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Flexible control of vocal timing in Carollia
perspicillata bats enables escape from acoustic
interference
Ava Kiai 1✉, Jan Clemens2, Manfred Kössl1, David Poeppel 3 & Julio Hechavarría 1✉

In natural environments, background noise can degrade the integrity of acoustic signals,

posing a problem for animals that rely on their vocalizations for communication and navi-

gation. A simple behavioral strategy to combat acoustic interference would be to restrict call

emissions to periods of low-amplitude or no noise. Using audio playback and computational

tools for the automated detection of over 2.5 million vocalizations from groups of freely

vocalizing bats, we show that bats (Carollia perspicillata) can dynamically adapt the timing of

their calls to avoid acoustic jamming in both predictably and unpredictably patterned noise.

This study demonstrates that bats spontaneously seek out temporal windows of opportunity

for vocalizing in acoustically crowded environments, providing a mechanism for efficient

echolocation and communication in cluttered acoustic landscapes.
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The capacity for short-term vocal plasticity is advantageous
in contexts where ambient noise is abundant, as it can
enable acoustic jamming avoidance1. Ambient noise pre-

sents a special challenge to echolocating bats, who rely on the
returning echoes of their sonar pulses for navigation and in
addition maintain social dynamics in part through the exchange
of communication calls.

It is well established that bats possess impressive vocal plasti-
city, freely modifying various parameters of their vocalizations2

such as the amplitude (known as the “Lombard effect”)3–7,
duration4,8–10, repetition or emission pattern8,9,11, complexity8,
and spectral content6,12,13 (but see14–16) in response to playback
of interfering noise. Yet, how bats overcome interference from
moment-to-moment fluctuations in the amplitude of continuous
background noise, a situation analogous to their natural envir-
onment, has received less attention.

Carollia perspicillata bats live in colonies of up to hundreds of
individuals where the acoustic landscape is densely populated by
vocalizations which all share overlapping spectral and temporal
properties. These bats emit highly stereotyped echolocation pulses
comprised of brief (~1–2 ms)17, multi-harmonic, frequency-
modulated downward sweeps (peak frequency 60–90 kHz)18,19.
This species also possesses a repertoire of social calls, some of
which have been associated with specific behaviors, such as dis-
tress, territorial aggression (males), courtship (males), and the
eliciting of maternal attention (infants)20–22. These communica-
tion calls typically feature multiple distinct harmonics, with the
most energy concentrated in lower frequencies (below 50 kHz)20.

In this study, we investigated the ability of bats to adapt the
timing of their vocalizations (both echolocation and commu-
nication calls) to overcome acoustic jamming, using temporally
predictable and unpredictable noise, across two experiments. We
hypothesized that bats would preferentially vocalize in periods of
low amplitude in amplitude modulated noise, in line with a
metabolically efficient signal optimization strategy. Humans
regularly employ a similar strategy, such as when a pair of
speakers pause their conversation so as not to be drowned out by
the blaring siren of a passing ambulance.

We observed that freely vocalizing bats flexibly adapt the
timing and rate of their calling to be inversely proportional to
dynamically-changing background amplitude levels. This tem-
poral jamming avoidance behavior emerged in the presence of
both predictably and unpredictably patterned noise, implying an
underlying auditory-vocal circuit that does not require entrain-
ment for optimizing call timing. In addition, calling behavior is
modulated not only by instantaneous amplitude levels but also by
more global sound statistics (i.e., second-order temporal pat-
terns), suggesting that bats learn and exploit properties of the
acoustic environment which unfold over time.

Results
Bats cluster call onsets toward amplitude troughs in broad-
band masking noise. In experiment 1, we recorded vocalizations
from eight groups of six bats during a silent baseline and during
playback of two types of white noise featuring different carrier
frequencies (a 10–96 kHz “broadband masker”, which overlaps
with both communication and echolocation call frequencies, and
a 50–96 kHz “high-frequency masker” (hereafter “high-freq
masker”), which overlaps in frequency only with echolocation
pulses) (Fig. 1A, B). Audio recordings from our colony of captive
bats showed that spontaneous vocalizations feature a prominent
rhythm at approximately 11 Hz (Fig. S1). Thus, we amplitude
modulated the two maskers at 8 Hz and 15 Hz to see if the bats
could adjust to slower or faster rates, respectively (Fig. 1C).

We labeled detected vocalization onsets with the instantaneous
phase (0 to 2π) of the modulation cycle at the corresponding time
point (Fig. 1E). For the silent baseline, we labeled vocalizations
according to a cosine model of a fictitious amplitude modulation
with the same rate as the corresponding masking noise. Based on
visual inspection of a subsample of our data (Table S1), and the
fact that these calls were primarily short in duration
(median ¼ 3:4ms; IQR ¼ 3:3ms; 75% of calls<5ms, across both
experiments), we estimate that most (~90%) of detected
vocalizations were echolocation pulses.

As the nature of these call onset data are cyclical (i.e., calls
occurring at the end of an amplitude modulation cycle may also
be considered as occurring at the start of the following cycle)
(Fig. 2A), we represented the distribution of call onsets in the
polar as well the cartesian plane (Fig. 2B). We also made use of
statistics for the analysis of circular data (see Methods) which take
into consideration the temporal proximity of values that fall at the
boundary of consecutive modulation cycles.

