’ and a cup-shaped mem-

brane (‘phagophore’ or ‘isolation membrane’). Dozens of

simultaneous autophagosomes can be formed, requiring

the transport of hundreds of millions of lipid molecules

[4–6]. The phagophore will expand and eventually close

to form the autophagosome. Conceptionally, these mem-

brane contact sites perform distinct but highly integrated

functions: they are responsive to signals to assemble on-

demand, where they create a tether between the growing

phagophore and the lipid source and allow lipids to flow

into the growing autophagosome. The exact composition
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of the contact site, how it is assembled and disassembled

and the molecular mechanism of its integrated activities

are unclear.

The past three decades of autophagy research have

shown the complexity of autophagosome biogenesis

machine. The current challenge is to appoint biochemi-

cal and biophysical functions to individual proteins

and functional complexes and understand how they

collaborate. In this review, we will concentrate on

ATG13 and ATG101, whose ‘scaffolding’ role in the

autophagosome biogenesis machinery is coming into

focus. The structures of ATG13 and ATG101 surpris-

ingly showed that both adopt an HORMA domain

fold (Fig. 1A) [7–11]. This domain was first identified

in the Saccharomyces cerevisiae proteins Hop1, Rev7

and Mad2, hence its name [12]. More HORMA

domains were later identified, with ATG13 and

ATG101 most closely related to the meiotic HOR-

MADs [13]. These proteins are a conserved family of

metamorphic signalling proteins that scaffold key sig-

nalling complexes in a variety of biological pathways.

The presence of ATG13 and ATG101 in the upstream

ULK-kinase complexes means that they too are ideally

placed to regulate the scaffolding of autophagy effector

complexes.

ATG13, AG101 and the
autophagosome biogenesis machinery

After the induction of autophagy, transient ‘puncta’

called the pre-autophagosome structure (PAS) are

formed [14–16]. The formation of this site of autophagy

initiation is an essential step preceding autophagic mem-

brane nucleation [14–16]. Through mechanisms that are

not yet fully resolved, the inhibition of mTORC1 activ-

ity triggers the recruitment of the first subcomplexes of

autophagy-related (ATG) proteins to these ‘puncta’ in

starvation-induced autophagy. The coalescence of the

ULK1 complex, the class III phosphatidylinositol

3-phosphate (PI3)-kinase complex I complex and

ATG9A vesicles are required for the formation of an

‘isolation membrane’ or ‘phagophore’, the first step in

the maturation of the autophagosome [17]. Early work

suggested a model where the initiation complexes are

recruited in a strict hierarchical order. The ULK1 com-

plex [consisting of the ULK1 or -2 kinase, RB1CC1

(RB1 inducible coiled-coil 1)/FIP200, and HORMA

domain proteins ATG13 and ATG101] is the most

upstream and central regulation node within the

autophagy network [18–22]. The recruitment of the

ULK-kinase complex is followed by the PI3-kinase

complex I [composed of PIK3C3 (phosphatidylinositol

3-kinase catalytic subunit type 3)/VPS34, PIK3R4

(phosphoinositide-3-kinase regulatory subunit 4)/

VPS15, BECN1 and ATG14] and the transmembrane

protein ATG9A, a lipid scramblase that resides in small,

highly dynamic vesicles [23–27].
Initiation of bulk autophagy is tightly connected to

nutrient levels and the target of rapamycin complex 1

(TORC1) in yeast or its homologue mammalian/mecha-

nistic target of rapamycin (mTOR). Active TORC1

inhibits bulk autophagy by negatively regulating Atg1

kinase (the yeast version of ULK-1 and ULK-2) activity

via phosphorylation of Atg13 [16]. Mammalian ATG13

has been proposed to act as a signalling hub that inte-

grates various upstream pathways, in conjunction with

the mTOR-ULK1/2 axis [28]. TOR1 and PKA both

phosphorylate Atg13 in budding yeast [29], while mam-

malian ATG13 is directly phosphorylated by mTOR

and AMPK [30]. In vitro hyper-phosphorylation of

Atg13 by TOR1 inhibits the ability of Atg13 to bridge

Atg17–Atg29–Atg31, resulting in an impeded PAS for-

mation [16,31,32]. Atg13 is dephosphorylated during

starvation by the PP2C phosphatases, leading to its

multivalent interactions with Atg17 [33]. Similarly, in

mammalian cells the phosphorylation of ATG13 dra-

matically changes upon autophagy induction, but this

does not appear to influence ATG13 binding affinity to

ULK1 and ATG101 [34]. Upon recruitment, Atg1/

ULK1 kinase subsequently phosphorylates itself and

other components of the ULK1 complex, Atg9/ATG9A

and all subunits of the PI3-kinase complex I [35–38].
The recruitment of Atg9/ATG9A and Atg14/ATG14,

