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1 Comparability Across Experiments
To assess whether the data from the different experiments are equivalent, we compared participants’ performance (Supplementary
Fig. 1a), the mean predictive accuracy of the GP-UCB model (Supplementary Fig. 1b), and parameter estimates for all parameters
of the GP-UCB model (Supplementary Fig. 1c). Both, frequentist statistics and Bayes factors (BF) are reported (see Statistics).
We compared data from the different experiments for overlapping age ranges: participants between 7-9 from Experiment 1
(n = 36) and Experiment 2 (n = 22) and participants older than 20 years from Experiment 1 (n = 24) and Experiment 3 (n = 43).
Participants younger than or equal to 20 years were excluded from the comparisons, because of expected developmental changes
over the course of adolescence.

Supplementary Figure 1a shows participants’ performance separated by experiments. We found no difference in performance
for both age groups (children between 7-9: t(56) = 1.5, p = .128, d = 0.4, BF = .73; adults older than 20: t(65) = −0.7,
p = .460, d = 0.2, BF = .33). Additionally, a comparison of the predictive accuracy showed no differences in model
performance between different experiments (children between 7-9: t(56) = 0.7, p = .467, d = 0.2, BF = .34; adults older than
20: t(65) =−0.9, p = .394, d = 0.2, BF = .35; see Supplementary Figure 1b). Furthermore, we compared parameter estimates
for overlapping age ranges. Since parameter estimates are bounded above 0, we performed rank-based tests (Mann–Whitney U)
to look for differences in parameter estimates across different experiments. The results are reported in Supplementary Table 1
and Supplementary Figure 1c), where we did not find any significant differences.

From these results, we concluded that data from the different experiments can be integrated and used for joint analyses of
behavioral changes over the lifespan.

Supplementary Table 1. Comparison of GP-UCB parameter estimates across different experiments

Parameter (Age) U p rτ BF
Generalization λ (7-9) 390 .930 −.01 .29
Generalization λ (>20) 438 .313 −.10 .38
Exploration β (7-9) 373 .721 −.04 .29
Exploration β (>20) 554 .626 .05 .28
Temperature τ (7-9) 422 .685 .05 .31
Temperature τ (>20) 496 .800 −.03 .27
Note: We conducted non-parametric two-sample tests to
compare the estimates for children between 7-9 from Ex-
periment 1 (n = 36) and Experiment 2 (n = 22) and the
estimates for adult participants older than 20 from Experi-
ment 1 (n = 24) and Experiment 3 (n = 43).
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Supplementary Figure 1. Reliability checks. a Average reward as a function of age, lines show the smoothed conditional means and 95% confidence
interval for data from each experiment. Dots represent the mean reward for each participant and the red dashed line shows the performance of a random choice
model. b) Predictive accuracy of the GP-UCB model as a function of age and c) Parameter estimates of the GP-UCB model as a function of age, separated by
experiment. Lines show the smoothed conditional means and 95% confidence interval and dots represent the predictive accuracy per participant.)

2 Statistics
2.1 Comparisons
Both frequentist and Bayesian statistics are reported throughout this paper. Frequentist tests are reported as Student’s t-tests
(specified as either paired or independent) for parametric comparisons, while the Mann-Whitney U test or Wilcoxon signed-rank
test are used for non-parametric comparisons (for independent samples or paired samples, respectively). Each of these tests are
accompanied by a Bayes factors (BF) to quantify the relative evidence the data provides in favor of the alternative hypothesis
(HA) over the null (H0). For parametric comparisons, this is done using the default two-sided Bayesian t-test for either
independent or dependent samples, using a Jeffreys-Zellner-Siow prior with its scale set to

√
2/2, as suggested by Ref1. For

non-parametric comparisons, the Bayesian test is based on performing posterior inference over the test statistics (Kendall’s rτ

for the Mann-Whitney-U test and standarized effect size r = Z√
N

for the Wilcoxon signed-rank test) and assigning a prior using

parametric yoking2. This leads to a posterior distribution for for Kendall’s rτ or the standarized effect size r, which yields an
interpretable Bayes factor via the Savage-Dickey density ratio test. The null hypothesis posits that the parameters do not differ
between the two groups or from the baseline, while the alternative hypothesis posits an effect and assigns an effect size using a
Cauchy distribution with the scale parameter set to 1/

√
2. All statistical tests are non-directional as defined by a symmetric

prior.