We found that bats preferentially vocalized in the quieter
phases of the ongoing amplitude modulation noise, rendering
the distribution of call onsets within the cycle inversely
proportional to the amplitude level of the playback noise (Fig. 2B).
Call onset density distributions were strongly unimodally
clustered toward the amplitude downstate (Fig. 2B, middle row)
in the presence of the broadband masking noise for both
modulation rates (Rayleigh’s test: 8 Hz: r ¼ 0:06; p<0:001; 15 Hz:
r ¼ 0:03; p<0:001, Bonferroni adjusted). However, call onsets
emitted in the high-freq masking noise were not strongly
clustered at any particular phase in the modulation cycle, more
closely approximating a uniform circular distribution (8 Hz:
r ¼ �0:001; p ¼ 1; 15 Hz: r ¼ 0:001; p ¼ 1, Fig. 2B, bottom
row). Importantly, no bias towards vocalizing at either rate was
observed in the silent baseline (8 Hz: r ¼ �0:001; p ¼ 1; 15 Hz:
r ¼ �0:001; p ¼ 1) for either modulation rate (Fig. 2B, top row).
This preference for calling in the downstate of the amplitude cycle
in the broadband masking condition was present for all groups
tested (4 for each modulation rate) and on all five recording days
(Fig. S2).

To concisely describe the distribution of call onsets in the
modulation cycle, we treated data points (phase values at which
call onsets occurred) as unit vectors and computed their sum (the
resultant vector). Resultant vectors indicate both the direction
(phase) at which the mean is located (Fig. 2B, white arrow tips)
and the degree to which the data are concentrated at that
direction (Fig. 2B, arrow lengths). A resultant vector length of 0
would indicate that the data are uniformly spread along the circle,
while a length of 1 would indicate that all data points occupy the
same location. Resultant vectors for calls emitted in broadband
masking conditions indicated that call onsets were prominently
clustered near amplitude troughs (Fig. 2B, Table S2).

To confirm that this result is robust feature of the data, we
computed maximum likelihood von Mises parameters, the
circular mean (μ) and concentration (κ), in a bootstrap
procedure. These parameters revealed that the clustering of call
onsets on the falling edge of the amplitude cycle (Fig. 2C, lower
right quadrants) was consistent throughout the dataset for both
modulation rates, but only in the broadband noise condition
(Fig. S3A).

Phases at which call onsets occurred varied significantly
between playback conditions for each modulation rate (Mardia-
Watson-Wheeler test: 8 Hz:1228; p<0:001; 15 Hz: 369; p<0:001,
Bonferroni adjusted). The spread of call onsets (angular
dispersions), but not the angular means, were significantly
modulated by the type of masking noise (Rao’s test: broadband
vs. high-freq maskers, p<0:001, Table S3).
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Rate of calling is modulated by the degree of spectral masking.
Playback noise impacted not only the timing, but also the number
of vocalizations emitted by the bats. The presence of masking
noise resulted in a reduction in the rate of vocalization between
silent (528,155 calls) and broadband masking conditions
(224,384). Surprisingly, the rate of calling increased relative to the
silent baseline in the presence of the high-freq masker (672,528).

Playback condition significantly accounted for the variation in the
hourly rate of calling for the 15Hz context (χ2 ¼ 21:34 2ð Þ; p<0:001),
but not in the 8Hz context (χ2 ¼ 4:37 2ð Þ; p ¼ 0:11), as modeled by
a negative binomial distribution. Nonetheless, in the 8Hz context, the
rate of calling dropped between silent and broadband masking
conditions (B ¼ :45; SEB ¼ 0:38; p ¼ 0:03495%CI½0:21� 0:95�),
and silent and high-freq masking conditions. In the 15Hz context,
the rate of calling dropped between silent and broadband masking
conditions (B ¼ :39; SEB ¼ 0:36; p<0:01; 95%CI½0:19� 0:79�), but
increased between baseline and the high-freq masker
(B ¼ 2:19; SEB ¼ 0:36; p ¼ 0:03; 95%CI½1:07� 4:46�, Tables S4–7,
Fig. 2D). Between modulation rate contexts, calling rates were only
significantly different in the high-freq masking condition
(z ¼ �1:85; p ¼ 0:06), due to the greater number of calls in the
15Hz context.

Bats can adapt call timings to both predictably and unpre-
dictably patterned noise. In experiment 1, we observed that bats
exhibit an untrained and flexible adaptation of vocalization tim-
ing and rate when presented with rhythmic masking noise. In

experiment 2, we further probed this behavior by asking: First,
what is the upper temporal limit for this anti-phase calling
behavior? And second, can the bats still perform this feat if the
temporal pattern of the masking noise is unpredictable? To this
end, we played the broadband masker noise to four additional
groups of six bats, this time featuring amplitude modulation at
eight different rates (4, 8, 16, 25, 33, 40, 50, and 80 Hz) for
7.5 min each (steady-state condition). To answer the latter
question, we also generated a masking noise with a randomly
permuted sequence of amplitude modulation cycles sampled from
those eight rates for 60 min (random condition) (Fig. 1D).

Call onsets tracked the inverse of the modulation envelope up
to 16 Hz (Rayleigh’s test: 4, 8, and 16 Hz, p<0:001, Bonferroni
adjusted, Fig. 3A). Call onset clustering was negligible for rates of
25 Hz and above (Table S8). Importantly, as this anti-phase
clustering pattern was present in both steady-state and random
temporal conditions, the bats evidently did not need to be able to
predict the time-of-arrival of the upcoming amplitude downstate
to be able to adapt call timings (Fig. 3A). This call pattern was
present for all groups of bats tested (Fig. S4).

Notably, bootstrapped von Mises parameters showed that this
temporal “targeting” of the falling edge of the amplitude
modulation does not display a step change above 16 Hz, but
rather a gradual decrease in tracking fidelity (Fig. 3B, Fig. S3B).

