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Fast Parallel Space Allocation, Estimation, and Integer Sorting*
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Max-Planck-Institut fiir Informatik, D-66123 Saarbriicken, Germany

The following problems are shown to be solvable in O(log* n} time
with optimal speedup with high probability on a randomized CRCW
PRAM using O(n) space:

+ Space allocation: Given n nonnegative integers x4, ..., x,,, allocate
n nonoverlapping blocks of consecutive memory cells of sizes x,, ..., x,
from a base segment of 0(2;’11 x;) consecutive memory celis.

« Estimation: Given n integers in the range 1..n, compute ""good”
estimates of the number of occurrences of each value in therange 1..n.

« Semisorting: Given n integers x4, ..., x,, in the range 1..n, store the
integers 1, ..., n in an array of O(n) cells such that for all ie {1, ..., n},
all elements of {: 1< j<n and x;=i} occur together, separated only
by empty cells.

« Integer chain-sorting: Given n integers x4, ..., x,, in the range 1..n,
construct a linked list containing the integers 1, ..., n such that for all /,
/€{1, .., n}, if i precedes jin the list, then x, < x;.

Moreover, given slightly superlinear processor and space bounds, these
problems or variations of them can be solved in constant time with high
probability. As a corollary of the integer chain-sorting result, it follows
that n integers in the range 1..n can be sorted in O(log n/log log n}
time with optimal speedup with high probability. ¢ 1995 Academic
Press, Inc.

1. INTRODUCTION

This paper studies a number of problems that are of
fundamental importance in parallel computing. Most of
these have traditional, “exact” variants that are known not
to possess fast parallel solutions. More precisely, computing
the parity of » bits reduces to instances of these problems of
size n, which, therefore, by the lower bound of Beame and
Hastad (1989), cannot be solved faster than in ®(log n/
log log n) time on a PRAM with any polynomial number of
processors. The lower bound, stated only for deterministic
algorithms, can be extended to randomized algorithms by
means of a technique of Ajtai and Ben-Or (1984). Relaxing
the problem definitions to allow approximate solutions,
however, we are able to obtain very fast algorithms that run
with optimal speedup on a randomized CRCW PRAM.
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The first problem studied is that of space allocation, which
we formalize as the interval allocation problem. Imagine that
we are presented with n simultaneous requests, each of
which is for a certain number of consecutive memory cells.
Note that a request is not for specific memory cells, but
merely indicates the number of cells needed. Abstractly
speaking, such requests might originate with a collection of
concurrently executing tasks, each of which needs a certain
amount of working space for its computation. The present
paper provides several concrete examples of situations
where such requests arise naturally; many more can be
found in the papers cited below. Given the set of requests,
the goal is to satisfy each request, i.e., to supply the request-
ing agent with a private block of memory of the requested
size.

We may view the allocated blocks as nonoverlapping
subarrays of a single base array. The exact version of the
interval allocation problem requires the size of the base
array to exactly equal the sum of all requested sizes, and is
clearly subject to the lower bound mentioned above. We
must therefore relax this requirement, but still want to insist
that not too much space be wasted. For reasons similar to
those that motivate the use of the O-notation, we require the
size of the base array to be at most a constant factor larger
than the sum of the requested sizes. With this convention,
we are able to solve interval allocation problems of size # in
O(log* n) time with optimal speedup with high probability.
As shown by MacKenzie (1992), this is as fast as possible
for any algorithm that uses no more than »n processors. A
variant of interval allocation called interval marking is a
natural formalization of the (vaguely defined) processor
allocation problem, which adds to the importance of the
interval allocation problem. Part of the development of our
interval allocation algorithm took place in a dialog with
Joseph Gil, and a result similar to ours was reported in (Gil
et al., 1991); details are given in Section 7.

The second problem studied is that of profiling. We are
here given an array of n keys, and the task is to determine
the multiplicity (le., the number of occurrences) of each
value represented among the keys. The exact version of the
problem asks for the exact multiplicities and, again, is
clearly subject to the lower bound of Q(log n/log log n). We
therefore content ourselves with approximate counts. We
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assume that the values represented among the keys are
integers in a range 1..m, where m is at most linear in n. If this
is not the case initially, static hashing can frequently be used
to map the original values injectively to a sufficiently small
range of integers, after which approximate counts can be
computed using our algorithms and associated with the
original values (see (Bast and Hagerup, 1991) and (Bast ¢t
al., 1992} for the best known results on static hashing on the
CRCW PRAM). The output hence takes the form of m non-
negative integers b,, .. b, where b, is an estimate of the
number b, of occurrences of the value 7, fori=1, ..., m.

We study two different variants of the profiling problem.
In the first of these, the number of different values is
assumed to be much smaller than the number of keys;
specifically, m = O(n'~°), for some fixed J>0. In these
circumstances, constant time and n processors suffice, with
high probability, to compute what we call a fine-profile, ie.,
a sequence l;l, b, with b, <b, < Kb,. for some constant
Kz 1andfori=1, .., m This simple result furnishes a basic
tool used in many of our other algorithms.

The second variant of the profiling problem is concerned
with the case m = n, which is of special interest and impor-
tance (see below). It requires the estimates by....b, to be
independent random variables (note that b,,..b, areran-
dom variables because the execution of one of our (ran-
domized) algorithms constitutes a random experiment; the
input is considered to be fixed). Given the difficulty of
analysis often caused by a lack of independence, this is a
reasonable property for which to ask. As concerns the
accuracy of the estimates, we require on the one hand that
> h,= O(n), a natural condition, and on the other hand
that Pr(b,>ub,)<2 % fori=1,...,nand for all a > 1 (ie.,
the probability of an estimate being « times too small
decreases exponentially in a), a less natural condition that
represents a compromise between what we would ideally
like and what we can easily compute. We show that
estimates b,, .., b, with this property, called a coarse-
profile, can be computed in O(log* n) time with optimal
speedup with high probability.

The third problem studied is that of semisorting (the term
was taken from (Valiant, 1990)). To semisort a sequence of
objects, each with a distinguished key, is to rearrange the
objects so that all objects with a common key occur
together. We assume that the keys are integers in the range
1..n; as above, static hashing can often be used to enforce
this condition if it is not satisfied initially. The lower bound
of £2(log n/log log n) applies to semisorting, as defined so
far, so we relax the definition by allowing the output to be
given in the form of a padded sequence of size O(n); i.e., O(n)
special null objects are allowed to intervene in arbitrary
positions between the # objects that form the actual semi-
sorted sequence. Our result is that semisorting problems of
size n can be solved in O(log* r) time with optimal speedup
with high probability. The proof is quite involved and

makes crucial use of the results obtained for the second
variant of profiling—-the condition Pr(b,> ab,) <2 ¢ turns
out to be exactly what is needed. We extend the semisorting
result to strong semisorting, which requires that all
occurrences of a key of multiplicity b appear in a subarray
of the output array of size O(b).

Semisorting has many and diverse uses. Our result on
strong semisorting directly provides one of our best profil-
ing results, namely a fine-profile for the case m = n. Another
immediate application is to integer chain-sorting. General
chain-sorting takes as input » keys drawn from a totally
ordered universe and makes each key point to the next
larger key, if any (with an arbitrary total order imposed by
the algorithm on each set of keys of a common value); i.e.,
the keys are stored in sorted order in a linked list. We
consider the chain-sorting problem with integer input keys
drawn from the range 1..n. In contrast with what is the case
for profiling and semisorting, a preprocessing based on
hashing, which is a nonmonotonic operation, does not
enable our integer chain-sorting algorithm to cope with
more general input keys; allowing only keys in the range
1..n therefore is a true restriction. In recognition of this fact,
we continue to use the term “integer chain-sorting,” rather
than simply “chain-sorting.” Note also that the lower bound
of Beame and Hastad does not apply to chain-sorting, even
with no restriction on key values. On the other hand, the
well-known lower bound of Q(nlog n) for (randomized)
comparison-based sequential sorting, which holds also for
chain-sorting, implies that our result, O(log* ) time with
optimal speedup with high probability, does not extend
from integer chain-sorting to general chain-sorting, which
allows only pairwise comparisons. The first O(log* n)-time
integer chain-sorting algorithm was given by Gil er al.
(1991); their argument, however, is very sketchy, and their
result is slightly weaker than ours. As a rather trivial by-
product of our fast integer chain-sorting algorithm, we are
able to improve the best previous result on (standard) ran-
domized sorting of » integers in the range 1..n. We show
that this problem can be solved in O(log n/log log 1) time
with optimal speedup with high probability. Slightly weaker
results were found independently by Matias and Vishkin
(1991) and Raman (1991}); see Section 10.

More substantial applications of our semisorting result
were reported elsewhere. Semisorting is used in (Hagerup,
1992a, 1992b) to simulate stronger PRAM variants on the
weaker TOLERANT PRAM; semisorting there serves to bring
together all write requests pertaining to a common memory
cell. Hagerup and Katajainen (1993) employ semisorting in
the construction of the Voronoi diagram of n random sites
drawn independently from the uniform distribution over
the unit square; a grid divides the unit square into
approximately # cells, and the set of sites in each cell is com-
puted by means of semisorting. Our result also allows a
significant simplification of the hashing scheme of (Bast and
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Hagerup, 1991). In (Hagerup and Raman, 1992), finally,
semisorting is used for a variety of different purposes.

From a different point of view, the present paper explores
the power flowing from a combination of three new techni-
ques in algorithm design and analysis: First, the “log-star”
technique introduced by Raman (1990) and developed
further by Matias and Vishkin {1991). Second, randomized
“scattering” procedures for estimating various quantities
crudely, but rapidly. Third, the analysis of randomized algo-
rithms using martingale theory, which is not new, but which
in the past has not been used as often as it deserves. A less de-
tailed and more accessible account of most of the material in
this paper can be found in (Hagerup, 1992b); the reader may
want to study that paper before taking on the present one.

The structure of the paper is as follows: After some
preliminaries in Section 2, Section 3 introduces various con-
cepts under the general heading of “scattering” and lists
some of their basic properties. Section 4 deals with a special
case of interval allocation called compaction, and Section 6
extends this to so-called colored compaction. Section 5
presents first results for the fine-profiling problem, and Sec-
tion 7 uses the results of Sections 5 and 6 to solve the inter-
val allocation problem. Sections 8 and 9 are devoted to
coarse-profiling and semisorting, respectively, and Sec-
tion 10 describes applications of semisorting. Section 11,
finally, studies the consequences of allowing slightly super-
linear processor and space bounds. Every section uses essen-
tially all sections before it, so that it is difficult to read
sections out of context.