2.2 Correlations
For testing linear correlations with Pearson’s r, the Bayesian test is based on Jeffreys3 test for linear correlation and assumes
a shifted, scaled beta prior distribution B( 1

k ,
1
k ) for r, where the scale parameter is set to k = 1

3 , following Ref4. For testing
rank correlations with Kendall’s tau, the Bayesian test is based on parametric yoking to define a prior over the test statistic5,
and performing Bayesian inference to arrive at a posterior distribution for rτ . The Savage-Dickey density ratio test is used to
produce an interpretable Bayes Factor. Note that when performing group comparisons of correlations computed at the individual
level, we report the mean correlation and the statistics of a single-sample t-test comparing the distribution of z-transformed
correlation coefficients to µ = 0.
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3 Supplementary Behavioral results
3.1 Learning over rounds regression
We used a Bayesian hierarchical regression model to analyze if performance changed over multiple rounds of the task. We
model participants as random intercepts, with rounds, age groups, and their interaction as fixed effects with random slopes.
Supplementary Figure 2 and Supplementary Table 2 provide the model results. They show no effect of round and no reliable
interactions between round and age group.
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Supplementary Figure 2. Learning over rounds. Reward as a function of rounds. Each line is the fixed effect of a hierarchical Bayesian regression
(Supplementary Table 2) with the ribbons indicating 95% CI. Dots show the group mean in each round and the red dashed line indicates a random baseline. We
found no effect of round and no reliable interactions between round and age group.
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Supplementary Table 2. Bayesian linear multilevel regression: learning over rounds as a function of age group.

Estimate 95% HDI
Intercept 0.82 [0.79, 0.86]
Round 0.00 [-0.00, 0.01]
Age group 18-24 -0.04 [-0.09, -0.01]
Age group 14-17 -0.07 [-0.12, -0.01]
Age group 11-13 -0.05 [-0.10, -0.00]
Age group 9-10 -0.08 [-0.13, -0.02]
Age group 7-8 -0.12 [-0.17, -0.07]
Age group 5-6 -0.20 [-0.28, -0.12]
Round× Age group 18-24 0.00 [-0.00, 0.01]
Round × Age group 14-17 0.00 [-0.00, 0.01]
Round × Age group 11-13 -0.00 [-0.01, 0.01]
Round × Age group 9-10 0.00 [-0.01, 0.01]
Round × Age group 7-8 -0.01 [-0.02, 0.00]
Round × Age group 5-6 -0.01 [-0.03, 0.01]

Random Effects
σ2 0.01
τ00 0.00
τ11 round 0.00
τ11 age group 18-24 0.00
τ11 age group 14-17 0.00
τ11 age group 11-13 0.00
τ11 age group 9-10 0.00
τ11 age group 7-8 0.00
τ11 age group 5-6 0.01
ICC 0.28
N 281
Observations 2040
Bayesian R2 0.48
Note: Posterior mean and 95% highest density interval (HDI) are re-
ported for all coefficients. Age group 25-55 is the reference level for the
categorical variable age group. σ2 indicates the individual-level variance
and τ the variation between individual intercepts and average intercept.
ICC is the intraclass correlation coefficient.

4/18



3.2 Search distance regression
We used a Bayesian hierarchical linear regression model to analyze the relation between the obtained reward and search distance
in the next trial. In this model, participants were treated as random effects. Age group, reward obtained in the previous round,
and their interaction were treated as fixed effects with random slopes. Supplementary Table 3 provides the model results. They
indicate an effect of age group, older participants showed higher search distances. Additionally, we found an effect of previous
reward on search distance, higher rewards lead to sampling of closer tiles. Furthermore, results suggest an interaction between
age group and previously obtained reward: older participants adjust their search distance more in line with the previously
obtained reward than younger participants do.

