日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Bcl-xL inhibits tBid and Bax via distinct mechanisms

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Murad, F., & Garcia Saez, A. J. (2021). Bcl-xL inhibits tBid and Bax via distinct mechanisms. Faraday Discussions, 232, 86-102. doi:10.1039/D0FD00045K.


引用: https://hdl.handle.net/21.11116/0000-000E-02A4-6
要旨
The proteins of the Bcl-2 family are key regulators of apoptosis. They form a complex interaction network in the cytosol and in cellular membranes, whose outcome determines mitochondrial permeabilization and commitment to death. However, we still do not understand how the action of the different family members is orchestrated to regulate apoptosis. Here, we combined quantitative analysis of the interactions and the localization dynamics of the family representatives Bcl-xL, Bax and tBid, in living cells. We discovered that Bax and tBid are able to constitutively shuttle between cytosol and mitochondria in the absence of other Bcl-2 proteins. Bcl-xL clearly stabilized tBid at mitochondria, where they formed tight complexes. In contrast, Bcl-xL promoted Bax retrotranslocation to the cytosol without affecting its shuttling rate, but by forming weak inhibitory mitochondrial complexes. Furthermore, analysis of phospho-mimetics of Bcl-xL suggested that phosphorylation regulates the function of Bcl-xL via multiple mechanisms. Altogether, our findings support a model in which the Bcl-2 network not only modulates protein/protein interactions among the family members, but also their respective intracellular localization dynamics, to regulate apoptosis.