2. PRELIMINARIES

A CRCW PRAM (concurrent-read concurrent-write
parallel random access machine) is a synchronous parallel
machine with processors numbered 1, 2, ... and with a global
memory that supports concurrent (i.e., simultaneous) access
to a single cell by arbitrary sets of processors. The semantics
of concurrent writing can be defined in many ways. Accord-
ingly, many different variants of the CRCW PRAM, each
distinguished by a different rule for the resolution of write
conflicts, have been introduced; see, e.g., (Chlebus et al,
1989; Hagerup and Radzik, 1990; Hagerup, 1992a) for
definitions of many of these models and for discussion of the
relationships between them. The following two write con-
flict resolution rules and corresponding variants are rele-
vant to the present paper:

ARBITRARY (Shiloach and Vishkin, 1982); If two or more
processors attempt to write to a given cell in a given step,
then one of them succeeds, but there is no rule assumed to
govern the selection of the successful processor.

ToLERANT (Grolmusz and Ragde, 1987): If two or more
processors attempt to write to a given cell in a given step,
then the contents of that cell do not change.

It is easy to see that the ARBITRARY PRAM is (not
necessarily strictly) stronger than the TOLERANT PRAM in
the sense that one step of a TOLERANT PRAM can be
simulated by a constant number of steps on an ARBITRARY
PRAM with the same number of processors and memory
cells. In fact, most CRCW PRAM models commonly con-
sidered are stronger than the TOLERANT PRAM in this
sense. We employ the TOLERANT model throughout the
paper, with the sole exception of Lemmas 3.4(b) and 3.5 and
Theorem 11.6 and their proofs, which use the ARBITRARY
model. The most direct implementation of some of our other
algorithms, however, assumes the ARBITRARY model, and
we have to put in an extra effort in order to derive a solution
for the weaker TOLERANT PRAM. Since we expect the dis-
tinction between different variants of the CRCW PRAM to
be of little concern to many readers, we try to make it
possible to skip material that deals only with the translation
between models. All of our results hold also for the PRIORITY
PRAM, which is even stronger than the ARBITRARY PRAM,
while they do not extend immediately to the COMMON
PRAM, which cannot simulate the TOLERANT PRAM in a
step-by-step fashion without loss (Grolmusz and Ragde,
1987).

Consider the following assertion: “Every problem that
can be solved in 7 time steps with p processors can also, for
every given k € N, be solved in O(k7) time with [ p/k 7 pro-
cessors.” A simple but important simulation shows the
assertion to hold for the ARBITRARY PRAM: Each physical
processor simulates up to k virtual processors in a step-by-
step fashion. We express this by saying that the ARBITRARY
PRAM is self-simulating and sometimes use the word “pro-
cessor” to denote a virtual processor in the sense of this
simulation. The number of operations executed by a parallel
algorithm that uses 7 time steps and p processors is defined
to be its time-processor product pr. By the simulation
above, we always have pt = (T'), where T is the sequential
complexity of the problem solved by the algorithm. Accord-
ingly, the parallel algorithm is said to have optimal speedup
or to be optimal if pt = O( T). Because of the self-simulating
property, if a problem can be solved on an ARBITRARY
PRAM using  time steps and g operations, then it can also,
for every given 7 > t, be solved in &(t) time using O(q + 1)
operations; i.e., the algorithm can be slowed down without
loss. This makes it convenient to express the performance of
the algorithm by giving the pair (7, ¢) of minimum computa-
tion time and number of operations. In contrast with all
other commonly considered PRAM variants, the TOLERANT
PRAM is not known to be self-simulating. Since it is still
important to know the extent to which a particular algo-
rithm can be slowed down (see below), we are forced to
indicate this explicitly, typically in a statement of the form
“For all t zlog* n, O(t) time and ["n/t7] processors suffice
to ....” We advise the reader to interpret such a statement as
“The time 1s O(log* i), and the algorithm is optimal and
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can be slowed down.” Note that if an algorithm consists of
[ parts with (minimal time, number of operations) perfor-
mance pairs (t;,¢,). ... (#;,q,) and if each part can be
slowed down, in the sense above, then the whole algorithm
has a performance pair (1. ¢), where r=0(3!_, 1) and
¢=0(Y'_, g,). It can also be shown that when ke N is a
constant, we can always reduce the number of processors
from p to [ p/k7. even on the TOLERANT PRAM, without
increasing the processing time by more than a constant fac-
tor and the space requirements by more than O( p). We shall
freely use this observation, which was also made in (Gil,
1990) in a special case.

The majority of our algorithms are randomized. Ran-
domized algorithms are customarily divided into Monte
Carlo algorithms, which may occasionally err, and Las
Vegas algorithms, which never err, but which may either
take a long time to produce a (correct) result, or finish on
time without producing any result—it i1s easy to transform
any Las Vegas algorithm from one of these modes of opera-
tion to the other. In all cases, the analysis of a randomized
algorithm bounds the probability of the relevant
undestrable behavior, which we call the fuilure probability
(for a Las Vegas algorithm, this is a slight misnomer).

A Las Vegas algorithm is clearly more desirable than a
Monte Carlo algorithm, since it is trivial to run a Las Vegas
algorithm as a Monte Carlo algorithm: If the algorithm has
not produced any result within a suitable response time,
abort it (if it is still running) and output an arbitrary value.
The distinction between Monte Carlo algorithms and Las
Vegas algorithms will be crucial at one point of our exposi-
tion. At any rate, although this is not always done, we
believe that it is important to classify each randomized algo-
rithm as either Monte Carlo or Las Vegas. We will do so by
appending the appropriate one of “(Monte Carlo)” and
“{Las Vegas)” to the bound on the failure probability given
for each algorithm.

Informally, a randomized algorithm can be formulated as
a Las Vegas algorithm whenever its output can be verified
using negligible resources, either after the fact or by the
algorithm itself—this is because the algorithm can be
executed repeatedly until some output passes the verifica-
tion. Whenever we classify an algorithm as a Las Vegas
algorithm, it will be easy to see that such verification is
possible, and we will not demonstrate this explicitly.

As usual, £, = O(E,), where E, and E, are expressions,
means that there is a constant ¢ >0 such that E, <cE,.
Note that we require this relation to hold for all legal values
of the parameters occurring in E, and E,, not just for suf-
ficiently large values of these parameters. The constant ¢ is
independent of all other parameters, except that it may
depend on quantities that are explicitly qualified as “fixed”
(in the present paper, such quantities are always denoted by
the symbols é and u). The meaning of E, = Q(E,) is defined
analogously.

In order to make many proofs more readable, we make
extensive use of the notion of a negligible probability. What
constitutes a negligible probability depends on the context.
Is the goal, e.g., to show that some event occurs with prob-
ability 27" then in the proof we can ignore any polyno-
mial (in n) number of probabilities of the form 2~ *'" for
arbitrary ¢ > 0, since for sufficiently large values of n the sum
of such probabilities will be bounded by 2 ', for suitable
&’ > 0; we here rely on the fact that all problems considered
in the paper become trivial if the problem size n is bounded
by a constant. An event that occurs with high probability is
the complement of an event of negligible probability. We
often tacitly assume that such events always occur. When-
ever we speak of “choosing at random,” we mean choosing
from the uniform distribution and independently of other
such choices. We assume processors to be equipped with
unit-time operations for integer addition. subtraction, mul-
tiplication and division with remainder, for computing 2°,
for every given se N, and for choosing a random integer
from the set {1, ..., s}, for every given s e N. As a minimum,
we assume that the available operations can be executed in
constant time for integer operands and results of absolute
value bounded by n +m + p, where n is the input size, m is
the largest absolute value of an input number, and p is the
number of processors of the machine under consideration;
lLe., a (standard) logarithmic word length suffices.

When nothing else is stated, arrays are assumed to be
one-dimensional. Given an array A4, we denote by |A4] its
size, i.e., the number of cells in 4. Although, in principle, a
memory cell contains a single integer, we often find it con-
venient to pretend that a cell can contain an entire record of
an arbitrary, but constant, number of (integer) fields;
achieving this is simply a matter of considering a constant
number of cells as a unit, also called a cell. When we state
that a problem can be solved by a certain number of pro-
cessors or speak of allocating a certain number of pro-
cessors to some task, we always assume the processors to be
consecutively numbered. Without stating this explicitly, we
also assume that each processor “comes equipped with” a
cell indexed by its processor number in a suitable array
shared by all processors, which can be used for coordination
between processors working on a common task. One conse-
quence of this is that our processor bounds are always
dominated by our space bounds.

We use “log” to denote the binary logarithm function.
Fork=0, 1, .., log'*’ denotes k-fold application of the func-
tion v—max{logx, 1}, ie, log"” x=x and log® x=
max{loglog” " x, 1}, for all x>0 and all keN. For
neN, log* n=min{keN:log* n=1}. Although extract-
ing logarithms is not one of our standard operations, we will
assume that the function x| log x | can be evaluated in
constant time by a single processor, for x € {1, ..., n}. This is
justified by an observation of Hagerup and Radzik (1990),
who show that a table realizing this function on the domain



76 BAST AND HAGERUP

in question can be constructed in constant time with »n pro-
cessors. As a consequence, | log'*' n | can be computed in
O(k) time by a single processor, for arbitrary given ke N. It
1s also easy to see that for any given rational number ¢ < 1,
the function x| x? ] can be evaluated in constant time
with n processors, for xe {1, ..,n} (details are given in
(Hagerup, 1992c)).

Some of the constants appearing in our proofs are very
large. This is not evidence of a true problem, but merely
reflects a decision never to add to the complexity of an argu-
ment in order to obtain smaller constants. In particular,
we make frequent use of the very crude estimates 2 > x, for
all x=0, and [x7<2[ x|, for all x>=1. We expect that a
less generous analysis would yield reasonable constant
factors.

Our probabilistic analysis is based on the two lemmas
below. Lemma 2.1 states various inequalities commonly
known as Chernoff bounds.

Lemma 2.1.  For every binomially distributed random
variable S, the following holds:
Forall z22E(S), Pr(S=z)<e
Pr(S< E(S)/2) e #5018,
Forall 2> 0, Pr(S = z) <(eE(S)/z).