Phases at which call onsets occurred varied significantly
between playback conditions for modulation rates from 4 to
40 Hz (Mardia-Watson-Wheeler test: p<0:001, Bonferroni
adjusted, Table S9). Angular dispersions were significantly
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Fig. 1 Schematic of experiments. A Each group of bats consisted of 6 adults (4 male) that could flit and socialize freely in a cage placed within the
recording chamber. B Stimuli were broadband white noise with 10–96 kHz (broadband masker) and 50–96 kHz (high-freq masker) carrier frequencies. Teal
and violet traces indicate normalized power spectra of C. perspicillata communication and echolocation calls, respectively. C In experiment 1, maskers were
amplitude modulated at 8 or 15 Hz for each group. Procedure (right): Recording days (5) consisting of three one-hour blocks: a silent baseline, then
playback of the broadband and high-freq masking noise, counterbalanced. D In experiment 2, broadband masking noise was amplitude modulated at eight
amplitude modulation (AM) rates (4–80 Hz). A random condition consisted of a randomly permuted sequence of the eight AM cycles. Procedure (right):
Recording days (5) consisted of a silent baseline, then playback of the steady-state maskers (playback of each modulation rate for 7.5 min each in
randomized order), and random masking noise, counterbalanced. E Data analysis: Call events (pink shaded areas) were detected using Deep Audio
Segmenter (DAS). Calls were tagged with the instantaneous phase (red dots) of the amplitude envelope (red dashed line) at call onset time.
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modulated by playback condition for 4 to 25 Hz (Rao’s test:
p<0:001) and more modestly in the 33 and 40 Hz contexts
(p<0:05). Angular means were only markedly different between
playback conditions for the 8 Hz context (p<0:001, Table S10).

Rate of calling depends on local and global acoustic context. In
line with our hypothesis that “noisier” acoustic environments
incur greater suppression of vocalization, most calls detected in
experiment 2 were emitted in the silent condition (539,086), with
fewer calls emitted in the presence of the steady-state masker
(312,728), and the fewest calls emitted during playback of the
random masker (237,180). However, the precise pattern of sup-
pression was sensitive to the temporal structure of the acoustic
masker.

Most notably, while playback of the random masker reduced
the overall number of vocalizations, there was significant
variation in the rate of calling observed in cycles of each
modulation rate in this condition (χ2 ¼ 81:08 7ð Þ; p<0:001, Fig. 3B,
Table S11). More calls were observed in 4 Hz cycles when those
cycles were embedded in the random stream of amplitude
modulations than when playback consisted of only a continuous
stream of 4 Hz cycles (p ¼ 0:01, Fig. 3B, Table S12). This finding
may be because the unpredictable stream posed a significant
challenge to the bats which could be partially overcome by
exploiting the comparably slow sound level rise and decay,
extended over 250 ms, provided by the 4 Hz cycles.

Meanwhile, vocalization rates in 8 and 16 Hz contexts were
comparable across all conditions (Fig. 3B, Tables S12–14),

possibly due to the relative ease of shifting call timing at rates
close to the spontaneous ~11 Hz vocalization rate.

For all other modulation rates, playback condition was a
significant predictor of the variance in the number of observed
vocalizations (p<0:05, Fig. 3B, Tables S13, 14), which dropped
significantly between the silent baseline and random masker
conditions (25–50 Hz: p≤ 0:01, Table S12) or monotonically
between all conditions (80 Hz: p<0:001, Table S12).

Narrowing temporal windows of opportunity for vocalization
leads paradoxically to fewer overlapping calls. In modulated
noise, temporal windows of opportunity for vocalizing are sparse.
If groups of bats begin collectively targeting narrow windows for
vocalizing, this could lead to an increase in the number of tem-
porally overlapping calls. Although our study design did not
permit an evaluation of individual calling patterns, temporal
overlaps in detected calls nonetheless signified multiple speakers.
Overall, we found few overlapping calls (experiment 1: 42,618 of
1,425,067 calls, experiment 2: 31,942 of 1,088,994; <3% in total;
Fig. S5B, D, Table S15).

However, contrary to our predictions, the fewest number of
overlaps were recorded in the masking conditions where acoustic
interference was greatest and would have encouraged the greatest
temporal clustering of calls (Fig. S5B, D, Table S16). Nonetheless,
overlapping calls were clustered in the amplitude downstate for
slower modulation rates (Rayleigh’s test: experiment 1: 8 Hz
broadband masker: p<0:001, 15 Hz high-freq masker: p<0:001;
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experiment 2: 8 Hz steady-state masker, p ¼ 0:003, 16 Hz steady-
state masker, p ¼ 0:04, Bonferroni adjusted; Fig. S5A, C).

Evidence for temporal anchoring to terminal troughs across
different temporal rates. The fact that vocal timing can be cali-
brated to occur in an anti-phase pattern within a single amplitude
modulation cycle (Fig. 3A, random masker) implies that acoustic
evidence in the first half of the cycle (the rising edge) is sufficient to
inform the bats’ decision of when to vocalize in the second half of
the cycle (the falling edge). Yet, the rates for which we observed this
adaptation (4, 8, 15, and 16Hz) feature significantly different period
lengths (250 to 62.5ms), leaving open the question of whether bats
achieve this timing adaptation by attempting to call after amplitude
peaks or by targeting the terminal troughs.