Supplementary Table 3. Bayesian linear multilevel regression: search distance as a function of previous reward.

Estimate 95% HDI
Intercept 8.35 [7.64, 9.04]
Previous reward -7.76 [-8.51, -6.99]
Age group 18-24 -0.75 [-1.65, 0.17]
Age group 14-17 -1.25 [-2.18, -0.33]
Age group 11-13 -1.35 [-2.22, -0.44]
Age group 9-10 -2.15 [-3.05, -1.23]
Age group 7-8 -3.91 [-4.82, -3.01]
Age group 5-6 -5.30 [-6.25, -4.36]
Previous reward × Age group 18-24 0.70 [-0.31, 1.67]
Previous reward × Age group 14-17 1.28 [0.27, 2.29]
Previous reward × Age group 11-13 1.47 [0.48, 2.42]
Previous reward × Age group 9-10 2.37 [1.33, 3.39]
Previous reward × Age group 7-8 4.43 [3.45, 5.44]
Previous reward × Age group 5-6 6.32 [5.21, 7.42]

Random Effects
σ2 3.17
τ00 3.52
τ11 previous reward 4.24
τ11 age group 18-24 0.04
τ11 age group 14-17 0.16
τ11 age group 11-13 0.10
τ11 age group 9-10 0.33
τ11 age group 7-8 0.05
τ11 age group 5-6 0.40
ICC 0.11
N 281
Observations 51000
Bayesian R2 0.40
Note: Posterior mean and 95% highest density interval (HDI) are re-
ported for all coefficients. Age group 25-55 is the reference level for the
categorical variable age group. σ2 indicates the individual-level variance
and τ the variation between individual intercepts and average intercept.
ICC is the intraclass correlation coefficient.
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4 Supplementary Model Results

Supplementary Table 4. Summary of model results over all participants and separated by age group

Group Model R2 n nLL pxp
Gener. Error Var. Explor. Temp. Epsi.
λ

√
θ 2

ε β τ ε

Overall
GP-UCB 0.34 178 483.94 >.99 0.66 0.38 0.03
λ lesion 0.18 23 609.91 <.01 4.3 0.3 0.05
β lesion 0.24 47 563.62 <.01 1.66 0.13
τ lesion 0.2 33 599.93 <.01 0.32 1.94 0.6

Age 5-6
GP-UCB 0.11 14 371.15 .60 0.42 0.55 0.07
λ lesion 0.02 3 405.8 .07 2.42 12.91 1.03
β lesion 0.03 2 401.43 .07 1.43 0.23
τ lesion 0.11 11 372.18 .27 0.15 5.23 0.75

Age 7-8
GP-UCB 0.26 32 478.06 >.99 0.45 0.52 0.02
λ lesion 0.05 0 611.19 <.01 2.79 3.94 0.18
β lesion 0.1 4 581.7 <.01 1.57 0.18
τ lesion 0.17 11 530.1 <.01 0.15 7.17 0.61

Age 9-10
GP-UCB 0.36 24 525.57 >.99 0.67 0.38 0.03
λ lesion 0.17 1 682.01 <.01 3.26 0.29 0.07
β lesion 0.25 8 614.91 <.01 1.64 0.14
τ lesion 0.21 4 650.85 <.01 0.27 2.18 0.6

Age 11-13
GP-UCB 0.36 32 533.65 >.99 0.67 0.37 0.03
λ lesion 0.17 5 687.85 <.01 4.9 0.28 0.04
β lesion 0.26 10 616.47 <.01 1.63 0.12
τ lesion 0.19 3 671.15 <.01 0.51 0.54 0.62

Age 14-17
GP-UCB 0.4 25 498.37 >.99 0.72 0.34 0.03
λ lesion 0.25 5 627.3 <.01 4.25 0.26 0.03
β lesion 0.29 9 587.46 <.01 1.72 0.1
τ lesion 0.23 3 640.55 <.01 0.95 0.3 0.58