(a)
(b)
(c)

Proof. Part (a) with - =2E(S) as well as parts (b) and
(c) are well-known and proved, e.g., in (Hagerup and Riib,
1990). In order to show the general form of part (a), assume
that S is the number of heads in m independent tosses of a
coin with probability p of heads and, without loss of
generality, that z<m. Let Z,, .., Z,, be independent ran-
dom variables with range {0, 1,2} and with Pr(Z,=1)=p
and Pr(Z;e{1,2})=z/(2m) (=p), for i=1,..,m Then
S,={i: 1<i<m and Z,=1}| is distributed as S, S, =
[{i: 1<i<m and Z,>1}]| is binomially distributed with
E(S,)==z/2,and S, = §,. Then, however, by the special case
of part (a) already established, Pr(S=:z)=Pr(S,>:2) <
Pr(S,zz)=Pr(S, = 2E(S,))<e . |

The following fact is implied by Azuma’s inequality (see
(Bollobas, 1987) or (McDiarmid, 1989)). Corollary 2.3
expresses the special form of Lemma 2.2(a) that we shall
most often use.

LEmMMmA 22. Let meN, let Z,, .., Z, be independent
random variables with finite ranges, and let S be an arbitrary
real function of Z,, .., Z,, with E(S)=0. Assume that S
changes by at most ¢ in response to an arbitrary change in a
single Z,. Then

(a) For every z = 2E(S), P{(S = z) e =18,

(b) Pr(S<E(S)/2) e AS Mt

COROLLARY 2.3. Under the assumptions of Lemma 2.2,

Pr(S>max{2E(S), 4em'” "} )2~

Sfor all > 0.

In later applications, we write “by a Chernoff bound”
instead of “by Lemma 2.1,” and “by a martingale argument”
rather than “by Corollary 2.3

When we state that an algorithm makes at most m ran-
dom choices, a change in one of which affects some real
quantity S by at most ¢, what we mean is that S is deter-
mined somehow by an execution of the algorithm, and that
the execution is deterministically given by the input, except
that it may also be influenced by at most m independent ran-
dom quantities computed by the algorithm, a change in one
of which (with the other random quantities kept fixed)
causes S to change by an amount of at most ¢. A statement
to the effect that a change in a single random choice affects
at most a certain number of output variables is to be inter-
preted in a similar manner.

The algorithms implied by the results listed below are
needed as basic subroutines in many places. Although not
all of these algorithms were originally formulated for the
ToLeranT PRAM, it is not difficult to translate them to that
model without loss. For all n e N, the integer prefix summa-
tion problem of size n is, given n integers a,, ..., a,. to com-
pute the prefix sums Y/_, a,, for i=1, ., n Lemma 2.4
combines many previous results by various authors by
giving the optimal prefix summation time for any combina-
tion of three independent parameters.

LemmA 2.4 (Hagerup, 1995).  For all given integers n, m.
p =4, the prefix sums of n integers, each of absolute size at
most m, can be computed on a TOLERANT PRAM using
1 1
<§+__wwog " + log min { OB M +1, n})
p loglogp log p

time, p processors and O(n + p) space.

COROLLARY 2.5. For every fixed 6 >0 and for all given
integers n, T = 2, the prefix sums of (log n)?V integers, each
of absolute size polynomial in n, can be computed on a
TOLERANT PRAM using O(z) time, O(Tn’/t}) processors
and O(n°) space.

Lemmas 2.6 and 2.7 provide algorithms for the TOLERANT
PRAM for problems that are trivial on certain stronger
PRAM variants. Lemma 2.6 is due to Alon and Megiddo
(1994). who describe a constant-time algorithm for the
more general problem of linear programming in fixed
dimension (to compute max{ay, ..., a,} using an algorithm
for one-dimensional linear programming, minimize x sub-
ject to the constraints x > ¢, for i=1, .., n). Specialized to
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maximum-finding, the algorithm of Alon and Megiddo can
be viewed as a PRAM implementation of an algorithm for
the parallel comparison-tree given by Reischuk (1985).

Lemma 2.6 (Alon and Megiddo, 1994). There is a con-
stant £ > 0 such that for all given n, T € N, the maximum of n
integers can be computed on a TOLERANT PRAM using O(1)
time, [ nit7] processors and O(n) space with probability at
least 1 —2 =" (Lus Vegas).

LemMMa 2.7 (Fich et al., 1988b, Theorem 1). For all
given n, teN, the following problem can be solved on a
TOLERANT PRAM using O(t) time, [ n/t| processors and
O(n) space: Given n bits x|, .., X,, compute max({j:
I<j<nand x,=1} U {0}).

When dealing with groups of consecutively numbered
processors, the segmented broadcasting problem defined
below formalizes the task of distributing information
from the lowest-numbered processor in each group to the
remaining group members.

DermNITION.  For all ne N, the segmented broadcasting
problem of size n is, given n bits x,, .., x,, to compute
Vis o Vo, Where y,=max({j: 1<j<iand x;=1} U {0}),
fori=1, .., n

Lemma 2.8 below is due to Berkman and Vishkin (1993)
and Ragde (1993) (see also (Chaudhuri and Hagerup,
1994)), who in fact prove slightly stronger claims than the
ones cited here.

LeMMA 2.8.  For all given ne N, segmented broadcasting
problems of size n can be solved on a TOLERANT PRAM

(a) in O(1) time using [ n/t7] processors and O(n) space,
Jor all given integers T = log* n;

(b) in O(zr) time using [nlog* n/t7| processors and
O(nlog* n) space, for all given integers 1= 1.

Lemma 2.9, finally, states that small integers can be
sorted fast with optimal speedup.

LEMMA 29. For every fixed 6>0 and for all given
integers n, m, t =4 with t > log n/log log n + m°, n integers
in the range 0..m can be sorted on a TOLERANT PRAM using
O(t) time, [ n/t7] processors and O(n) space.

Proof. The lemma was shown by Cole and Vishkin
(1989, Section 3.2) for m < log n/log log n. Their algorithm
generalizes easily to the case of larger m, with a minimum
running time of @(m). Applying the principle of radix sort,
essentially to replace m by m?°, yields the bounds stated in
the lemma. |

3. SCATTERING

The fundamental intuitive meaning of a scartering is
that each of a number of objects is placed randomly and

independently of other objects in one of a number of cells
placed in a row. In this paper we are frequently interested in
the resulting fi/lness of the row, i.e., in the ratio of occupied
cells to the total number of cells. Since this is clearly a random
variable that tends to take on larger values if more objects
are scattered, it provides a (very crude) basis for estimating
the number of objects scattered. By letting each object par-
ticipate in the scattering with some suitable probability
instead of with probability 1 as above (a conditional scatter-
ing), we can adjust the “region of sensitivity” of a scattering
according to need. A graduated conditional scattering (GCS)
takes this idea one step further by providing a whole
sequence of conditional scatterings, each with a different
associated probability of participation, which gives us a way
to make more substantial statements about the number of
objects scattered. Graduated conditional scatterings were
introduced in (Hagerup and Radzik, 1990), although not
for the purpose of estimation.

Our analysis of the outcome of a GCS is limited to deter-
mining a scattering in the sequence that satisfies a certain
property, but whose successor in the sequence does not.
Two properties are relevant to us: The row of a scattering
being full (all cells are occupied), and the row being roughly
half full. It turns out that testing according to full rows is
computationally easier, but leads to less accurate estimates.
We now provide the technical details.

DerFINITION.  For all seN and 0<p <1, a conditional
scattering with probability p and of width s is a random
experiment carried out by a set U as follows: Each element
u € U, independently of other elements, chooses a random
number Z, with Pr(Z,=0)=1—pand Pr(Z, = i) = p/s, for
i=1,..5 Anelement ue U is said to occupy the value i if
Z,=ifori=1, .., s, and the fullness of the conditional scat-
tering is k/s, where k=[{Z :ue U}\{0}|=|{i: 1<i<s
and i is occupied by at least one element of U}|. Two dis-
tinct elements in U collide if they occupy the same (nonzero)
value. The density of the conditional scattering is the
quantity |U| p/s. A scattering of width s is a conditional
scattering with probability 1 and of width s.

Note that the value 0 plays a special role in the definition
above. An element of U that chooses the random value 0,
informally, is one that chooses not to participate in the
conditional scattering; p is hence the probability of par-
ticipating.

Lemma 3.1, Let m, seN and 0<p <1, and let N be the
number of occupied values in a conditional scattering with prob-
ability p and of width s carried out by a set of m elements. Then
) Forallke{0, .. s}, PtUN<k)<(})) 2mks 1,
) Pr(N<s/2) <2702
c) Pr(N<s)<s 275,

d) Forallz>0, Pr(N = z) < (mpe/z)*.

o2 ]

(
(
(
(
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Proof. For all ke {0, ..., s}, the probability that a fixed
element occupies a value outside a fixed set D < {1, ..., s} of
size k is p(s — k)/s. Hence the probability that all occupied
values belong to D is (1 —p(s—k)/s)" e Pt —Rivg
2mPtkis=1) Part (a) now follows by observing that D can be
chosen in () ways. Parts (b) and (c) are special cases of (a),
and part (d) i1s implied by Chernoff bound (c). |

DerINITION.  For all r, seN, a graduated conditional
scattering (GCS) with parameters rxs of a set U is a
sequence & = {9, ..., ¥), where .%, called the ith row of .,
is a conditional scattering with probability 2~/ and of width
s carried out by U, for i=1, ., r. For 0 < f<1, define an
Jf-row of ¥ as any integer i€ {0, ... r} such that % but not
., has fullness >/, where fictitious rows .%, and % , | are
assumed to have fullness 1 and 0, respectively.

In the definition above note, in particular, that we do not
require the rows of a GCS to be independent experiments;
this will be crucial below. A GCS always has at least one
JS-row, for arbitrary f with 0 < f< 1. Although it may have
several f~rows, these will usually be sharply concentrated in
a small interval. Lemma 3.3 below proves this for f=1 by
bounding the tail probabilities of the distribution of a 1-row
L. The bounds hold no matter how L is selected from the set
of 1-rows; in order for the probabilities to be well-defined,
assume that this is done according to some fixed, but
arbitrary rule.

