English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cortical, subcortical and cerebellar contributions to language processing: A meta-analytic review of 403 neuroimaging experiments

MPS-Authors
/persons/resource/persons263448

Turker,  Sabrina       
Lise Meitner Research Group Cognition and Plasticity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons224446

Kuhnke,  Philipp       
Lise Meitner Research Group Cognition and Plasticity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons185449

Hartwigsen,  Gesa       
Lise Meitner Research Group Cognition and Plasticity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Turker, S., Kuhnke, P., Eickhoff, S., Caspers, S., & Hartwigsen, G. (2023). Cortical, subcortical and cerebellar contributions to language processing: A meta-analytic review of 403 neuroimaging experiments. Psychological Bulletin. doi:10.1037/bul0000403.


Cite as: https://hdl.handle.net/21.11116/0000-000D-5C19-1
Abstract
Language is a key human faculty for communication and interaction that provides invaluable insight into the human mind. Previous work has dissected different linguistic operations, but the large-scale brain networks involved in language processing are still not fully uncovered. Particularly, little is known about the subdomain-specific engagement of brain areas during semantic, syntactic, phonological, and prosodic processing and the role of subcortical and cerebellar areas. Here, we present the largest coordinate-based meta-analysis of language processing including 403 experiments. Overall, language processing primarily engaged bilateral fronto-temporal cortices, with the highest activation likelihood in the left posterior inferior frontal gyrus (IFG). Whereas we could not detect any syntax-specific regions, semantics specifically engaged left posterior temporal areas (left fusiform and occipitotemporal cortex) and the left frontal pole. Phonology showed highest subdomain-specificity in bilateral auditory and left postcentral regions, whereas prosody engaged specifically the right amygdala and the right IFG. Across all subdomains and modalities, we found strong bilateral subcortical and cerebellar contributions. Especially the right cerebellum was engaged during various processes, including speech production, visual, and phonological tasks. Collectively, our results emphasize consistent recruitment and high functional modularity for general language processing in bilateral domain-specific (temporo-frontal) and domain-general (medial frontal/anterior cingulate cortex) regions but also a high specialization of different subareas for different linguistic subdomains. Our findings refine current neurobiological models of language by adding novel insight into the general sensitivity of the language network and subdomain-specific functions of different brain areas and highlighting the role of subcortical and cerebellar regions for different language operations.