however, mainly relies on Atg13/ATG13 rather than

Atg1/ULK1 [7,27,39–41]. The disruption of ATG13

binding to ULK1/2 does not completely abolish autop-

hagy in response to amino acid deprivation [42]. Autop-

hagy is however completely halted in ATG13-deficient

KO murine embryonic fibroblasts (MEFs) and DT40

cells in both normal and nutrient-deprived conditions

[28,40]. Both ATG13 and FIP200 are required for

ULK1 to be appropriately localized to the phagophore

[21], and the knockout of either ATG13 or FIP200 is

embryonic lethal in mice [39,40].

The importance of ATG13 is also reflected in its role

of organizing PAS formation, and the recruitment of

Atg9/ATG9A vesicles, a putative seeding membrane. It

has been demonstrated that the PAS displays liquid-like

properties and is formed by liquid–liquid phase separa-

tion (LLPS) of proteins from the Atg1 complex [16,32].

The intrinsically disordered C-terminal part of Atg13 is

the central mediator for a meshwork of site-specific

interactions between Atg13 and two sites at Atg17

[known as the Atg17-binding region (17BR) and the

Atg17-linking region (17LR)] [16,43]. Multiple repeats

of the interactions would result in the higher assembly
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of supramolecular Atg1 complexes and thereby drive

PAS formation [16,44]. Similar to budding yeast, the

IDR of mammalian ATG13 also contains interaction

sites for both FIP200 and ULK1; however, a similar

assembly mechanism has not been observed [42,45].

Meanwhile, using its N-terminal HORMA domain,

ATG13 interacts with the unstructured N-terminus of

ATG9A in yeast and humans and is responsible for

recruiting ATG9A [46–48]. This recruitment might

be aided by a short phospholipid-binding motif located

Fig. 1. HORMA metamorphosis. (A) Structures of human ATG13 and ATG101, with invariable part in grey and mobile elements highlighted

in red (ATG101) and yellow (ATG13). Highlighting colours in ATG13 and ATG101 highlight the equivalent mobile elements compared to

MAD2. When crystallized in the presence of ATG13 (middle), the C-terminal part of ATG101 is displaced, suggesting that dimerization might

allosterically induce a change in secondary structure in this region. Crystal structures of ATG13 (right) show an unusually short seatbelt, sug-

gesting it might not be able to capture client proteins in the ‘closed’ configuration typical for HORMA domains (as shown panel C). (B) The

emerging paradigm for HORMA domain proteins is that they default to an inactive state, before converting to a second conformer that can

interact with its client and allow signalling or effector complex assembly (dashed line). The spontaneous metamorphosis is slow; however,

the transition can be accelerated by catalysts (red line). Aided by their unusual energy landscape, the purposely slow spontaneous metamor-

phosis of the HORMA domains serves as a regulatory switch that dictates the assembly rate of effector complexes. (C) Metamorphosis

between the ‘open’ and ‘closed’ conformers of MAD2, where only the latter can interaction with the client protein CDC20, the key step in

creating the mitotic arrest as part of the spindle assembly checkpoint (SAC). This interaction is embraced by the flexible C-terminus of the

‘closed’ MAD2, termed the ‘seatbelt’, around the client protein and associates with the opposite edge of the core b-sheet. Invariable part in

grey and mobile elements highlighted in red (‘open’ MAD2) and yellow (‘closed’ MAD2). MAD2 interacting peptide of client protein is shown

in blue. (D) Metamorphosis of ATG13 and ATG101 in human autophagy initiation. The assembly of the ATG9A–ATG13–ATG101 subcomplex

requires the metamorphosis of ATG13 and ATG101. Metamorphosis is indicated as in (B) by a transition from a beta-sheet (the default con-

former) to an alpha-helix. Since this metamorphosis is slow, this unusual mechanism introduces a rate-limiting step in the assembly of the