Age 18-24
GP-UCB 0.43 32 470.78 >.99 0.89 0.28 0.03
λ lesion 0.28 6 595.40 <.01 5.45 0.28 0.01
β lesion 0.34 6 550.87 <.01 1.82 0.07
τ lesion 0.24 0 634.72 <.01 1.26 0.22 0.53

Age 25-55
GP-UCB 0.43 19 471.26 >.99 1.23 0.24 0.03
λ lesion 0.29 3 590.8 <.01 3.96 0.24 0.02
β lesion 0.36 8 532.53 <.01 2.1 0.07
τ lesion 0.22 1 646.14 <.01 1.19 0.21 0.57

Note: We report the average predicted accuracy per model (R2), the amount of participants best
described by the respective model (n), the average out-of-sample negative log likelihood (nLL),
the protected exceedance probability (pxp), and median parameter estimates of Generalization
λ , Error Variance

√
θ 2

ε , Exploration β , Temperature τ , and the epsilon-greedy parameter ε .

6/18



14−17 18−24 25−55

5−6 7−8 9−10 11−13

0.0

0.3

0.6

0.0

0.3

0.6

R
2

Model

GP−UCB

λ lesion

β lesion

τ lesion

Supplemental Model Comparison

Supplementary Figure 3. Supplemental model comparisons. Tukey’s boxplots showing the predictive accuracy for all models and age groups, with box
plots indicating the interquartile range (box), the median (horizontal line), mean (diamond) and 1.5-times interquartile range (whiskers). Each dot is the
predictive accuracy for one participant. Refer to Figure 2a for sample sizes of age groups.

Model recovery
A prerequisite for interpreting computational models is to ensure each model is uniquely identifiable6. To establish that this is
the case for models under consideration, we simulated experiments using the subject-level parameter estimates from each model.
These simulations were performed using the same set of environments experienced by participants and generated the same
data structure as recorded from participants. We then re-estimated each model to the simulated data sets and evaluated how
often each model provided the best account of the generated data (based on the summed nLLs over from leave-one-round-out
cross-validation). This provides an estimate of the probability with which each model best fits the data given a known simulating
model (Supplementary Figure 4 top row; in each plot, the columns sum to 1). Based on these probabilities we also computed
the inverse matrix, using Bayes theorem to define the probability that a model in fact generated the data given that observation
that it provided the best fit to the data (Supplementary Figure 4 bottom row; in each plot, the rows sum to 1).
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Supplementary Figure 4. Model Recovery. Top row: Confusion matrices showing the probability that a model provides the best out-of-sample predictions
(y-axes), given an underlying generative model (x-axes), where behavior was generated using participant parameter estimates. Columns sum to 1 (subject to
rounding error). Bottom row: Inversion matrices showing the probability that a model did in fact generate the data (x-axes), given that it was found to provide
the best out-of-sample predictions (y-axes). Rows sum to 1 (subject to rounding error). The first column refers to all experiments combined, subsequent
columns show individual experiments
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4.1 Parameter recovery
We simulated choices using the winning GP-UCB in order to establish whether the models’ parameter estimates are reliable.
We evaluated the recoverability of the GP-UCB parameters based on two procedures.

First, following ref6, we produced a synthetic data-set by simulating choices the base of all empirical subject-level parameter
estimates obtained from fitting model to the adolescent data set (Figure 5a; for recovery analyses of the other data-sets see7). In
all cases, recovered parameters were highly correlated with the parameters used to generate the data (all rτ > .91, p < .001,
BF > 100).

Second, we performed a more rigorous parameter recovery by iteratively varying each parameter of the GP-UCB model
over 20 linearly spaced values within a credible interval of parameter estimates in all experiments (using Tukeys’ fence). This
creates a set of counter-factual parameters to test whether we can recover parameters we did not originally estimate from the
data. Again, we find a high degree of correlation between recovered and generating parameter value (all rτ > .86, p < .001,
BF > 100).