To answer this question, we computed two measures of call
timing from bootstrapped mean call onsets (in radians): time
relative to the amplitude peak, and time relative to the terminal
amplitude trough (in ms) (Fig. 4A, C). If amplitude peaks are
used as acoustic landmarks for timing adaptation, then calls
should arrive at roughly the same delay after the peak,
independently of rate. Alternatively, if terminal troughs are
targeted, then calls should arrive at similar delays before the
trough, across different rates.

To adjudicate between these two possibilities, we used a linear
classifier to predict modulation rate classes for mean call onsets,
using time-from-peak and time-to-trough values as predictors.
We ran three models to evaluate the classification performance
for each measure separately and together (see Methods): the full

model featured both time-to-trough and time-from-peak pre-
dictors, the “troughs model” included only the former, and the
“peaks model” included only the latter.

Classification performance of an unseen test set was lowest for
troughs models for both experiments (Fig. 4B–E, Table 1). The
peaks model, using timing relative to amplitude peaks provided
perfect (experiment 1) or very good classification (experiment 2).
Finally, a model that used both measures provided perfect
performance when the classification task was binary (8 or 15 Hz,
experiment 1), but performed worse than the peaks model when
the task required distinguishing multiple classes (experiment 2,
Fig. 4B–E, Table 1). A comparison of F1 scores (the geometric
mean of precision and recall) confirmed that peaks models
performed as well (experiment 1) or better (experiment 2,
p < 0.001) than other models. All models provided significant
classification above chance level (p < 0.001).

Together, these results demonstrate that mean call onset
timings relative to the terminal amplitude trough were much
more similar across modulation rates than timings relative to
amplitude peaks, which scaled with cycle length. This difference
was most evident for slower modulation rates, for which
significant call timing changes were observed. This provides
evidence that bats may have calibrated the shift in their
vocalization timings by aiming to vocalize at or near the end of
the amplitude modulation, when the noise level would have been
at a minimum. Given the short duration of most detected calls
(above), vocalizations would likely not have extended into the
following cycle (Table S17).
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Finally, although the masking noise precluded the detection
and analysis of returning echoes, we estimate that echoes from
echolocation pulses would have arrived at the emitting bat with
a delay of 3–7 ms. As median call timings from the terminal
trough were on the order of ~5–40 ms, echoes may have
incurred even less interference than echolocation pulses in
conditions where significant vocal timing adjustments were
observed.

Discussion
We found that Carollia perspicillata bats adapt to background
noise by dynamically adjusting their vocalization timing. Our
study makes bats one of several mammals thus far observed to
spontaneously adjust to jamming noise by exploiting temporal
parameters of the acoustic landscape, alongside marmosets23,
cotton-top tamarins24, and dolphins25. This capacity has pre-
viously also been found in weakly electric fish26, some
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from the broadband masking condition in experiment 1 expressed as time (in ms) relative to the amplitude peak (left) and relative to the terminal trough
(right). Mean call onsets occur in a scaled manner relative to the amplitude peak, but roughly concurrently relative to the terminal trough. Boxplots indicate
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songbirds27 and frogs28 as well as numerous insects1, lending
evidence to the notion that this ability may be an old and phy-
logenetically conserved capacity. This adaptation was most evi-
dent for modulation rates between 4 and 16 Hz, whether the
temporal pattern of amplitude fluctuations was predicable or not.
These results invite two interesting inferences.

First, vocal timing in bats is plastic but may be constrained by
an intrinsic rate of vocalization, such as the ~11 Hz rate we
observed from our colony. This inference is supported by a
previous study which demonstrated that the auditory cortex of
bats exhibits phase-locked spiking activity in response to ampli-
tude modulated tones, but only up to ~22 Hz29. In addition, while
our study investigated vocal production behavior while bats were
largely stationary, it has long been known that bat vocalizations
are temporally linked with respiration, which is in turn cou-
pled with the wingbeat during flight30,31. Thus, both neural and
metabolic constraints may play a role in limiting the range of
vocal timing adaptations. However, given that bats of this species
are expert echolocators, and Phyllostomid bats have previously
been successfully trained to modify social vocalizations32, adap-
tation to faster rates may be possible under an operant con-
ditioning paradigm. This hypothesis is consistent with our
findings which showed diffuse call onset clustering patterns for
rates of 25 Hz and above, indicating a gradual roll-off of temporal
tracking, rather than a hard cutoff.

Second, the mechanism underlying short-term vocal plasticity
is sufficiently fast and flexible to permit adaptation to a range of
temporal rates without the need for strict predictability. This is a
critical feature, as the natural environment presents numerous
acoustic hurdles characterized by erratic temporal patterns,
making it highly adaptive to be able to calibrate calling behavior
to moment-to-moment fluctuations in amplitude level. In the
wild, background noise may also be continuous over long periods
of time. While a few studies on bat vocal adaptation have
observed phasic vocal responses to playback noise33, or changes
in call interval34 and pulse emission timing10,11, these have
mainly employed pulsatile or discrete stimuli, rather than con-
tinuous playback, to probe vocal production behavior.

An open question raised by our findings regards whether bats
achieve jamming avoidance primarily by continuous, active
online monitoring of the acoustic landscape, or whether they
switch as needed between such a strategy and reference to an
internal prediction model of the auditory scene. While an active
online monitoring strategy would adequately explain our results,
bats have recently been shown to build and act upon predictions
of auditory targets35. Future studies are needed to discern whe-
ther the bat brain switches between minimally costly approaches
to the problem in a context-dependent manner.