ATG9–ATG13–ATG101 complex. Dimerization of ATG13–ATG101 accelerates the formation of the ATG9A–ATG13–ATG101 complex. (E)

Once formed, the ATG9A–ATG13–ATG101 complex forms the interaction hub for the recruitment of all autophagy initiation subcomplexes

to create a stable super-complex. The interaction of ATG2A with the ATG9A–ATG13–ATG101 and WIPI4 cooperatively enhances both its

vesicle tethering and lipid transfer activities.
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at the very N-terminus of ATG13 [18,41]. It is postu-

lated that the fusion of a small number of Golgi-

derived Atg9/ATG9A-containing vesicles, ranging from

approximately 30–60 nm in size, creates a seeding

membrane for the phagophore [49–51]. Mice die within

1 day of delivery when ATG9A was knocked out, con-

sistent with its essential role in autophagosome forma-

tion during (neonatal) starvation [52]. Indeed, ATG9A

is a component of the autophagic membrane and can

be isolated together with the autophagic membrane

marker LC3II [53]. Isolated yeast Atg9 vesicles or

reconstituted Atg9 proteoliposomes support local Atg8

lipidation upon the addition of PI3-kinase complex I

and the components of the lipid-conjugation machinery

(Atg21 and Atg12–Atg5–Atg16) and lipid transfer

(Atg2–Atg18) [51]. Yeast Atg17 is thought to mediate

the sequestration and fusion of Atg9 vesicles [47,54],

but no such activity has been linked to its functional

human homologue FIP200.

ATG101 was the last component of the ULK1

kinase complex to be identified, likely because it is

absent in Saccharomyces cerevisiae [22,34]. Mutating

the HORMA dimer interface between ATG13 and

ATG101 results in a strong inhibitory effect on autop-

hagy [10,41], and the incorporation of ATG101 in the

ULK1 kinase complex is believed to stabilize ATG13

[9,10]. Mammalian cells ATG101 knock-out cells or

cells treated with ATG101 siRNA show reduced LC3-

II puncta formation and increased endogenous LC3-I,

suggesting that LC3 conjugation is impaired [10,22]. In

Caenorhabditis elegans, loss of epg-9 (homologous gene

of mammalian ATG101) function causes defects in

autophagy similar to those in UNC-51/ATG1 and

EPG-1/ATG13 mutants [55], whereas both starvation-

induced and basal autophagy in Drosophila melanogaster

were impaired by the depletion of ATG101 [56]. A

quantitative BioID proteomics approach in mamma-

lian cells showed that the ATG13–ATG101 complex

recruited ATG9A to promote p62/SQSTM1-dependent

autophagy and that deleting ATG13 or ATG101

resulted in an accumulation of p62 aggregates resem-

bling the phenotype observed in the ATG9A knockout

[57]. Indeed, human ATG13 and ATG101 together

interact weakly to the very C-terminal HDIR (HORMA

dimer-interacting region) of ATG9A [46,58]. A recent

crystal structure shows the ATG9A HDIR peptide

draped on top of the ATG13–ATG101 dimer, where

the majority of contacts are made by ATG13 (Fig. 2B,

middle) [58].

Besides their involvement in Atg9/ATG9A traffick-

ing and localization, ATG13 and ATG101 are also

involved in the recruitment of the PI3-kinase complex

I [7,11,46,59]. After its recruitment, the PI3-kinase

complex I produces PI3P on the isolation membrane.

PI3P serves as a signalling lipid that helps recruit

downstream factors involved in autophagosome for-

mation and maturation and is the receptor for adap-

tors of the lipid transfer protein ATG2A and the LC3

conjugation machinery. ATG13 also harbours a

MAP1LC3/LC3-interacting region (LIR) motif and

can form complexes with the GABARAP subfamily of

Atg8 proteins [60,61]. ATG101 contains a Trp-Phe

(WF) finger motif that is responsible for direct or indi-

rect recruitment of downstream factors such as LC3,

WIPI1 and ZFYVE1/DFCP1 to the autophagosome

formation site [10,41].