LeMMA 3.2. Foreveryz>0,min{l, Y 272"} <2' =

Proof. ¥/ ,27°<T 27D =2")1-2"7). If
z<1, then 1<2'~% On the other hand, if z> 1, then
2’:/(1—2"’)<2'2/(1/2)=2":. |

LemMma 3.3. Letm,r.seNanda>0andlet L be a l-row
of a GCS of a set of m elements with parameters r x 5. Then
if M=2%s,

(a) Pr(M>max{s, am})<(2e/a)’;

(b} Pr(L<randm>aM)<s -2' 2

Proof. 1If L >0, row L is full. Hence by Lemma 3.1(d),
for every [ 20,

o0 —i & -7/ K
Pr(L>1)< Z <2 em) <<2 em>.

i=rin s §

(h)

Likewise, if L <r, row L + 1 is not full, and Lemmas 3.1(c)
and 3.2 imply that for every / <r,

L4
Pr(L<[)<min{1, Y s-2 ""3'1“"}

f=

o
<s-min{l. Y2 2""0““*»‘}
i=0

,2—1— l“‘c“.

<S'21“m

(2)

To show (a), apply (1) with / =log(max{s, am}/s) > 0. This
yields

')l—le

L

Pr(M > max{s, am})=Pr(L>1)< < > < (2e/a)’.

N

To show (b), apply (2) with /=min{log(m/(as)), r} <r to
obtain

Pr(L <rand m>aM)

sty o
=Pr(L<l)<s. 2" m2 T g2V 92 )

Lemma 3.3 provides evidence that any [-row of a GCS of
a set U can serve as a basis for estimating the size of U. We
now describe how to determine such a 1-row in constant
time under the assumption that each element of U has
an associated processor. Carrying out the GCS in the
straightforward way as a collection of independent condi-
tional scatterings would be too slow, since each scattering
would require a constant effort by each processor. Consider
instead the following procedure for carrying out a GCS of U
with parameters » x s: Each element of U, independently of
other elements, chooses a random position in an rxs
matrix, the position in row / and column j being chosen with
probability 2~ /s, for i=1,.,r and j=1,.,s; with
whatever probability is left (namely, 27"), the element does
nothing. In more detail, the correct probability distribution
among the rows can be generated by takingi=r—| log Z |,
where Z is a random variable uniformly distributed on the
set {1,..,2"}. We take the elements participating in % as
precisely those that choose a position in row i of the matrix,
for i=1, .., r, and the values occupied by these elements as
the column numbers of their chosen matrix positions. We
can now appeal to the algorithms of Lemma 3.4 below,
which input the matrix positions chosen by the elements
and compute from these the minimal index of a row with at
least one position not chosen by any element, or r + 1 if no
such row exists; subtracting one from this number yields a
1-row of the GCS. With an eye towards later applications,
we observe that the algorithms of Lemma 3.4 can also be
used to analyze just a single row or a fixed selection of rows
of a GCS in a similar manner, simply by ignoring the
remaining rows of the matrix. Note that part (b) of
Lemma 3.4 and Lemma 3.5 are needed only for the proof of
Theorem 11.6, which is not part of the main development.

Lemma 34. Let U be a collection of (not necessarily dis-
tinct) elements of {1, .., r} x {1, .., s}, for givenr, se N, and
assume that each element of U has an associated processor.
For i=1,..r, take f;=1 if U contains (at least one
occurrence of ) each of the pairs (i, 1), ..., (i, 5), and take f,=0
otherwise. Then min({i: 1 <i<rand f;=0} v {r+1}) can
be computed in constant time
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(a) ona TOLERANT PRAM using rs additional processors
and O(rs) space;

(b) on an ARBITRARY PRAM using one additional
processor and O(rs) space.

Proof. (a) Let 4 be an r x s array and say that the cell
A[i,j] is occupied by a processor if the processor is
associated with (an occurrence of) the pair (i, ), for
i=1 ..rand j=1, .,s Then store the value 1 in each
occupied cell of 4 and the value 0 in all remaining cells of A4.
On the ArRBITRARY PRAM. this would be trivial; on the
ToLERANT PRAM, we proceed as follows: Use the rs addi-
tional processors to associate one processor, called a guard,
with each cell of 4 and let each guard begin by storing the
value 1 in its associated cell. Subsequently let each processor
associated with an element of U attempt to write (an
arbitrary value) to the cell that it occupies; simultaneously,
each guard attempts to change the value stored in its
associated cell from 1 to 0. By definition of the TOLERANT
PRAM, this will succeed if and only if the cell was not
occupied; i.e., afterwards the cell contains the desired value.
This technique, which we call guarded writing, was first used
by Grolmusz and Ragde (1987) and appears to be a
fundamental technique for programming the TOLERANT
PRAM. Once the cells of 4 have been marked with zeros
and ones as described above, it is easy to use the algorithm
of Lemma 2.7 to compute the conjunction f; of A[7, 1], ...,
A[i 8], for i=1, .., r Finally Lemma 2.7 is used again to
determine the smallest i€ { 1. ... r}, if any, with f; = 0.

(b) Our algorithm centers around a solution to a
variant of a problem known as the leftmost prisoner
problem. The leftmost prisoner problem, introduced by Fich
et al. (1988a), 1s unusual in that an instance of the problem
1s not given by an input in a traditional sense; rather, the
instance 1s defined by the processors available for its solu-
tion themselves. In more detail, an instance of the leftmost
prisoner problem of size n 1s given by a set of processors
numbered 1, ..., n, each of which is either active or inactive.
At least one processor is active, and the task is to compute
the smallest processor number of an active processor, where
inactive processors do not participate in the computation in
any way. The latter restriction is essential—without it, the
problem could be solved very easily using the algorithm of
Lemma 2.7. The complexity of leftmost prisoner problems
of size n >4 on the ARBITRARY PRAM was shown to be
O(log log n) by Chlebus ¢t al. (1988) and Grolmusz (1991).
Here we are interested in a variant of the problem called
the leftmost empty prison cell problem. The setup is exactly
as for the leftmost prisoner problem, but we want to com-
pute the smallest processor number of an inactive pro-
cessor, or an indication of the fact that all processors are
active. In Lemma 3.5 below we show that leftmost empty
prison cell problems can be solved in constant time on
an ARBITRARY PRAM. Here we will take this result for

643°12371-6

granted and describe its application to graduated condi-
tional scattering.

As 1n part (a), we use an rxs array 4 and say that a
processor occupies A[4,j] if it is associated with (4, j), for
i=1,.,randj=1, .., s For each row of 4, we now wish to
associate a processor with the row if and only if each cell in
the row is occupied by at least one processor. To this end we
view each row as defining an instance of the leftmost empty
prison cell problem. For j=1, ..., 5, each processor occupy-
ing the jth cell in the row temporarily adopts j as its pro-
cessor number and represents an active processor in the
sense of the leftmost empty prison cell problem; the fact that
several processors may occupy the same cell in A leads to no
problem, since they will all carry out the same computation.
Forj=1, .., s, if the jth cell in the row under consideration
is not occupied, we associate with it a fictitious inactive pro-
cessor with processor number j. We can now use an algo-
rithm for the leftmost empty prison cell problem to deter-
mine whether any processor is inactive, i.e., whether some
cell in the row is not occupied by any processor. If and only
if all cells are occupied, we associate one (or all) of the pro-
cessors occupying a cell in the row with the row; note that
in the special case in which no processor occupies a cell in
the row, no processor will be associated with the row, as
desired.

We now view the processors associated with some of the
rows of A as defining an instance of the leftmost empty
prison cell problem in a similar way and observe that solv-
ing this problem produces the desired result. The special
case in which no row of 4 has an associated processor can
be handled by the single processor dedicated to the
GCS. 1

LEMMA 3.5. Leftmost empty prison cell problems of
sizen can be solved in constant time on an ARBITRARY
PRAM with O(n) space.

Proof. In the algorithm described below we shall fre-
quently want to mark cells that we may not have been able
to initialize. This is problematic, because an “undefined”
value present from the outset in a cell that is not marked
may happen to coincide with the value that would have
been written there had the cell been marked. We avoid this
difficulty by means of what we call dynaniic marking: A pro-
cessor marks a cell by first writing 0 and subsequently 1
(say) to the cell. Any processor wishing to know whether the
cell 1s marked reads its contents both between the two writes
and after the second write and deems the cell marked if and
only if it observes a change from 0 to 1. Although, in this
scheme, the writing and reading of a mark takes place in an
interleaved fashion, in the description below we will pretend
that the writing precedes the reading.

We can assume that 7 is a power of 2 and that at least one
processor is inactive, since both requirements can be
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satisfied by adding a suitable number of fictitious inactive
processors (an answer larger than the number of original
processors should then be interpreted as an indication that
the original processors are all active). Assume that the pro-
cessors are ordered linearly from left to right by increasing
processor numbers. If the leftmost processor is inactive, all
active processors can discover this fact through dynamic
marking and output the correct answer (namely 1); assume
therefore that this is not the case.

Starting from the left, divide the processors into groups of
sizes 1, 1, 2, 4, ..., n/2 and call a group complete if all pro-
cessors in the group are active, and incomplete otherwise. A
first part of the computation serves to let each active pro-
cessor know whether its group is complete. This can be done
as follows: Using dynamic marking, each processor deter-
mines whether its left neighbor is active, where the left
neighbor of the leftmost processor in a group is taken to be
the rightmost processor in the group (ie., the ordering
within each group is cyclic). Then a cell associated with each
group is initialized to | by all active processors in the group
and subsequently set to 0 by all active processors in the
group whose left neighbors are inactive. It is easy to see that
if at least one processor in the group is active, the value of
the cell remains 1 if and only if the group is complete.

The processors in incomplete groups do not participate in
the remaining computation. The processors in a complete
group of size m, on the other hand, use dynamic marking
and the algorithm of Lemma 2.7 to solve the leftmost empty
prison cell problem defined by the m’ = min{4m, n} leftmost
processors and output the result if and only if at least one of
the ' leftmost processors is inactive.

Any output produced by a complete group clearly 1s the
desired answer. On the other hand, if the processor number
of the leftmost inactive processor P is k, the group to the left
of P’s group exists (by assumption) and is complete and of
size at least k/4, so that an output will be produced at least
by this complete group. |

Whereas graduated conditional scatterings were intro-
duced for the purpose of estimation, we also employ a dif-
ferent kind of scattering, called v-scattering or (with implicit
v) multi-scattering, for the task of placing elements in dis-
tinct cells of a destination array. Because of the more opera-
tional use, the definition below is formulated in algorithmic
terms.