Overall, the behavior we observed is consistent with the notion
that bats vocalize like metabolically efficient signal optimizers:
First, the vocal timing adaptation we observed is employed in a
“lazy” manner, i.e., only if the making noise necessitates temporal
shifting. It is important to note that masking noise may incur a

change in behavior through a combination of direct and indirect
interference effects. The spectral frequencies masked by the high-
freq masker targeted mainly echolocation pulses, which we esti-
mated to be the majority of detected vocalizations. The fact that
we only observed significant call timing changes with the
broadband masking noise suggests that direct interference with
signal frequencies is not sufficient to incur this behavioral change.
This result is analogous to the manner in which Lombard effects
increase with increasing carrier bandwith of masking noises, even
when additional carrier frequencies do not overlap with
vocalizations4.

Second, consistent with previous studies, we found that overall
rates of calling dropped during playback of masking noise,
though this effect was strongly modulated by acoustic context,
such that bats appear to evade acoustic jamming by learning
global statistical patterns in ambient noise and then locally
exploiting the windows of opportunity afforded by slower
amplitude fluctuations.

Finally, we found that while mean call onset times scaled with
modulation period, call timing with respect to the end of the cycle
was more similar between different temporal rates. providing
evidence that when bats perform timing adjustments, they do so
by aligning call timings to the amplitude trough, where both calls
and returning echoes would incur the least amount of
interference.

Beyond its importance for maintaining signal quality, vocal
flexibility in the temporal domain is a critical prerequisite for
complex social communication, as it allows for the ability to
respond to conspecific signals of arbitrary length and
complexity36. Previous investigations into the functional and
anatomical basis of vocal control provide evidence for common
or overlapping pathways supporting the production of both
vocalization types at the level of the cerebral cortex (namely, the
frontal auditory field)19,37, and a differentiation of the motor
pathway in the brainstem38,39. Our study may therefore help
elucidate how these bats maintain sensitive temporal dynamics
under both vocalization regimes.

In sum, our study demonstrates that the Phyllostomid bat
Carollia perspicillata has a capacity for vocal flexibility in the
temporal domain that is finely responsive to continuous and
dynamically changing amplitude fluctuations, enabling this spe-
cies to optimize calling behavior as needed, by integrating
acoustic information at the millisecond timescale.

Methods
Animals. 72 adult bats (24 female) of the species Carollia per-
spicillata were used in this study. Bats were taken from a breeding
colony at the Institute for Cell Biology and Neuroscience at
Goethe University Frankfurt in Frankfurt am Main, Germany.
We have complied with all relevant ethical regulations for animal
use. All experiments were conducted in accordance with the
Declaration of Helsinki and local regulations in the state of

Table 1 Classification performance for models predicting modulate rate classes from call onset timing.

Model Accuracy (95% CI) [Mean] F1

Experiment 1 Full model 1.0 (0.995, 1) 1.0
Troughs model 0.815 (0.786, 0.841) 0.806
Peaks model 1.0 (0.995, 1) 1.0

Experiment 2 Full model 0.517 (0.504, 0.529) 0.499
Troughs model 0.386 (0.374, 0.398) 0.363
Peaks model 0.709 (0.698, 0.721) 0.709

For experiment 1, F1 scores (geometric mean of precision and recall) are computed based on 8 Hz class being the “positive class.” For experiment 2, the multi-class F1 score is the average of F1 scores for
all modulation rate classes.
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Hessen. The study received ethical approval under experimental
permit FU1126 and FR2007, Regierungspräsidium Darmstadt.
Animals had access to food (a mixture of banana pulp, oatmeal
and honey) and water ad libitum when recordings were not
taking place. 48 bats (16 female) were used in experiment 1, while
24 (8 female) were used in experiment 2.

Stimuli
Experiment 1. Two types of masking noise were generated for this
experiment, a broadband white noise (carrier frequencies
10–96 kHz) “broadband masker” and a narrower-band (carrier
frequencies 50–96 kHz) “high-frequency masker” (60 s each).
Each noise segment was then amplitude modulated at 8 and
15 Hz, separately. The carrier frequencies for the broadband
white noise were selected in order to spectrally mask the peak
frequencies used by Carollia perspicillata bats for communication
calls and echolocation pulses, and only echolocation pulses,
respectively20,40. Amplitude modulation rates were chosen to
query temporal rates above and below the peak temporal mod-
ulation rate of the colony’s spontaneous calling, based on pre-
vious analysis of acoustic recordings made in the colony (~11 Hz)
(Fig. S1).

Experiment 2. A 90 second segment of the broadband masker
noise (carrier frequencies 10–96 kHz) was generated and cali-
brated to account for the dB roll-off induced by the speaker. The
calibration curve used to calibrate the stimuli was computed using
a custom Matlab GUI (MathWorks), by playing various pure
tones through the speaker which were picked up by a Brüel &
Kjær microphone positioned roughly at the location in the
experimental chamber where the bats tended to congregate. The
broadband masker noise was then used to generate eight masking
noises with different modulation rates: 4, 8, 16, 25, 33, 40, 50, and
80 Hz. For each modulation rate, we then generated a 7.5 min
long audio file. The eight 7.5 min files were then randomly per-
muted and concatenated together to form a 60 min acoustic sti-
mulus. We then generated a 15 min long “random masker” by
randomly permuting and concatenating together single amplitude
modulation cycles for each rate. This was done four times, and
the 15 min sequences were randomly permuted and concatenated
together to form a 60 min acoustic stimulus. The precise sequence
in which stimuli were presented was determined by two rando-
mizations, each of which was presented to two groups of bats.