Collectively, these observations suggest that ATG13

and ATG101 act as a central scaffolding unit to medi-

ate a network of interactions between the autophagy

initiation subcomplexes. Recent purifications of recom-

binant full-length versions of almost all proteins of the

human initiation subcomplexes provided a first indica-

tion that the initiation site does indeed include a stable

super-complex built on specific interactions between

(at least) the initiation complexes. The resulting super-

complex does not assemble in the absence of the

ATG9A–ATG13–ATG101 complex, highlighting its

central role [46]. Indeed, stable interactions of defined

stoichiometry between the ATG13–ATG101 dimer

with all autophagy initiation subcomplexes were

observed: with ULK1–FIP200, ATG9A, as well as

ATG14–BECN1. This work also showed that the

ATG9A–ATG13–ATG101 complex directly interacts

with the lipid transfer protein ATG2A and its adaptor

protein WIPI4, compatible with previous reports on

the direct interaction between ATG9A and ATG2A/

WIPI4 (Atg2/Atg18) [62–64]. The vesicle tethering and

lipid transfer activities by ATG2A alone are weak, but

both activities are progressively enhanced with the

addition of WIPI4 (when PI3P was present in the vesi-

cle), ATG9A and ATG13–ATG101. This suggests that

ATG2A serves as a functional ‘co-incidence sensor’ for

the successful assembly of the super-complex, as its

enhanced activity requires the cooperative association

and activity from all canonical autophagy initiation

subcomplexes. This could provide a way of ‘sensing’

the co-incidence of early autophagy initiation factors

as a mature membrane contact site before committing

to autophagosome formation.

The HORMA domain proteins are among the oldest

conserved proteins in autophagy initiation [65]. Collec-

tively, these observations show that HORMA domain

proteins ATG13 and ATG101, in close collaboration

with ATG9A, have evolved as an essential hub at the

early stages of autophagy initiation. A question that

remains however is whether a minimal ‘machine’ can
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be defined that, by means of regulated assembly

and disassembly, can integrate signals to initiate

autophagosome biogenesis at the right place and time.

This assembled machine might then be repeated multi-

ple times to give rise to ‘regional’ contact sites that

support autophagosome growth.

HORMA metamorphosis is rate-
limiting for assembly complexes

This autophagosome biogenesis machinery is assem-

bled within minutes after autophagy is induced by

starvation [66]. However, the mechanism that makes

the different functional subgroups suddenly co-localise

is unclear. This raises the question about the identity

of the triggering event (or rate-limiting step) of the

nucleation of the assembly of the PAS. It seems likely

that its foundation lies in a network of interactions

between the functional subcomplexes that coopera-

tively coordinates the co-incidence at the contact site.

But which interaction is the rate-limiting step that

would prevent self-assembly until required? This ‘miss-

ing’ obligatory intermediate interaction would engage

upon the arrival of the proper signal, thereby trigger-

ing the self-assembly of the initiation site. Indeed,

the spontaneous self-assembly of complexes observed

in vitro is in apparent contrast with the regulated

assembly of the PAS in cells after autophagy

Fig. 2. Catalysed metamorphosis as a regulatory switch. (A) Slow spontaneous MAD2 metamorphosis is catalysed by specialized protein

machinery, allowing for dynamic control of complex assembly and disassembly. Both the catalysed assembly and disassembly require

conformer-sensitive dimerization [‘open’ MAD2- ‘closed’ MAD2 (assembly) and ‘closed’ MAD2-p31 (disassembly)]. Additional abbreviations:

MPS1, monopolar spindle 1; BUB1, budding uninhibited by benzimidazoles 1; BUBR1, BUB1-related protein kinase; CDC20, cell division

cycle protein 20; KNL1, kinetochore scaffold 1. (B) Structure of asymmetric homo-dimer of MAD2 (left, PDB: 2V64), ATG13–ATG101 (mid-

dle, PDB: 8DO8) and p31–MAD2 (right, PDB: 2QYF), with invariable part in grey and mobile elements highlighted in red (‘open’ conformers:

MAD2, ATG101) and yellow (‘closed’ conformers: ‘closed MAD2, ATG13 and p31). Highlighting colours in ATG13, ATG101 and p31 show

the equivalent mobile elements compared to MAD2, with the internal interaction motif in p31 in pink. The MAD2-interacting peptide of client

protein is shown in blue and ATG9 HDIR peptide in cyan. (C) Hypothetical catalysed metamorphosis of ATG13 (and ATG101) would regulate

autophagy initiation by controlling the assembly of the initiation super-complex.
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induction, suggesting it is missing or already overcame

the inhibitory regulation.