DEerFINITION.  For all v, s € N, to v~scatter a set U over an
array A4 of s cells is to execute the following algorithm: If
v>s, do nothing. Otherwise divide A into v disjoint sub-
arrays of size at least |_s/v_| each and create v copies of each
element in U. Then let the set of ith copies use the ith sub-
array to carry out a scattering of width | s/v_| and identify
the set of noncolliding copies, for i=1, ..., v. An element in
U is said to be successful if it has at least one noncolliding
copy; in particular, if v > s we consider all elements of U to
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be unsuccessful. For each successful element u e U, let / and
J be, respectively, the number of a noncolliding copy of u
and the value occupied by that copy, and place u in the jth
cell of the ith subarray of A4; note that this never places
distinct elements in the same cell. The density of the
v-scattering is the quantity |U| v/s.

Using Lemma 2.7, it is easy to see that if each element of
a set U has an associated group of v processors, then U can
be v-scattered over an arbitrary array A in constant time.
Providing each element of U with more than one copy ser-
ves to increase the probability that at least one copy will not
collide (we do not care which copy this is), in which case the
element can be placed in 4. Lemma 3.6 quantifies the
efficiency of this procedure. Its proof applies a martingale
argument in a situation where, a priori, the number of ran-
dom choices made is too large for such an application. We
overcome this difficulty by fixing most of these choices in
advance, 1.e., by considering a restricted probability space. If
we can show that some event occurs with probability at
most ¢ independently of how the random choices are fixed,
then the event occurs with probability at most ¢ even in the
actual experiment, where random choices in fact are not
fixed. The same principle will be used again later.

LEMMA 3.6. Let m, s, ve N, denote by D the set of
unsuccessful elements in a v-scattering of a set U of size m
over an array of sice s and let p =muv/s be the density of the
v-scattering. Then

(a) Forallue U, Priue D)< p",
(b) For every fixed nonempty subset R of U and for all
222 (R| p',

Pr(|[RAD|zz)e “/R IR0,

Proof. For part (a), it suffices to show for v < s that if U
carries out a scattering of width |_s/v_|, then the probability
that a fixed element u € U collides is at most muv/s. If m = s/,
this is certainly true. Otherwise the probability under
consideration is at most

m—1 m—1 mv
Ls/ol  sio—1 " s~

For part (b), let R be a fixed nonempty subset of U with
|R| =r and consider the random choices made by copies of
elements not in R to be fixed in an arbitrary way. As in the
proof of part (a), a fixed element in R is unsuccessful
with probability at most p*, so that E(|RnD|)<rp". A
moment’s thought reveals that a change in a single random
choice (namely that of a single copy) can change |R n D| by
at most 2. Since there are altogether rv such choices, an
application of Lemma 2.2(a) now shows that for z > 2rp*,
|R A D| = z with probability at most e =32
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Section 6 extends the basic multi-scattering algorithm
above to colored multi-scattering, where the set U to be
multi-scattered is partitioned into color classes U,, .., U,
and U, is multi-scattered over a separate array A,, for
i=1, .., m. It is easy to see that if the density of the multi-
scattering of U, over 4,is bounded by p, fori=1, ..., m, then
the assertions of Lemma 3.6 carry over to the more general
situation. This agrees well with intuition, since the coloring
of elements only helps the multi-scattering algorithm to
distribute copies evenly and avoid collisions.

4. COMPACTION

This section studies the compaction problem, which
occurs as a base case of the more general interval allocation
problem considered in Section 7. Roughly speaking, the
compaction problem is to move a number of objects, scat-
tered over a large source array, to distinct cells in a smaller
destination array, possibly with a small number of objects,
said to be unlucky, left behind in the source array. Our for-
malization of the problem abstracts away the identities of
the objects to be moved and simply takes the input to be a
sequence X, ..., X, of n bits, where # is the size of the source
array; x, = | signifies the presence and x, =0 the absence of
an object in the jth cell of the source array, for j=1, .. n.
The output takes the form of » nonnegative integers
Vivow ¥, If x;=1, the object in the jth cell of the source
array can be moved to the y; th cell of the destination array,
for j=1, .., n, except that by convention y; =0 signals that
the corresponding object is unlucky. If x; =0, the value of y;
is immaterial and may as well be set to zero (condition (1)
below).

DerFINITION.  Forallne N and s = 0, an incomplete place-
ment with hound s for n bits x,, .., x, 1s a sequence y,, .., ¥,
of n nonnegative integers such that

(1)
(2)
(3)
The set {j: 1<j<n, x;=1and y,=0} is called the residue

set of the incomplete placement. If the residue set is empty,
the placement is said to be complete.

Forj=1,..,n,if x;=0, then y,=0;
Forl<i<j<nify,#0,theny,#y;

max{ y,;: 1 <j<n} <s.

Condition (2) in the definition above expresses that dis-
tinct objects may not be placed in the same destination cel],
and condition (3) states that size [ s_| suffices for the destina-
tion array. The residue set is the set of indices of objects that
are not placed in the destination array.

Most of the computational problems introduced in this
paper take as (part of) their input a sequence x, .., X,,.
Although, formally, x,,.., x, are integers (sometimes
restricted further to be single bits), informally they represent
objects of additional internal structure. In particular, if 7 # j,

the objects represented by x, and x, are distinct, even if it
happens that x; = x;. This is mirrored closely by what hap-
pens in our algorithms for solving such problems. They typi-
cally begin by transforming the input x, ..., x, to n records

. X,, that are subsequently manipulated instead of
Xy, . X,. For j=1,.. n, fields in the record X, contain the
integer x;, called the value of X;, the integer J, called its
index, as well as any other attributes that the algorithms
may need. Usually we shall not describe our algorithms at
the level of such programming detail; note, however, that
the symbols X, .., X, will be used in the sense above
throughout the paper. When we speak of the jth input
element, for j=1, ..., n, we usually mean the record X, and
4 ={X,,...X,} is called the inpur set. In particular, for
i #j, the ith and jth input elements are distinct.

For reasons of convenience, we will occasionally state
that some algorithm is applied to a subset of #". What we
really mean in such a case is that the algorithm is applied
to the corresponding subsequence of x,...x,. usually
permuted in some way and augmented with a number of
suitable dummy elements, neither of which affects the
problem in an essential way. Furthermore, we assume that
enough additional information is kept to interpret the
output of the algorithm in terms of the original sequence
Ny Xy

In the context of compaction, an active element is an
input element of nonzero value that has not yet been placed
in the destination array. Once successfully placed, we say
that it has been deactivated or that it has become inactive.
The incomplete compaction problem with parameters
d, -, d,, defined below, is, given at most d, active elements,
to move all except at most d, of these to a destination array
of size at most s.

DermviTion.  For all ne N and d,, d,, s >0, the incom-
plete compaction problem of size n and with parameters
d,— . d, is the following: Given n bits x,, .., x, with
271 X;<d,, compute an incomplete placement for
Xy, .. X, with bound s whose residue set is of size at most d,.
If d,=0, we speak of complete rather than incomplete
compaction.

LemMma 4.1.  For all given n, de N, complete compaction
problems of size n and with parameters d — ;4 0 can be solved
on a (deterministic) TOLERANT PRAM using constant time, n
processors and O(n) space.

Proof. The result was proved by Ragde for the stronger
ARBITRARY PRAM (Ragde, 1993, proof of Theorem 1).
Using Lemma 2.7, it is easy to translate Ragde’s algorithm
to the TOLERANT PRAM. ]

Lemma 4.1 works in constant time, but places the active
elements in an array with many more cells than the number
of active elements. The far more important complete linear
compaction problem, with inessential differences also
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known as the linear approximate compaction or LAC
problem (Matias and Vishkin, 1991), requires the size of the
destination array to be within a constant factor of the bound
on the number of active elements.

DerFmNiTION.  For all ne N and d 2 0, the complete linear
compaction problem of size n and with /imit d is the complete
compaction problem of size » and with parameters
d— 5., 0.

We next show that complete linear compaction problems
can be solved in constant time using a superlinear number
of processors. Our algorithm first multi-scatters the active
elements over an auxiliary array in order to distribute them
approximately evenly. The auxiliary array is then divided
into segments of a fixed size chosen so large as to make it
unlikely that any segment contains more than ¢ times the
average number of active elements, for a suitable constant
¢> 1. If a destination array ¢ times larger than the number
of active elements is now divided evenly among the
segments, all that remains is to distribute the destination
cells allocated to each segment within the segment, ie.,
among the active elements stored there. This can be done
via brute-force prefix summation (Corollary 2.5) following
a “loose” compaction of the active elements within the
segment (Lemma 4.1). The details follow.

LEMMA 4.2. For every fixed 6 >0, there is a constant
&> 0 such that for all given n, de N, complete linear compac-
tion problems of size n and with limit d can be solved on «
TOLERANT PRAM using constant time, O(n' *°) processors
and O(n'*%) space with probability at least 1 —2 " (Las
Vegas).

Proof. Let v=[8/67]. Without loss of generality we can
assume that ¢ is rational (so that we can casily compute
with J; cf Section 2) and that >4 and d<n/v (since
otherwise the compaction problem is trivial). It suffices to
describe an algorithm that uses constant time, O(n'*%?)
processors and O(n' *°?) space and that fails with proba-
bility at most 1/2, since we can execute such an algorithm
n!) times in parallel and select as our output the outcome
of any successful execution. If d < log n, the problem can be
solved by first using the algorithm of Lemma 4.1 to move
the active elements to an array of (log )" cells and subse-
quently compacting them exactly, i.e., numbering them con-
secutively, using prefix summation (Corollary 2.5). Assume
hence that d = log n.

Let A be an array of size vs, where s is chosen as a multi-
ple of r=[d/ logn]] with s=n'"%4 but s=0(n'*"%),
Then v-scatter the active elements in the source array over
A; by Lemma 3.6(a), the probability that some element can-
not be placed in A is at most n- (d/s)" <n-(n *4)*°=1/n.

Divide A into vr disjoint segments of size s/r each. The
number S of active elements placed in a fixed segment in the
v-scattering above is clearly bounded by the number S’ of
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copies of elements choosing a cell in the segment in the
v-scattering (S may be smaller than S’ because copies
choosing a cell in the segment can collide, and still smaller
because elements with a noncolliding copy placed in the seg-
ment may be moved to the position of another noncolliding
copy). Since the v-scattering partitions A into v subarrays of
r segments each and at most d copies choose cells in the sub-
array containing the segment under consideration, S’ is
binomially distributed with expected value at most d/r <
logrn; Chernoff bound (a) therefore implies that
S'>12logn with probability at most ¢ 2'¢"<n =2 It
follows that except with probability at most n-17~>=1/n, no
segment contains more than 12 log n active elements.