Procedure
Experiment 1. Audio and video were recorded from each of eight
groups of bats (4 males, 2 females in each group) in an anechoic
chamber (~120 × 112 × 78 cm) over five consecutive recording
days (Fig. S6). On each day, recordings were first made in three
one-hour blocks (“playback conditions”): a silent baseline was
followed in the second and third blocks by acoustic playback of
the broadband and high-freq masking noise (“masking condi-
tions”). (Presentation order of the two masking noises was
counterbalanced across groups). Broadband and high-freq
masking noise played to each group of bats was either ampli-
tude modulated at 8 or 15 Hz. Hence, each group only ever heard
playback noise modulated at one temporal rate, but with different
spectral components.

A computer running Matlab 2021a and Avisoft ultrasound
recording software (Avisoft-RECORDER USGH, version 4.3.00)
controlled simultaneous audio playback, video acquisition and
audio recording. A custom Matlab script played the 60 second
audio stimuli (16-bit, 192 kHz sampling rate) 60 times to a
directional speaker via a RME Fireface 400 FireWire soundcard
and amplifier. Stimuli were played at ~70 dB SPL (measured as

root mean square) volume when measured at a distance of
~30 cm from the speaker. A webcam with infrared filter removed
was placed in the cage with a view to the bats’ roosting corner and
illuminated by an infrared LED light. Two trigger channels were
used to synchronize audio and video recordings with the start of
acoustic playback or, in the silent condition, the start of the
recording block: the first sent a TTL pulse to the Avisoft
recording device (UltraSoundGate 116Hm), which in turn
triggered the recording software to begin acquisition from a
condenser microphone (250 kHz sampling rate, Avisoft-
Bioacoustics CM16); the second illuminated a red photodiode
placed in view of the webcam for aligning video and audio offline.

Given the dimensions of the chamber and the ambient
temperature, we computed that sound propagation delays
between the speaker, microphone, and the bats were all below
1ms. Additionally, given that the interior of the chamber
measured ~1 m3, we estimated that the maximum delay between
emitted echolocation pulses and returning echoes would be on
the order of ~3–7 ms.

Experiment 2. Procedure was similar to that in experiment 1, with
the following exceptions: Four groups of bats were tested, each of
which was presented with the same acoustic conditions. Acoustic
playback in the second and third recording blocks consisted of
the steady-state and random masker noise. Precise presentation
order and randomizations were counterbalanced between groups.
A custom Matlab script controlled simultaneous audio playback,
video acquisition, and audio recording. 60 min audio stimuli were
played to the speakers.

Data analysis
Experiment 1. First, any silent periods preceding or following the
onset and offset of the masking noise were manually removed
(except for groups 1 & 2 in the 8 Hz context, see below). Raw
audio files (60 min long) were split into segments of 7.5 min in
duration (all groups except groups 1 & 2 from the 8 Hz condition,
for which the raw audio files were 1 min in duration).

For groups 1 & 2 in the 8 Hz context only: raw data files were
saved as 60 second long audio files and featured a brief silence
(~250 ms) at the end of each file, corresponding to the delay
caused by the program re-initializing for the next stimulus
presentation. These brief silences were trimmed by cross-
correlating the amplitude envelope at the end of each file with
the amplitude envelope of a recording of the auditory stimulus in
the experimental booth without any animals present (“envelope
cross-correlation”). Trimmed audio files were visually checked to
make sure the end of the file corresponded with the trough of the
last amplitude modulation cycle in the file. For files recorded in
the silent condition, the final 250 ms of each file was trimmed. For
all other groups in this experiment, raw data files were 60 min
long audio files and featured a brief, silent pre- and post-trigger
period (~2 and 0.75 s, respectively). These brief silences were
trimmed via envelope cross-correlation. For files recorded in the
silent condition, the first 2 and final 0.75 seconds were removed.
Files were visually checked and manually edited where the
envelope cross-correlation failed to adequately remove artifactual
silences.

Vocalization events were detected using Deep Audio Segmenter
(DAS, v0.28.3)41, a deep neural network developed for the
annotation of acoustic signals, and Python (v3.8.3). First, a subset
of the dataset was manually annotated. Next, training and test
datasets were created from these annotations for the silent and
masking conditions, separately. We trained several DAS models
using different hyperparameters until we achieved satisfactory
prediction and/or a plateau in model improvement. Performance
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was calculated as the F1 score, the geometric mean of precision
and recall. Prediction parameters the same for all runs: 1 ms
minimum event duration and 0.9 ms minimum time between
event boundaries. Precision, recall, F1 scores, and temporal errors
for call onset detection were calculated based on a tolerance of
1.5 ms. Call offsets were detected and used to estimate call
durations for the purpose of gaining a broad impression of the
proportion of echolocation to communication calls, but otherwise
not analyzed, since offsets in our dataset were not very well-
defined (i.e., calls frequently featured a decay rather than a sharp
offset, or appeared “smeared” due to the appearance of the echo
on the recording following the echolocation pulse). Hyperpara-
meters and model performance measures are reported in Tables 2
and 3, respectively.

Finally, we labeled each vocalization event detected in the
masking conditions with a value corresponding to the instantaneous
phase of the amplitude modulation at the time of call onset. Each
audio file was bandpass filtered (10.1–10.5 kHz, 3rd order butter-
worth filter) to remove acoustic artifacts. The Hilbert envelope of
the filtered audio was then downsampled by a factor of 10 and
passed through a temporal bandpass filter (modulation rate ± 1Hz,
2nd order butterworth filter) to preserve the amplitude modulation
signal while removing other acoustic features. The signal was then
demeaned and zero-padded at both ends (20 samples). Next, we
detected the troughs of the amplitude modulation signal and used
these to reconstruct a phase model (0:2pi) of the amplitude
modulation envelope, with each trough as the beginning of the next
cycle. Time differences between detected troughs were used to
estimate the temporal accuracy of the instantaneous phase model
(Fig. S7). Detected vocalizations were finally tagged with the
corresponding phase value at call onset. For audio files from the
silent condition, calls were tagged according to a simulated
instantaneous phase signal modeled as a cosine aligned to the start
of the file. This cosine model featured the same modulation rate as
the corresponding playback conditions.