The recent structures and biochemical reconstitu-

tions have placed a new spotlight on the HORMA

domains of ATG13 and ATG101 as potential regula-

tors of the assembly of larger assemblies. As discussed

above, the recruitment of ATG13 and ATG101 is

essential for autophagy initiation and recruitment of

most of the components of the initiation machinery

[7,20,41]. HORMA domain proteins are a class of sig-

nalling proteins that dictate the assembly rate of effec-

tor complexes. They achieve this through their unusual

ability to switch between two topologically distinct

folds (conformers) under physiological conditions, as

explained below in more detail (Fig. 1B). Each con-

former is capable of engaging in a separate set of

interactions, where typically only one conformer can

interact with the client protein and trigger the assem-

bly of effector complexes. However, considerable acti-

vation energy needs to be invested in the structural

changes in the HORMA topology to allow effector

complex formation. Since the spontaneous metamor-

phosis is typically slow, this introduces a rate-limiting

step in the assembly and disassembly mechanism and

therefore controls the rate of signalling [67]. This

obligatory metamorphosis therefore creates a unique

requirement to allow cells to tightly regulate assembly

and disassembly of HORMA domain effector com-

plexes in order to achieve highly specific signalling in

space and time (Fig. 1B). HORMA domain proteins

share no functional overlap, but use this unusual

mechanism to serve as infection sensors in a bacterial

immune system and playing central roles in eukaryotic

cell cycle, genome stability, sexual reproduction and

cellular homeostasis pathways.

The emerging paradigm for HORMA domain pro-

teins is that they default to an inactive state, before

converting to a partner-bound active state. Crystal

structures of HORMA domains show a compact

domain of about 200 amino acids whose core contains

a three-stranded b-sheet. The two edges of the core b-
sheet are interaction sites for binding partners and for

the domain’s topologically mobile N- and C-terminal

regions (Fig. 1C). The metamorphosis of the HORMA

domains involves the unfolding and refolding of these

mobile regions to the static b-sheet core. The re-

positioning of the mobile region thereby creates or

obstructs interaction sites for client proteins. This

topological plasticity allows the HORMA domain

protein to adopt its typical, but highly unusual,

partner-bound ‘closed’ conformer. In this state, a

6–10-amino-acid region of a binding partner forms a

short b-strand that binds along the C-terminal edge of

the HORMA domain’s core b-sheet. This interaction

is embraced by the flexible C-terminus of the HORMA

domain, termed the ‘seatbelt’, around the client protein

and associates with the opposite edge of the core b-
sheet (Fig. 1C). This creates a topological union

between the HORMA domain and client protein, such

that metamorphosis requires at least a partial unfold-

ing of the HORMA domain to break this unusually

strong binding mode. In nearly all HORMA-mediated

signalling pathways, specifically this ‘closed’ HORMA

domain conformer interacts with the client protein.

This association subsequently triggers the assembly of

larger effector complexes, such as the Mitotic Check-

point Complex (‘closed’ MAD2–CDC20) or the Shiel-

din complex (‘closed’ REV7–SHLD3) (Fig. 1B).

Conversely, the MAD2 ‘open’ state represents an auto-

inhibited initial state where metamorphosis is obligatory

before interaction can be established [68]. Intermediate

‘unbuckled’ states might allow access to the binding site

by (partially) disengaging the seatbelt [69,70]. A par-

tially opened seatbelt requires the client protein the pro-

tein to thread through the created opening, which is

slow and only possible for N- or C-terminally posi-

tioned disordered interaction motifs [71].

ATG13 and ATG101 metamorphosis in
human autophagy initiation

Like other HORMA domain proteins, ATG13 and

ATG101 are ideally placed to function as a ‘switch’ to

trigger the assembly of super-complexes. The struc-

tures of ATG13 and ATG101 showed surprising

strong similarities with the ‘closed’ and ‘open’ con-

formers of MAD2, respectively (Fig. 1A,C) [7–11].
This provided the first strong hint that they might

have a regulatory role. However, the hypothesis that

ATG13 and ATG101 could use metamorphosis to

nucleate the assembly of effector complexes had

remained untested in autophagy until recently. A series

of experiments aimed at deconvoluting the details of

ATG9A–ATG13–ATG101 complex assembly showed

that both ATG13 and ATG101 alone can interact with

ATG9AN and ATG9AC, respectively (Fig. 1D) [46].