Since we have n*'!’ processors per segment, we can now
use the algorithms of Lemma 4.1 and Corollary 2.5 as in the
beginning of the proof to attempt to place the active
elements in each segment in an array of size 12[ log #7] (the
attempt fails only in the unlikely event that some segment
contains more than 12[logn7 elements). Assigning to
each segment a subarray of size 12 log 7] of a common
destination array and moving each active element to the
appropriate cell in the destination array completes the
compaction. The total size of the destination array is
120/ log n7] = O(d ), and the probability that the algorithm
fails is at most 2/n < 1/2. |

COROLLARY 4.3.  For every fixed 6 > 0 there is a constant
£>0 such that for all given n, d, te N, complete linear
compaction problems of size n and with limit d = O(n' =) can
be solved on a TOLERANT PRAM using O(t) time, [ n/t7
processors and O(n) space with probability at least 1 —2~"
(Las Vegas).

Proof. Without loss of generality assume that o is
rational and that é < 1. Since the problem is easily solved
using standard prefix summation {Lemma 2.4) if 7 = n*"",
we can further assume the availability of at least n' ~** pro-
cessors. Divide the input set & into O(n'~%?) clusters of
O(n*?) input elements each and call a cluster nonempty if it
contains at least one active element. There are obviously at
most d nonempty clusters, so the algorithm of Lemma 4.2
can be used to place the indices of these in an array of size
O(d ). This implicitly places all active elements in an array of
size O(d - n°?) = O(n' ~%7), after which the compaction can
be completed via a second application of the algorithm of
Lemma4.2. |}

Matias and Vishkin (1991) showed that complete linear
compaction problems of size # and with limit 4 can be
solved in O(log* d) time with n processors by successively
solving O(log* d) incomplete compaction problems. The
basic idea is that the gradual deactivation of elements frees
resources that can be used to speed up the rate of deactiva-
tion, thus leading to the fast convergence of the algorithm.
In more detail, Matias and Vishkin show that if the number
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of active elements has already dropped to d/v*, for a suitable
constant ¢ > 0 and for some v € N, then in constant time it
can be decreased further to /2. The algorithm of (Matias
and Vishkin, 1991) realizing this claim is reasonably com-
plicated and relies crucially on Lemma 4.1. We give a simple
algorithm for the same task whose use of Lemmad4.l,
although convenient for the exposition, is inessential and
can be avoided, and whose complete analysis is much sim-
pler than what would be required for the algorithm of
Matias and Vishkin. As concerns the claim of simplicity,
observe below that the appeal to Corollary 4.3 is needed
only to deal with a special case that was not even considered
in (Matias and Vishkin, 1991).

Our algorithm for incomplete compaction inputs at most
div? active elements stored in a source array of size n and
places all except /2% of these in a destination array of size
O\dir). The basic idea is to Sc-scatter the active elements
over an array of size 10d/c*. Since, by assumption, the den-
sity of this 5e-scattering is at most 1/2, a fixed active element
remains active with probability at most 2% (Lem-
ma 3.6(a)), which allows us to conclude that with high
probability the size of the residue set will be bounded by
d;/2"". The only problem with this approach is that we do not
know how to allocate the 5 processors per active element
necessary to carry out the 5Sp-scattering in constant time,
Similarly as in the proof of Corollary 4.3, we therefore
divide the input set 4" into clusters of size v each and 5¢-scat-
ter not the active elements themselves, but instead (the
indices of ) the nonempty clusters, ie., those clusters that
contain at least one active element. Since the number of
nonempty clusters is obviously bounded by the number of
active elements, the density of the modified Sv-scattering is
also at most 1,2, Furthermore, the allocation of 5S¢ pro-
cessors to each cluster is trivial, and placing the nonempty
clusters in an array of size O(d/v?} implicitly places the
active elements in an array of size O(d/v).

LemMMa 4.4, There is a constant ¢ >0 such that for all
given n, d, v, T € N, incomplete compaction problems of size n
and with parameters

d d

PN
Y oudiny M

can be solved on a TOLERANT PRAM using O(t) time, [ 1/t
processors and O(n) space with probability at least 1 —2-"
(Monte Carlo).

Proof. We give the proof for t=1, leaving the easy
extension to general values of 7 to the reader (informally,
the observation needed is that executing a multi-scattering
over several steps rather than in one step can only cause
more elements to be successful). We can obviously assume
that ¥ < d (otherwise we start with no active elements), that

d < nv (otherwise the trivial placement with bound # will
do), and therefore that d < n??.
Consider the following algorithm:

Step 1. Divide & into I =[n/v7} clusters 4, ... %, of at
most v input elements each and use the algorithm of
Lemma 2.7 to compute a bit vector representation of the set
I={i: 1 <i</and Z;contains at least one active element}.

Step 2. Associate Sv processors with each element of /
and Sv-scatter I over an array of size [10d/v°7; let '/
denote the set of unsuccessful indices. Use the outcome of
the Sv-scattering to place all active elements in | J, .., 4; In
an array of size v 10d/v> = O(d/v).

The algorithm clearly runs on a TOLERANT PRAM within
the desired resource bounds. A fixed active element remains
active exactly if the index of its cluster is unsuccessful in the
5v-scattering in Step 2. By Lemma 3.6(b), the number of
such unsuccessful cluster indices is bounded by max{2d/2°,
n*/v}, except with probability at most ¢ °, where
= (m%0)2/(32(d/v?) - Sv) = Q(nd ) = Q(n''®). With high
probability the number of active elements therefore
decreases to at most r-max{d/2*, n>°/v} <max{d2",
n*'®}_If this is more than d/2*, at most n°>® elements remain
active, and these can be deactivated via an application of the
algorithm of Corollary 4.3. |

COROLLARY 4.5. There is a constant ¢ >0 such that for
all given n, de N, complete lincar compaction problems of
size n and with limit d can be solved on a TOLERANT PRAM
using O(log* d) time, n processors and O(n) space with
probability at least | —2 " (Las Vegas).

Proof. Assume that d <n and apply the algorithm of
Lemma 4.4 at most log* d times in successive stages,
starting with v=1. Each stage after the first attempts to
place the unlucky elements of the previous stage in a new
but smaller array. Schematically,

i d d d d

13 0wWin” 3 0wy 43 0wy g3 Odite (2716)3

- ... =0

The total size of the destination arrays is
Od(1+5+5+17+ - N=0d). 1

As mentioned above, a weaker form of Corollary 4.5 was
first proved by Matias and Vishkin (1991), who also noted
that it has applications to processor scheduling as per
Brent’s principle. We next describe an improved algorithm
that achieves optimal speedup. A similar result was derived
in a somewhat different way by Goodrich (1991), and a
slightly slower algorithm with optimal speedup was
described previously by Matias and Vishkin (1991).
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THEOREM 4.6.  There is a constant £ >0 such that for all
given n, d, e N with t 2 log* d, complete linear compaction
problems of size n and with limit d can be solved on «
TOLERANT PRAM using O(z) time, ['n/t7 processors and
O(n) space with probability at least 1 —27"" (Las Vegas).

Proof.  Assume that r < (log#)/32, since otherwise the
compaction can be carried out using prefix summation
(Lemma 2.4), and that d < n. We describe a preprocessing
stage that reduces the problem size from »# to O(sn/7). Divide
& into [ r/t7) clusters of at most 7 input elements each and
associate a processor with each cluster. Using a global array
A of size 8d, the processors now execute 2t rounds. In each
round, each processor chooses an active element in its
cluster, if any are left, and attempts to place the chosen ele-
ment in a random cell of A. If the cell is not already occupied
and there is no collision, the element is placed and becomes
inactive. It is easy to see that each such trial fails with prob-
ability at most 1/8, even conditionally on any pattern of
failures in previous rounds. As a consequence, all of 7 fixed
trials by a fixed processor fail with probability at most (1/8)°
(if the processor runs out of active elements, let it subse-
quently execute dummy trials that always succeed).
However, if a fixed processor has any active elements left
after 2t rounds (call such a processor busy), at least
7 of its trials must have failed, which, by the above, happens
with probability at most (Z)1/8)" <2 .2 % =2"",
The expected number of busy processors therefore is
O(n/27). Our intent is to use a martingale argument to show
that with high probability, the actual number of busy pro-
cessors is O(n/t?), which requires us to bound the effect on
the number of busy processors of a change in a single ran-
dom choice. A change in a single random choice here is the
choice by some processor of a different cell in 4 in some
round. Say that a processor P is affected (by the change
under consideration) in a given round if the change influen-
ces the success of P’s trial in the given round or in some
earlier round. At most two processors are affected in the first
round, and it is easy to see that the number of affected
processors at most triples from one round to the next —an
affected processor can “affect” at most two other processors
in each later round. Therefore the total number of affected
processors after 2t rounds is at most 377 < 2% < n"¥; this is
an upper bound on the change in the number of busy pro-
cessors caused by a change in a single random choice. Since
the algorithm makes a total of O(n) random choices, a mar-
tingale argument now shows that with high probability, the
actual number of busy processors is O(n/2° +n'"® . n*%) =
O(n/z*). But then the algorithm of Corollary 4.5 can be used
to place (the processor numbers of ) the busy processors in
an array of size O(n/t*). This implicitly places the remaining
active elements in an array of size O(n/7), and the compac-
tion can be completed via another application of the algo-
rithm of Corollary 4.5. ||

5. FINE-PROFILING

The present paper studies several different kinds of profil-
ing problems. In general terms, the task is, given an array
containing occurrences of several different values, to
estimate the multiplicity of each value, ie., the number of
occurrences of that value. Estimation procedures somewhat
similar to our fine-profiling algorithm in the present section
were developed in independent work by Gil et al. (1991) and
Goodrich (1991), while a profiling algorithm of a flavor
similar to that of our coarse-profiling algorithm in Section 8
was described in (Bast and Hagerup, 1991).