While the first parameter recovery provides evidence that empirically observed parameter values are recoverable, the second
analysis provides additional evidence that even counterfactual parameters (within a credible interval across all datasets) are also
recoverable.
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4.2 Comparison of Parameter Regression Models
For all regression models quantifying the relationship between the GP-UCB parameters and age we computed approximate
leave-one-out cross validation using pareto-importance sampling as described in Ref8. We then used the resulting expected
log pointwise predictive densities as model selection criterion. We included models that predicted log-transformed and
untransformed parameters. Due to the bounded range of parameter values (> 0), log-transformation resulted in more accurate
regression models.

Supplementary Table 5. Comparison of Parameter Regression Models

Model Class Transformation elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic

Changepoint log 0.000000 0.000000 -1300.948 50.48478 33.61886 6.419699 2601.897 100.96956
4th degree polynomial log -7.645817 3.898103 -1308.594 49.93090 32.89042 6.255166 2617.188 99.86179
3rd degree polynomial log -8.591376 5.105124 -1309.540 50.65230 31.13398 6.143772 2619.079 101.30460
2nd degree polynomial log -10.876295 6.552031 -1311.825 51.54652 28.73522 5.991910 2623.649 103.09304
Linear log -13.945475 7.652849 -1314.894 52.22692 25.43520 5.634014 2629.788 104.45383
Changepoint none -614.963523 147.352916 -1915.912 178.84787 127.23947 63.851037 3831.824 357.69573
4th degree polynomial none -616.156643 145.789407 -1917.105 177.06655 120.84630 60.607442 3834.210 354.13309
2nd degree polynomial none -616.415606 146.075088 -1917.364 177.57634 120.07705 60.607337 3834.728 355.15269
3rd degree polynomial none -618.210471 146.807664 -1919.159 178.14811 127.37190 65.709042 3838.318 356.29623
Linear none -620.134252 148.303877 -1921.083 179.86334 119.26099 60.089972 3842.165 359.72667
Note: Comparison of regression models predicting log-transformed parameter estimates as a function of age. Models are described in descending order of fit
(best models first). elpd_diff describes the difference in expected log point-wise predictive density, relative to the model with the best predictive accuracy, while
se_diff, denotes the standard error of the difference. elpd_loo describes the Bayesian LOO estimate of the expected log pointwise predictive density (Eq 4 in
Ref8), which is the sum of n = 281 pointwise predictive densities, with se_elpd_loo denoting the standard error. p_loo, is the difference between the elpd-loo
and the non-cross-validated predictive density, with se_p_loo denoting the standard error. Lastly, looic is the loo information criterion −2∗ elpd and can be
interpreted similarly to other information criteria such as BIC or AIC, with se_looic denoting its standard error.

4.3 Lesioned Parameter Regression Models
Following the same procedure as above, we also computed approximate leave-one-out-cross-validation of regression models
that constrain the changepoints to some parameters, while other parameters were treated as an intercept-only model. To do
so, we used the multivariate syntax implemented in brms9, allowing us to implement any combination of changepoint and
intercept-only models for all parameters. The first row denotes the parameter that was fitted using an intercept-only model. The
other parameters were fitted as a changepoint model, according to Equation 14.