However, this interaction formed extremely slowly

(~ 18–24 h). This shows that both ATG13 and

ATG101 default to an inactive non-ATG9A-binding

state, and that metamorphosis is obligatory before

interacting with ATG9A. In contrast, the default

ATG13 conformer binds ATG101, and together they

create the composite interface that allows for a fast

engagement with ATG9AC. The interaction of

ATG13–ATG101 with ATG9AC is relatively weak (the

dissociation constant is 2.4 lM), which explains why

6 FEBS Letters (2023) ª 2023 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
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the interaction between ATG13 and ATG9AC does

not readily form at concentrations found in cells [58].

Therefore, the metamorphosis of ATG101 is required

to recruit ATG13 to ATG9AC. Once recruited to

ATG9AC, ATG13 can switch conformer state and

ATG101 loses the ability to bind ATG13, which

‘hands ATG13 over’ to ATG9AN. The increased local

concentration and proximity might aid in this process,

as binding of ATG13 to ATG9AN is dramatically

accelerated from 18–24 h to 30 min after a prior inter-

action of ATG13–ATG101 with ATG9AC. Next,

ATG101 can recruit another ATG13 to saturate all

ATG9A molecules in the trimer. This yields the

ATG9A–ATG13–ATG101 complex in a 3 : 6 : 3 stoi-

chiometry, which allows for the formation of the initi-

ation super-complex [46]. Therefore, as previously

observed with other HORMA domain proteins,

ATG13 and ATG101 introduce a rate-limiting step in

the assembly of the effector complex. This is likely

part of regulating the first steps in initiation of autop-

hagy in cells, as introducing mutants that lack specific

metamorphic elements showed that autophagic flux

was abolished in MEFs [46]. Additionally, these

mutants prevented the co-localization of ATG16L,

FIP200, ATG14 and WIPI2 under autophagy-inducing

conditions [46]. Collectively, these observations suggest

that the metamorphosis of ATG13 and ATG101 is

involved in the regulation of the early steps of autop-

hagy initiation.

The structural details of what defines the ATG13

and ATG101 metamorphoses are currently unclear.

However, there are hints that they differ from the

canonical HORMA domain metamorphosis.

The structure of human ATG101 shows that the C-

terminal mobile seatbelt region can adopt a b-strand
bound to the core b-sheet of the HORMA fold

(Fig. 1A, left) [8]. However, when in complex with

ATG13, this region folds to ana-helix that no longer

interacts with the rest of the molecule (Fig. 1A, mid-

dle) [11]. The deletion of this region shows a signifi-

cant defect in the interaction with PI3-kinase complex

I and impaired autophagosome formation [11]. This

topologically flexible part of ATG101 docks on a

symmetry-related molecule in the crystal. It is therefore

currently unclear if this reflects the true metamorphic

event, where heterodimerization with ATG13 induces

the switch in structure and exposes an interaction

interface for the PI3-kinase complex. In S. cerevisiae,

which lacks ATG101, Atg13 has an extra cap that is

proposed to help in the stability of the protein [7].

This observed stability could be related to the dynam-

ics of metamorphosis, but it might also allow for inter-

actions otherwise mediated by ATG101.

The role of the seatbelt in ATG13 might also be

atypical. Removing or mutating the mobile elements in

HORMA domains affects metamorphosis, presumably

by changing the relative stability of the conformers

[72]. Although the structures of ATG13 show that it

can adopt the typical ‘closed’ HORMA domain fold,

the position and length of the seatbelt suggest it cannot

engage with a client protein in a seatbelt-mediated

manner (Fig. 1A, right). Removal of the seatbelt typi-

cally prevents the interaction between HORMA

domains and their client proteins [73–77], but surpris-

ingly does not seem to affect the ability of ATG13 to

bind to ATG101 nor ATG9A. This raises the possibil-

ity that something else could be captured by the seat-

belt or that the seatbelt mechanism is rather used

allosterically by stabilizing different conformers.