We now introduce convenient notation and terminology
that will be used throughout the remainder of the paper. In
the context of an input consisting of » integers x,, ..., X, in
the range 0..m, for n, me N, we take 4, = {X;1<j<nand
x;=i} and b,=|4,|, for i=1,..,m. For i=1,.. m, the
integer i will also be called a color, 4, is a color class, and b,
is called the multipiicity of the color i. For | <i< j<m, we
consider .4, and #4, to be distinct even if they happen to con-
tain the same elements (this is possible only if 4, = 4, = ().
When a color class #; is manipulated as a single object by
some algorithm, it is represented by its index i. Note that
elements of value 0 are not considered to belong to any
color class. They are just “dummy elements” that represent
the absence of a true element. Whenever we have dealt with
certain color classes in some algorithm, we can “remove”
the elements of these color classes by setting their values to
0. which allows us to focus on the remaining color classes.
This will be used on several occasions.

Given n integers x,, ..., X, in the range 0..m, for n, me N,
an m-color profile for x,, ... x,, is a sequence b,, .., b,, of m
nonnegative integer random variables, the idea being that 5,
is an estimate of b,, for i=1, .., m. A fine-profile, defined
below, provides estimates that are correct up to a constant
factor; for reasons of convenience we also require each
estimate to be no smaller than the true multiplicity. For our
purposes, having such estimates usually is as good as
knowing the exact multiplicities.

DEFINITION.  Let n, me N and let x4, ..., x, be » integers
in the range 0.m. For i=1,..,m, take b,={{j: 1 < j<n
and x,= i}ﬂ). An_m-color fine-profile for x,..,x, is a
sequence by, .. b, of m nonnegative integer random
variables such that b,<b,<Kb,, for i=1,...m and for
some constant K > 1. If additionally 4,, ..., b,, are independ-
ent, the sequence b, ..., b,, is called a strong Jine-profile for
Xi. ... ¥,. The m-color (strong) fine-profiling problem of
size n is, given n and m, to compute an m-color fine-profile
(composed of independent estimates) for n given integers in
the range 0..rm.

We define a linear overestimate for a quantity b as a ran-
dom variable 5 with b <b < Kb, for some constant K> 1.
An m-color fine-profile for x,, .., x,, may therefore also be
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characterized as a sequence of linear overestimates for
by, .., b,, all with the same implicit constant K.

A statement quite similar to Lemma 5.1 below can be
derived by combining resuits of (Stockmeyer, 1983) and
(Ajtai and Ben-Or, 1984) with the obvious simulation of
unbounded fan-in circuits by CRCW PRAMs. We give a
somewhat different proof, which in the context of PRAMs
seems more direct.

LEMMA 5.1. For every fixed 6 >0 there is a constant
&> 0 such that for all given ne N, the following problem can
be solved on a TOLERANT PRAM using constant time, O(n°)
processors and O(n) space with probability at least 1 —2 "
(Monte Carlo): Given n bits x|, ..., x,,, compute a bit y such

that
(l) Z” ]sznr‘):‘—l
(2) X/, x;<n8=y=0.

Proof. The idea of the proof, which the reader may
appreciate better after the first reading, is to “amphfy” a
constant-factor difference to a “polynomial” difference,
which can then easily be detected using Ragde’s lemma
{Lemma 4.1).

Assume that J is rational, that 0 < | and that n > 16, take
h=4_n’? | <nand let t =32 log n7]. Begin by determining
the number of ones in each of # random samples of ¢ input
bits each; ie., choose At independent random numbers
wes Zpp 1+ - 24, from the uniform
distribution over {l,..n} and use the algorithm of
Corollary 2.5 to compute Si=>/_,x, .fori=1, .., h The
random variables §,, ..., §, are 1ndependent and bmomldlly
distributed with expected value tb/n, where b=37_, x;.
Hence by Lemma 2.1, the following holds for i=1, .., k: If
b =nj2, then Pr{S,; <8 logn]) <n ', while if b < n/8, then
Pr(S,>8lognl)<n~'. For i=1,..h, take A[i]=1 if
S,>8ogn7], and let A[i] =0 otherwise. The remaining
problem is, assuming that the vast majority of A[1], ...,
A[#] has a common value (0 or 1), to find that value. Do
this by attempting, using the algorithm of Lemma 4.1 with
d=| (h/4)""* |, to move the set of ones in 4 to an array of
size h/4. Set y =1 if and only if this fails.

In order to analyze the last part of the algorithm, note
that S=Y"*_, A[/] is binomially distributed, and that the
preceding discussion implies that E(S)=h/2 if b>=n/2,
while E(S)<1 if b<n/8. By another application of
Lemma 2.1, the following happens with high probability:
S>h/4 if b=n/2, while §<(h/4)"* if b<n/8. In the first
case, the compaction using the algorithm of Lemma 4.1
surely fails, while in the second case it will succeed. In either
case y receives the correct value. |

SHol s Shops S20s s S200

When using the algorithm of Lemma 5.1 to analyze the
outcome of a GCS ¥ ={HA, .., %} below, we apply the
algorithm separately to each row of % and define a row to
be almost-full if the algorithm assigns the value 1 to the bit

v associated with the row. The threshold of ¥ is 0 if %] is not
almost-full, and otherwise is the largest integer i€ {1, .., r}
such that . is almost-full, for j =1,

In analogy with the definition of an f row of a GCS and
motivated by Lemma 5.1, define an (f;. f5)-row of a GCS
Y =(S,...%), for 0<fi<fa<l, as any integer
i€ {0, ..., r} such that & has fullness > f; and % _ | has full-
ness < f>, where fictitious rows %, and %, | are assumed to
have fullness 1 and 0, respectively. Lemma 5.1 shows that
the threshold of a GCS with high probability is a (3, 1)-row
of the GCS.

LEMMA 5.2. Letm,r,se N andlet L be a (3, 3)-row of a
GCS of a set of m elements with parameters rxs. Let

M =2% and take ¢, = 1/(2"%e) and ¢, = 12. Then
(a) Ifmzcs, then Prim<ce, M)<2
(b) Pr(L>0andm<c,M)<2 7,
(¢} Ifr={logm], then Prim>c, M) <2 "

Proof. We proceed as in the proof of Lemma 3.3. If

L>0, the fullness of row L is at least i. Hence by
>r.-'m

Lemma 3.1(d), for every /20,
(3)

= Rem .2\ 98] oyl
Pr(L>N< Y <L> <2<§L2_
oA s 5

2471‘,"1 s/87
< AAAAA .
§

Likewise, if L <r, the fullness of row L + 1 is at most 1/2.
Hence by Lemmas 3.1(b) and 3.2, for every / <,

L]
Z 2,\m~2'2}

i=—ax

Pr(L </)<min {1,

<2*.min {1, Z 2*3‘""3*’”}

i=0
=2

<2x+l»~m~2’ (4)

To verify (a), apply (3) with / =log(m/(c,s)) = 0 to obtain

41, rsi87
Pr(m<c,M)=Pr(L> ) (2 "”> <2
.

(b) follows immediately from (a) and the observation that
L >0 implies m = s/8 = cs. To verify (c), apply (4) with
I =log(m/(c,5)) <r to obtain

2 — s+ I —canid

Prim>c; M)=Pr(L<l)g2s+-m27""
:21“3.\'<2—7.s‘. l
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The algorithm described in the theorem below outputs a
sequence of independent integers, except that it may fail and
not produce any output at all. As regards the independence,
the precise statement is that for each input and condi-
tionally on the event that any output is produced, the
integers output by the algorithm are independent. Similar
interpretations should be imposed on other results in the
sequel concerning randomized algorithms that are claimed
to output independent random numbers. A simpler proof of
a statement similar to Theorem 5.3 was indicated by
Goodrich (1991).

THEOREM 5.3.  For every fixed 6 >0 there is a constant
e>0 such that for all given n, m, te N with m= O(n' ~9),
m-color strong fine-profiling problems of size n can be solved
on a TOLERANT PRAM using O(1) time, [n/t7} processors
and O(n) space with probability at least 1 =27 (Monte
Carlo).

Proof. The idea of the algorithm is simple: If the size of
a color class is #*'", it can be reliably estimated using a
GCS; otherwise the color class can be blown up by a factor
of n®" and its size estimated in the same way. We now
provide the details.

Without loss of generality assume that ¢ is rational and at
most 1 and that n > 2. Since computing exact multiplicities
reduces to sorting, the given problem is easily solved using
the algorithm of Lemma 2.9 if r =#n**"; we can therefore
also assume the availability of at least n' ~°"* processors. Let
s=[n%. Fori=1, ... m, use guarded writing to set h,=0
if b,=0, and otherwise carry out the following procedure,
where ¢, and ¢, are as defined in Lemma 5.2:

Step 1. Using the algorithm of Lemma 5.1, execute a
GCS ¥ of A, with parameters | log n_| x s and compute /; as
the threshold of .%. Note that we need a guard processor for
each cell of each GCS, and that by assumption sufficiently
many processors are available.

Step 2. If 1,>0, take h,=c,-2"s. Otherwise use the
algorithm of Corollary 4.3 to allocate s processors to each
element of A, let these processors execute a GCS ¢ with
parameters | log (sn) | xs and take b,=c,- 2", where /; is
the threshold of .%;.

It is easy to see that the space needed by the algorithm is
O(n). To see that the same holds for the number of
operations, note that by Lemma 5.2(c), no processors are
allocated to a fixed color class #, with b, > ¢, s, except with
negligible probability.

Now fix ie {1, ... m}. The following happens with high
probability: If /,>0, we have b,<bh,<(c,/c,)b; (by
Lemma 5.2, parts (b) and (c)). If /, =0, then s, < ¢, - 2/is <
(cafc ) sb;ie., b, <b,<(c,/c,} b, (by Lemma 5.2, parts (a)
and (c)). In either case, b, is a linear overestimate for b,.

The estimates produced by the algorithm are clearly
independent unless the processor allocation according to

Corollary 4.3 fails, in which case the algorithm can report
failure and refrain from producing any output. |

Remark. The fine-profiling algorithm above is Monte
Carlo; i.e.. we cannot detect if the estimates computed are
off by more than the allowed constant factor. In Section
10 we derive a Las Vegas fine-profiling algorithm
{Corollary 10.5).

6. COLORED COMPACTION

It is essential for the application to interval allocation
described in Section 7 as well as for other reasons to
generalize the compaction problem studied in Section 4 to
colored compaction, where objects of different colors,
initially placed in a single source array, are to be moved to
distinct destination arrays. one for each color. As before, an
object that cannot be placed is called unlucky, and we will
not distinguish between an object and the input element
representing it. In the formal definition below, the value of
an element represents its color, the special value 0 still
representing the absence of an object. This is in agreement
with our terminology concerning 4,, ..., 4,,.