Supplementary Table 6. Comparison of Lesioned Parameter Regression Models

Model Class elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic

No intercept only 0.000000 0.000000 -1300.558 50.35418 33.29739 6.355287 2601.117 100.70836
λ intercept only -3.862616 4.691819 -1304.421 49.35334 29.56012 5.826601 2608.842 98.70668
τ intercept only -7.336907 6.778480 -1307.895 53.07852 29.10912 5.851021 2615.790 106.15704
β intercept only -9.909657 6.369223 -1310.468 52.48454 29.38624 6.112272 2620.936 104.96908
λ_β intercept only -10.228406 6.597255 -1310.787 51.65019 26.63042 5.769139 2621.573 103.30039
λ_τ intercept only -16.958107 8.738406 -1317.516 52.08509 26.51306 5.760537 2635.033 104.17018
β_τ intercept only -17.402415 8.865649 -1317.961 53.73732 26.66973 6.113856 2635.921 107.47463
Note: Comparison of regression models predicting log-transformed parameter estimates as a function of age. Models are described
in descending order of fit (best models first). elpd_diff describes the difference in expected log point-wise predictive density,
relative to the model with the best predictive accuracy, while se_diff, denotes the standard error of the difference. elpd_loo
describes the Bayesian LOO estimate of the expected log pointwise predictive density (Eq 4 in Ref8), which is the sum of n = 281
pointwise predictive densities, with se_elpd_loo denoting the standard error. p_loo, is the difference between the elpd-loo and the
non-cross-validated predictive density, with se_p_loo denoting the standard error. Lastly, looic is the loo information criterion
−2∗ elpd and can be interpreted similarly to other information criteria such as BIC or AIC, with se_looic denoting its standard
error.
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4.4 Parameter Regression Models

Supplementary Table 7. Parameters of the changepoint regression models on participant data

Model Parameter Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

λ (Generalization)
Intercept -0.11 0.12 -0.36 0.12 1 2938 3158
b1 0.08 0.07 0.02 0.26 1 2288 930
b2 0.01 0.01 -0.01 0.02 1 4060 5689
ω 12.70 0.64 7.60 19.80 1 2141 1158

β (Directed Exploration)
Intercept -1.48 0.15 -1.78 -1.19 1 4192 5086
b1 -0.39 0.17 -0.79 -0.13 1 4252 3638
b2 0.00 0.01 -0.03 0.02 1 4961 5561
ω 9.10 0.23 7.44 11.40 1 4087 4767

τ (Random exploration)
Intercept -3.67 0.14 -3.92 -3.42 1 5423 5993
b1 -0.59 0.20 -1.05 -0.25 1 5266 4086
b2 0.01 0.01 -0.01 0.03 1 5790 5385
ω 7.74 0.08 6.88 8.77 1 4513 3495

Note: The models were fit using Hamiltonian Monte-Carlo sampling with 4 Markov chains, each drawing 4000 samples, 2000
of which were discarded as warm-up. The first column (Estimate) refers to the maximum a posteriori estimate of the respective
parameters. The second column (Est.Error) denotes the standard deviation of the posterior. The third and fourth column denote
the lower and upper credible interval of the posterior. The fifth column denotes the Gelman Rubin Statistic (Rhat) indicating
chain convergence. The sixth and seventh columns shows the number of effective samples from the bulk and the tail of the
posterior.
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Supplementary Table 8. Parameters of the changepoint regression models on SHC-Fast trajectory

Model Parameter Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

λ (Generalization)
Intercept 0.25 0.02 0.22 0.28 1 1708 1898
b1 4.84 0.19 4.46 5.23 1 2286 1870
b2 0.10 0.07 -0.03 0.23 1 1815 1905
ω 310.35 762.52 294.09 326.21 1 1575 1989

β (Directed Exploration)
Intercept -1.15 0.01 -1.17 -1.13 1 2178 2245
b1 -2.78 0.35 -3.49 -2.10 1 2019 2106
b2 0.00 0.04 -0.08 0.08 1 2539 2234
ω 178.14 787.11 145.89 207.77 1 1250 1623

τ (Random exploration)
Intercept -3.97 0.02 -4.01 -3.93 1 1452 1469
b1 -3.14 0.31 -3.74 -2.54 1 2029 2385
b2 0.30 0.07 -0.43 -0.15 1 2066 1957
ω 255.91 777.67 229.35 293.56 1 1284 1354