Regardless, the change in structure and surface charge

due to metamorphosis allows conformers to be sepa-

rated using anion exchange chromatography

[46,68,73,76,78]. Wildtype ATG13 elutes as a single

(default) conformer, which indeed promptly binds

ATG101 but requires a long incubation with ATG9AN

before interacting. In contrast, removing the seatbelt

of ATG13 yields a distinct second conformer that

shows an inverted binding behaviour: it readily binds

to ATG9AN, but requires hours to interact with

ATG101 [46]. This shows that, in contrast to other

HORMA domain proteins, the seatbelt is only indi-

rectly involved by stabilizing different conformer struc-

tures. The seatbelt thereby ensures that the wild-type

protein defaults to a distinct (inhibited) conformer,

that needs to switch when an as-of-yet unknown right

signal arrives.

Could metamorphosis be regulated for
an on-demand assembly?

The interaction of ATG13 and ATG9A is strongly

enhanced after autophagy induction by rapamycin in

yeast [48]. This confirms that the larger complexes are

assembled on-demand and suggests that ATG13 and

ATG9A are not associated at the start of autophagy.

Moreover, it has been established that the PAS is

assembled within seconds to minutes after the induc-

tion of autophagy [66,79,80]. However, this could not

be observed when mixing ATG9A, ATG13 and

ATG101 in vitro. This raises a question: what regulates

or accelerates the initial assembly? Could there be

inhibitory interactions or post-translational modifica-

tions that prevent assembly until it is necessary? The

identification of ATG13 and ATG101 metamorphoses

as rate-limiting, presents an enticing possibility to

solve this paradox. This hypothesis is inspired by work
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on HORMA domain protein MAD2. In short, MAD2

is recruited to kinetochores in specifically the default

‘open’ conformer state (Fig. 2A). Until the kineto-

chores are properly attached to the mitotic spindle, the

Spindle Assembly Checkpoint (SAC) is tasked with

creating the inhibitory Mitotic Checkpoint Complex

(MCC). Spontaneous assembly of the MCC requires

over 8 h at physiological concentration [81–83]. Regu-

latory SAC proteins are recruited to unattached kinet-

ochores and act as catalysts in the production of the

MCC by accelerating the rate-limiting metamorphosis

of MAD2 to the ‘closed’ conformer (Fig. 2A, left)

[81,82,84–86]. Indeed, adding the regulatory SAC pro-

teins dramatically accelerates MAD2 metamorphosis

(completed within a few minutes) which reproduces

signalling kinetics previously observed in cells [81].

When signalling needs to be silenced, the resulting

‘closed’ MCC complex is disassembled by converting

MAD2 back to its ‘open’ conformer. This task is per-

formed by the dedicated AAA+-ATPase Thyroid hor-

mone receptor interactor 13 (TRIP13), a generic

HORMA remodeller (Fig. 2A, right) [13,87,88].

Dimerization of metamorphic proteins, including

HORMA domains, is usually required to catalyse

metamorphosis. HORMA domains dimerize through a

canonical interface composed of the edge of the

domain’s b-sheet and a neighbouring a-helix (Fig. 2B).

The dimerization surface changes upon metamorpho-

sis, and dimer formation is therefore conformer spe-

cific. For example, MAD2 can only dimerize

asymmetrically between an ‘open’ and ‘closed’ form:

the ability to dimerize is lost when the ‘open’ MAD2

converts to the ‘closed’ partner-bound conformer [68].

Importantly, dimerization introduces strain in the

‘open’ MAD2 conformer, lowering the activation

energy for conformational conversion to the ‘closed’

state [69]. Indeed, the asymmetric dimerization of

MAD2 (between specifically only an ‘open’ and

‘closed’ conformer) is essential in accelerating and reg-

ulating metamorphosis (Fig. 2A, left) [81]. The asym-

metric dimerization between an ‘open’ and ‘closed’

HORMA is conserved in ATG13 and ATG101 and is

essential in cells (Fig. 2B) [9,11,41,48]. Like with

MAD2, dimerization of ATG13 and ATG101 indeed

does strongly increase complex formation (to about

30 min compared to 18–24 h with individual proteins)

and strongly affect autophagy in cells (Fig. 1D)

[41,46]. However, further accelerating factors are likely

missing, as the observed ATG9A–ATG13–ATG101

assembly kinetics are insufficient to assemble the com-

plex in a few minutes as observed in cells [48]. To cre-

ate the MCC, the two molecules in the MAD2 dimer

have a distinct role. The ‘template’ closed MAD2 is

presented by specifically unattached kinetochores,

where it acts as an enzyme to convert multiple open

MAD2 molecules to ‘copy’ the closed conformer and

assemble the effector complex (Fig. 2A) [89]. In human

autophagy, the ‘templating’ role might be taken up by

ATG101 to guide (or ‘hand over’) potentially multiple

molecules of ATG13 to engage in the functional inter-

action with ATG9A (Fig. 2C). Species that lack

ATG101, could use the MAD2 ‘template’ mechanism

more faithfully by having ATG13 serve in both roles.