Experiment 2. First, any silent periods preceding or following the
onset and offset of the masking noise were manually removed.
For audio files from the silent condition, the first and final
2.2 seconds (corresponding to the pre- and post-trigger period)

was removed. Raw audio files from the silent and steady-state
conditions were then split into segments of 7.5 min in duration,
in the latter case corresponding to the playback duration of each
individual modulation rate. Files from the random conditions
were split into segments of 15 min, corresponding to the duration
of pseudo-random blocks of modulation rate sequences.

The same procedure was used as in experiment 1 to detect the
vocalization events. Model hyperparameters and performance
measures are reported in Tables 2 and 3, respectively. To ensure
that the model was not biased towards detecting (or failing to
detect) vocalizations at particular phases of the amplitude
envelope, we computed the instantaneous phase of a subset of
predicted call events in the test set (from recordings during the
random masker playback, which included samples from all
modulation cycles), and grouped them by whether DAS detected
a true positive, false positive, or false negative. We found no
prominent bias in the detection of call events at any particular
phase (Fig. S8).

The same procedure was used as in experiment 1 to label
vocalization events with the instantaneous amplitude phase for
call detected in the silent and stead-state conditions. For calls
detected in the random condition: Each audio file was bandpass
filtered (15–60 kHz, 3rd order butterworth filter) to remove
acoustic artifacts. The Hilbert envelope of the filtered audio was
then downsampled by a factor of 10 and passed through a
temporal lowpass filter (70 Hz, 2nd order butterworth filter) to
preserve principally the amplitude modulation signal. The signal
was then smoothed with a 12-point moving average filter. The
sequence of amplitude modulation cycles that comprised the
stimulus in each audio file was then used to construct a cosine
phase model, which was cross-correlated with the derived
modulation signal to obtain an amplitude envelope fit to the
recorded audio file. This signal was then demeaned and zero-
padded at the ends (20 samples). Next, we detected the troughs of
the amplitude modulation signal and used these to reconstruct a
phase model (0:2pi) of the amplitude modulation envelope, with
each trough as the beginning of the next cycle. Time differences
between detected troughs were used to estimate the temporal
accuracy of the instantaneous phase model (Fig. S7). Detected
vocalizations were finally tagged with the corresponding phase
value at call onset. For the random condition, data from all
modulation cycles of the same temporal rate were pooled
together.

Statistics and reproducibility. All statistical analyses were carried
out in R (v4.2.1) and RStudio (v2022.7.2.576). Unless otherwise
specified, all analyses were carried out on the full sample of
detected calls (N experiment 1: 1,425,067, N experiment 2:
1,088,994, N total= 2,514,061).

To determine if the presence of amplitude modulated noise
affected the timing of emitted calls, we compared the density
distribution of call onsets within the real (and in the case of the
silent control, simulated) modulation cycle for each playback
condition and modulation rate. To describe the distributions in
each condition, we computed a battery of circular statistics. These
metrics take into consideration the cyclical or circular nature of
the data, namely, that values at opposite ends of the linear scale

Table 2 Hyperparameters for final models.

Condition Chunk [samples] STFT downsample TCN stacks Kernel size [samples] Kernel

Experiment 1 Silence 8192 16x 2 16 32
Masking 8192 16x 4 16 32

Experiment 2 Silence 8192 16x 2 32 32
Masking 8192 16x 2 16 32

Table 3 Model performance and temporal error in predicting
test set.

Call Onset Detection

Precision Recall F1
score

Median temporal
error (ms)

Experiment
1

Silence 0.97 0.64 0.77 0.35
Masking
predict
8 Hz

0.94 0.65 0.75 0.37

predict
15 Hz

0.96 0.45 0.61 0.38

Experiment
2

Silence 0.90 0.62 0.73 0.32
Masking 0.90 0.61 0.73 0.21
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(for phase: 0 and 2π, or for values measured in time: e.g., 0 and
125 ms) represent the same moment in time.

Unimodal circular distributions may be described by treating
data points as unit vectors and then computing the direction and
length of their resultant vector. Summing these unit vectors gives
a resultant vector whose direction is equal to the circular mean,

�α ¼ atan2 ∑
n

j¼1
sin αj; ∑

n

j¼1
cos αj

� �
ð1Þ

while the length of this vector, given by

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
∑
n

j¼1
sin αj

�2
þ

�
∑
n

j¼1
cos αj

�2
s

ð2Þ

describes how concentrated the data is along the angle given by �α.
Thus, if R provides a measure of concentration, then the angular
dispersionmay be defined as n� R. If R is equal to or nearly equal
to 0, this indicates that the data are spread evenly over the
circumference of the unit circle, and no “preferred direction”
exists42. Circular data with a uniform probability density may be
called a uniform circular distribution, whose statistical signifi-
cance can be computed using the Rayleigh test. Meanwhile, the
circular normal distribution, called the von Mises distribution,
described by a circular mean, μ, and a concentration, κ,
parameter, can also be fit to the data using maximum likelihood
estimation.