Note: The models were fit using Hamiltonian Monte-Carlo sampling with 4 Markov chains, each drawing 4000 samples, 2000
of which were discarded as warm-up. The first column (Estimate) refers to the maximum a posteriori estimate of the respective
parameters. The second column (Est.Error) denotes the standard deviation of the posterior. The third and fourth column denote
the lower and upper credible interval of the posterior. The fifth column denotes the Gelman Rubin Statistic (Rhat) indicating
chain convergence. The sixth and seventh columns shows the number of effective samples from the bulk and the tail of the
posterior.
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Supplementary Figure 7. Fitness landscape. The 3-dimensional fitness landscape is computed over 1 million parameter combinations across λ (x-axis), β

(y-axis), and τ (facets). For each parameter, we defined 100 equally log-spaced values over a credible range of participant parameter estimates (using Tukey’s
fence). We then simulated 100 rounds of the task using each combination of parameters (sampling with replacement from the same set of 40 environments
given to participants) in order to compute an average reward, which we then normalized to a max of 1.
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Supplementary Figure 8. Supplementary results of the optimization algorithms. a) Trajectories of λ and β for each combination of optimization
algorithm (rows) and cooling function (columns). For the background, we used the τ value with the smallest difference to the mean simulated τ value across all
trajectories and iterations (τ̄ = .03). Human estimates (labeled dots) are also provided for comparison. b) Comparison of the human developmental trajectory
(black line indicates smoothed means ± 95% CI and dots show each individual parameter) to each optimization algorithm (colored lines). Human data is
plotted along age in years (bottom axis), while the algorithm results are plotted in terms of iteration number (top axis), both in log scale.
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Supplementary Figure 9. Variability of trajectories of generalization λ and uncertainty-directed exploration β . Plots show the bootstrapped
variability of trajectories (blue) as well as the median trajectories (black) for each combination of optimization algorithm (rows) and cooling function
(columns). Each combination of algorithm and cooling schedule was initialized with all individual cross-validated parameter estimates of the youngest age
group once (30 participants × 4 rounds), which provides us with four trajectories per participant and algorithm. To visualize the variability of algorithm
trajectories, we iteratively dropped one of the trajectories for each participant and then use the same aggregation method (mean for each participant and then
the median trajectory across participants; 100 iterations). We then plot each of these leave-one-out aggregated trajectories to visualize the variability of the
algorithm trajectories.
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Supplementary Figure 10. Similarity between human and optimization algorithm. To compute how human and algorithm trajectories differ, we first
generated 100 bootstrapped datasets of the SHC-fast cooling trajectories, matched in size to our participant data (n = 281). This allows us to run a comparable
version of the changepoint regression, comparing humans to the algorithm. Specifically, we first created a unified time variable for human and algorithm
trajectories by normalizing participant age and algorithm iterations to the same range of [0,1], respectively. Then for each (unnormalized) age bin in years [5,6,
. . ., 55], we randomly sampled (without replacement) the same number of parameters (λ , β , τ) from the algorithm trajectory within the same unified time range.
This created a matched dataset of the algorithmic trajectory with the same number of n = 281 observations along the same unified time axis. This was repeated
100 times to minimize sampling bias. We than re-ran the change-point regression on this bootstrapped data, using the same formulation as in Eq. 14-15. This
allows us to compare b1 and b2 between humans and the algorithm trajectories, which yielded qualitatively similar trends (see Supplementary Table 8). a) The
posterior regression weights of the changepoint regression estimated on both human (left) and algorithm trajectories (SHC-Fast cooling; right). The dots
indicate the mean and point-ranges denote the 95% credible interval (CI), while the vertical dashed line indicates 0 (i.e., no change). b) Posterior estimates of
the changepoint ω from the algorithm trajectories. The vertical dashed line indicates the upper 95% CI. c) Parameter distributions after the changepoint
(thresholded at the upper 95% CI of the respective ω estimates). The upper panel shows human parameters and the lower panel shows parameters sampled by
the SHC algorithm with fast cooling. Human λ and β parameters converged at lower values than the algorithm (λ : U = 2740, p < .001, rτ =−.38, BF > 100;
β : U = 10114, p < .001, rτ =−.19, BF > 100), while τ estimates were not reliably higher or lower (U = 22377, p = .188, rτ = .05, BF = .12).
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