Future work will be needed to deconvolute the regula-

tion of this intricate assembly mechanism.

After sufficient autophagosomes have been generated,

the initiation machinery is inactivated, which presum-

ably involves its disassembly. Again, as with other

HORMA domain-based signalling, metamorphosis

could be a rate-limiting step for disassembly as it

requires the opening of the ‘closed’ conformers. This

activity is typically performed by AAA+-ATPase

TRIP13, which has co-evolved with almost every

HORMA domain protein [67]. The interaction with

TRIP13 requires the dimerization of HORMA domains

(Fig. 2A,B); thus, dimerization is critical for both assem-

bly and disassembly of signalling complexes [87,90,91].

The ring-shaped TRIP13 hexamer targets the HORMA

protein’s N-terminus to its central pore, after which

ATP hydrolysis coordinates conformational changes to

partially unfold the HORMA domain [90–92]. The

HORMA domain will revert to the ‘open’ conformer,

leading to the disassembly of the effector complex and

inactivation of the signal. TRIP13 can also convert (pre-

maturely switched) ‘empty’ HORMA domains to the

default conformer. TRIP13 can therefore have both

activating and inactivating functions, depending on the

context. So far, TRIP13 has not been linked to autop-

hagy yet; therefore, ATG13 and ATG101 might be

remodelled by an as-of-yet unidentified factor. Future

work is required to confirm if the emerging concept of

regulated complex assembly and disassembly through

accelerated metamorphosis is conserved in autophagy.

Conclusions and perspectives

Since its discovery in 1998, the HORMA domain has

emerged as an unusual scaffolding protein. Aided by

their unusual energy landscape, their purposely slow

spontaneous metamorphosis serves as a regulatory

switch that dictates the assembly and disassembly rates

of effector complexes. Conformational sensors (for

example conformer sensitive dimerization) provide a

way for cells to achieve conditional signal activation

and inactivation. Co-evolved specialized protein

machinery can accelerate metamorphosis, allowing for
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dynamic control of complex assembly and disassembly.

This likely defines a broader paradigm for HORMA

domain signalling, as core properties (e.g. an inher-

ently unstable topology, the capture of peptides in a

closed conformation, dimerization and co-evolution

with proteins that catalyse metamorphosis) are con-

served in the majority of HORMA domain proteins,

including ATG13 and ATG101.

In this Review, we have explored how this hypothet-

ical mechanism would provide an alternative mecha-

nism to regulate the assembly of the autophagy

initiation machinery. While many requisite features of

HORMA-based signalling have been identified in

ATG13 and ATG101, we are only at the beginning to

understand if and how these are involved in regulating

the initiation of autophagy. The near future will

require the structural analysis of the metamorphic

changes in ATG13 and ATG101 and the elucidation

of their role in super-complex formation, organization

and function. Many exciting questions will need to be

explored and answered, both in cells and in vitro.

What is the mechanism of metamorphosis? What are

the putative factors that accelerate metamorphosis?

How would a minimal machinery look like and how

would it function? Do the current biochemical recon-

stitutions miss components or modifications? How do

the (accelerated) interactions measured in vitro com-

pare to the assembly kinetics in cells? How are the

super-complexes disassembled and is this ATP-

hydrolysis dependent in cells? In the past decade, we

have seen that fundamental genetic and cell biological

experiments have increasingly been complemented by

biochemical reconstitution of growing complexity. This

complementary and intrinsically reductionist approach

will allow for the careful analysis of individual interac-

tion strengths and kinetics. The resulting quantitative

and comprehensive mechanistic models will explain the

complex assembly of the autophagy initiation site and

clarify how the controlled co-incidence of the func-

tional units supports the initiation of autophagosome

growth. Deep mechanistic knowledge of the unusual

ATG13–ATG101 HORMA domain-based signalling

module would set the stage for alternative interven-

tions and the development of therapeutics that may

interfere with autophagy in cells.
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