We used Mardia-Watson-Wheeler non-parametric tests to test
for overall differences in the circular distribution of call onsets
between playback conditions within each modulate rate. To
simultaneously test for differences in the angular means and
angular dispersions, we computed Rao’s test of homogeneity. To
determine which playback conditions varied significantly from
each other on either measure, we computed post-hoc Rao’s tests
on pairs of conditions where omnibus Rao’s tests were significant
for either means or dispersions.

These tests were carried out on the entire dataset despite
differences in sample size between comparison groups, since the
smallest group across both experiments had a sample size of over
5000 and frequentist circular statistics are only sensitive to
differences in group size at very small sample sizes43.

To extract robust measures of the central tendency and spread
of call onset data, we computed maximum likelihood von Mises
parameters, the circular mean (μ) and concentration (κ), for each
playback condition and modulation rate in a bootstrap procedure.
This procedure generated mean and concentration values for each
of 1000 resamplings of the data (Figs. 2C and 3B).

To determine whether masking noise influenced the rate of
calling, we modeled the number of observed calls in each
experimental block (group x recording day x playback condition)
using a negative binomial regression using playback condition as
predictor, for each modulation rate separately, as follows:

lnðbniÞ ¼ Intercept þ β1Iðconditionj ¼ 2Þ þ β2Iðconditionj ¼ 3Þ
ð3Þ

Where n is the number of observed call events, I is the
predictor variable of playback condition with two levels j as well
as an Intercept (silence), and i is the modulation rate.

In R, models are implemented as follows:

n � 1þ condition; data ¼ data½data$modulation ¼¼ x; � ð4Þ
The negative binomial regression was selected for this analysis

since a Poisson model with the same formula yielded highly over-
dispersed models. Dispersion for all models used was close to 1. A
Type II, partial likelihood ratio ANOVA was computed on the
negative binomial models to determine significant predictors.
Incidence rates and confidence intervals derived from the model

were used to estimate the degree to which calling behavior
increased or decreased for a given combination of predictors.
Post-hoc comparisons evaluated differences in estimated mar-
ginal means (predicted calling rates) between pairs of masking
conditions. This analysis was repeated for the temporally
overlapping calls.

Wherever multiple hypothesis tests were carried out, p-values
were adjusted for multiple comparisons by Bonferroni correction.
For all hypothesis tests, an alpha level of 0.05 was used.

For the linear discriminant classification analysis, two measures
of call onset timing were first computed from bootstrapped
angular means as follows:

t from peak ¼ μ� 1=f
2

ð5aÞ

t to trough ¼ 1
f
� μ ð5bÞ

where μ is the angular mean computed from an MLE von Mises
distribution and f is the modulation rate of the current cycle.
Thus, time-from-peak values were positive if call onsets occurred
on average after the modulation peak in the latter half of the
cycle, and negative if call onsets occurred before the peak. Time-
to-trough values give the time remaining between average call
onset and the final moment in the cycle, the terminal trough.
Data from the broadband masking conditions only (experiment 1:
broadband masker, experiment 2: steady-state and random
masker) was then divided into a training and validation set with
0.6:0.4 split, stratified on modulation rate contexts.

Next, three models were fed the centered (predictor average
subtracted from each value) and scaled (predictor values divided
by predictor standard deviation) training data and used to
determine modulate rate classes predicted by either or both
measures, as follows:

full model : modulation � ttrough þ tpeak ð6aÞ

troughs model : modulation � ttrough ð6bÞ

peaks model : modulation � tpeak ð6cÞ
Models (using the lda algorithm implemented in the caret

package) were trained using 10-fold cross-validation (repeated
ten times) and predictors were centered and scaled. Each model
was then used to predict modulation rate classes for the validation
set. Confusion matrices for observed versus predicted classes
from the validation data is shown in Fig. 4.

We then computed ROC curves and AUC values for each
model from each experiment.

Manipulated variables. In experiment 1, one half of the bat
groups (4 of 8) were housed together starting on the first
recording day and subsequently only for the duration of the
experiment (5 days). The other four groups were housed together
for a seven-day “familiarization period” prior to the first
recording day (12 days in total). An early hypothesis was that
groups that did not have the familiarization period may vocalize
more, since at the time of data collection all bats that were not
part of the experiment were housed separately by sex. Thus, a
mixed-sex group could lead to an unusually high level of vocal
activity. No clear difference between these two groups emerged
based on preliminary results from experiment 1. All analyses were
done without respect to this grouping variable.

Data exclusion for experiment 1. For groups 1 & 2 in the 8 Hz
context, some recording blocks had buffer issues which caused
improper logging of data. Audio files for these blocks were
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visually checked and sections with corrupted data were removed
from the corresponding file if the error was minor (i.e., <1 s long,
or <3 times per file). If errors were more extensive, the file was
removed from analysis. Altogether, ~15 min of data was removed
from the raw data for these two groups combined. For all
remaining groups, the first 15 h of recordings were visually
checked for buffer issues. As only a few such occurrences were
found, we did not proceed with the visual check. Original raw
data for this experiment amounted to 120 h of audio recording
(approx. 105 h after data exclusion).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All data collected in the two experiments discussed and used for analysis and figures
presented can be obtained from a dedicated repository on Github (https://zenodo.org/
record/7908545). All other data (e.g., raw audio data, data underlying Fig. S1) can be
made available upon reasonable request from Ava Kiai. Data underlying Fig. 1b can be
made available upon reasonable request from Julio C. Hechavarria.

Code availability
All code used for analysis and generation of figures presented can be obtained from a
dedicated repository on Github (https://zenodo.org/record/7908545).
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