DEerFINITION.  Given n, me N and dy, ..., d,, = 0 as well as
i integers x,, .., x, in the range 0..m, an incomplete place-
ment for x, .., x, with bounds d,...d,, is a sequence

¥1. . ¥, of B nonnegative integers such that

Forj=1,..nifx;=0, then y,=0;

(1)
(2) Forl<i<j<n ifx;,=x;andy,#0, then y,#v:
(3) For i=1,.,m, max({y;:

o 1<j<n and x;=i} U

{0}y <d,.

The set {j: 1 < j<n x;#0and y,=0} is called the residue
set of the incomplete placement. If the residue set is empty,
the placement is complete.

Condition (2) ensures that distinct elements of the same
color are not placed in the same destination cell, and condi-
tion (3) states that the lucky elements of 4, fit into an array
ofsize | d, |, fori=1, .., m. If there is only a single color, i.e.,
for m =1, the definition above reduces to our earlier defini-
tion of an incomplete placement.

The compaction problems introduced in Section 4
generalize in a natural way to colored compaction. Qur next
goal is to extend the compaction algorithms given for the
special case of a single color to the case of several colors.
Recall that to a first approximation, the algorithm of
Lemma 4.4 multi-scatters the active elements over an array
of size s, for suitably chosen s. A straightforward generaliza-
tion to the case of m colors would be to multi-scatter the
elements of 4, over an array associated with #; and of a
suitably chosen size s;, for i=1, .., m. Attempting this, we
are faced with a somewhat extraneous problem, namely that
we do not know how to allocate m disjoint arrays of
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prescribed sizes s, ..., 5, sufficiently fast without wasting
too much space. Lemma 6.1 below therefore assumes “pre-
allocated” such arrays to be supplied by any “user” of the
lemma; the sizes of these arrays simultaneously serve as the
bounds d,. ..., d,,. As is rather obvious, the compaction of a
particular color class will not be very successful unless the
size of the array provided for that color class is considerably
larger than the size of the color class—we later define such
color classes to be well-supplied. Lemma 6.1 therefore iden-
tifies the set of (indices of ) elements in well-supplied color
classes, and its assertions apply only to such elements.

A more interesting complication in the generalization of
the algorithm of Lemma 4.4 to the case of several colors lies
in the fact that in Step 2 of the algorithm, several elements
forming a cluster are multi-scattered together. While this
works fine in the case of a single color, it is not appropriate
if the elements in a cluster have different colors, 1.e., are to
be placed in different destination arrays. In order to solve
this problem, recall that the clusterwise scattering was
motivated by efficiency considerations: multi-scattering
single elements works just as well, but requires several pro-
cessors standing by each active element. The idea now 1s
first to compact the active elements as though they were all
of the same color- —we already know how to do that—-but to
use the outcome of this compaction exclusively to allocate
the necessary processors to each active element, after which
the colored compaction can be completed in the simple way
described above. As suggested by this description, an initial
part of our algorithm for colored compaction is quite
similar to the corresponding algorithm for (uncolored)
compaction. Because of the slight differences and since we
want to extend the analysis of the algorithm given earlier,
however, we essentially reproduce it as Steps 1 and 2 of the
algorithm of Lemma 6.1 below.

Before we state the lemma, recall that for ¢ >0, a real-
valued function S defined on a set M equipped with a metric
¢ 1s said to satisfy a Lipschitz condition with constant ¢ if for
all x, ve M, we have |S(x)—S(y)| <c-¢(x,p). The only
metric space relevant to the present paper, and the one
implicitly intended in every reference to a Lipschitz condi-
tion, is the set of subsets of {1, ..,n}, equipped with the
metric ¢ with ¢(U, V)=|UAV], for all U V<{l, ., n},
where UA V denotes the symmetric difference of U and V;
e, UAV=(U\V)u(V\U).

LEMMA 6.1. There is a constant ¢>0 such that the
Sfollowing holds: Let n, m, v, te N be given, suppose that
X1, .. X, are n given integers in the range 0.m and let
A, ... A, be m given nonoverlapping arrays. Tuke B,=
{j: 1<j<n and x;=i} and b;=|B,|, for i=1...n, and
define J={i: 1 <i<m and |A,| =6vb,}, B =),., B; and
b=3" b, Then an incomplete placement for x . ..., X, with
bounds A, .., |A,,| can be computed on « TOLERANT
PRAM using O(z) time. [(n+uv'b)/tT] processors and

O(n + b)Y space with probability at least 1 =2 (Monte
Curlo), such that the residue set D of the placement satisfies
conditions (a)—(c):

a) Foreveryje B, Pr(jeD)<g2

(
(b) For every fixed nonempty subset R of B’ and for all
o2 |R|/2%,

Pr(lRﬁDI =)< 2e 22427 |R| ,.:|;

(c) For every nonnegative real function S of D that
satisfies a Lipschitz condition with constunt ¢,

S=OE(S)+ cv*n™®)

with probability at least 1 —2 """,

Remark. As anticipated above, a color class 4, is called
well-supplied, in the context of Lemma 6.1, if | 4,| = 615, so
that B' is the set of indices of elements in well-supplied color
classes. Part (a) of the lemma says that any fixed element of
a well-supplied color class is unlikely to remain active,
part (b) extends this property from single elements to
arbitrary sets of elements in well-supplied color classes, and
part (¢) states that any function of the residue set that
satisfies a Lipschitz condition with a constant that is not too
large with high probability does not significantly exceed its
expected value.

Proof. With the same justification as in the proof of
Lemma 4.4, we give the proof only for r = 1. Start by using
the algorithm of Theorem 5.3 to compute an estimate b of »
and assume that b is indeed a linear overestimate for b. Then
execute the following:

Step 1. Divide # into I=[n/c7 clusters 4, ..., 4; of at
most ¢ input elements each and use the algorithm of
Lemma 2.7 to compute a bit vector representation of the set
I={j:1<j</and Z;contains at least one active element}.

Step 2. Associate 4v processors with each element of /
and 4v-scatter [ over an array A of size 8vh; let I' =/ denote
the set of unsuccessful indices.

Step 3. Associate 3v” processors with each cell of 4 and
use these to 3z-scatter the active elements in 4, ., 4;
over A, fori=1, .., m.

The algorithm clearly runs in constant time on a
TOLERANT PRAM using O(n+v'h) processors and
O(n + v*b) memory cells. Since |7| < b < b, the density of the
multi-scattering in Step 2 is bounded by 1/2 and. by defini-
tion, the densities of the multi-scatterings of well-supplied
color classes in Step 3 are also bounded by 1,2. Let us agree
to call a cluster Z; with /eI’ (ie., i was unsuccessful in
Step 2) unsuccessful 1f we take D, for the index set of active
elements in unsuccessful clusters and denote by D, the index
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set of elements that are unsuccessful in Step 3, clearly
D=D,uD,.

For the proof of part (a), fix an arbitrary active element
X in a well-supplied color class (i.e., j € B') and suppose that
X e #;. As argued above, je D (ie, X, is unlucky) if and
only if either /e I’ (i.e., i is unsuccessful in Step 2) or je D,
(ie., X; participates in Step 3, but is unsuccessful). But by
Lemma 3.6(a), applied twice with p<1/2, Pr(iel') <2~ *
and Pr(je D,) <2 *; hence Pr(jeD)<2 % +2 *<2 *

For part (b), let R be a fixed nonempty subset of B', take
r=|R| and let z>r/2". Clearly |Rn D| == only if either
|IRND||=z/2 or |[RnD,|=z/2; we will consider these
events separately and show each to be unlikely. First con-
sider the multi-scattering in Step 2 and let R' </ be the
index set of clusters containing at least one active element
whose index belongs to R; obviously |R'|<r. If |RnD,| =
z/2, i.e., at least z/2 elements of R are indices of elements in
unsuccessful clusters, there must be at least z/(2v) unsuc-
cessful clusters containing elements with indices in R, ie,
IR~ TI'| 2z/(2v). In other words, Pr(|RnD,|>:/2)<
Pr({R' nI'| = z/(2v)). Since z/(2v) = 2r -2~ *, we can apply
Lemma 3.6(b) to bound the latter probability by ¢ ¢, where
S= (=20 (32F - 4v) = 22/(2%0?). Since also z/2=2r-
27, another application of Lemma 3.6(b)} shows that
Pri|RAD,| =z2)<e %, where {=(z/2)%/(32|R| 3v)=
22/(2%rv). Tt follows that |Rn D| >z with probability at
most eA::y“l 2900ty + 97:3;‘( ppy < 2()—:3‘1“(2%:3).

For part (c), note that S can be considered as a function
of all the random choices made by the algorithm. Now, a
change in a single random choice made in Step 2 affects at
most 2 clusters. Each of the at most 2v elements in the affec-
ted clusters in turn affects at most 3v other elements in
Step 3. Hence altogether at most 2v + 61 < 8v” of the out-
put variables y,, ..., y, are affected, and it is easy to see that
no more output variables are affected by a change in a single
random choice in Step 3. In other words, if D changes to D’
in response to a change in a single random choice, we
always have that |[DA D'| < 8¢ by the Lipschitz condition
imposed on §, this means that S changes by at most 8cv’.
Since the algorithm makes at most 7vb < 7vn random
choices altogether, an application of Corollary 2.3 yields
that S <max{2E(S), 4-8cv” - (Tvn)**} = O(E(S) + cv’n®)
with probability at least 1 —2""". |

In order to simplify the applications of Lemma 6.1 in the
following, we discuss a generic application in detail at this
point and introduce a convenient shorthand that will be
used in later applications.

Assume that we are given a set # of active elements with
colors in {1, .., m} and stored in an array Q of size n. For
i=1,..,m, let 4, be the set of elements in # with color /.
Further assume that we are given m disjoint arrays
Ay, .., A,,. Our goal is to place most of the elements of
#;in A, fori=1, .., m. To this end let x, be the color of the
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element X, in the jthcell of Q. for j=1, .., n, with x; =0 if the
jth cell of Q does not contain any active element, and let ¢
be a suitable positive integer (the choice of v will depend on
our (application-specific) knowledge of the ratios |4,|/|4;]).
Then apply the algorithm of Lemma 6.1 to compute an
incomplete placement y,, .., y, for x,, .., x,, with bounds
|4, ... |4,,]. Finally, for all je {1, .., n} with x,#0 and
¥, #0, actually place X, in the y;th cell of 4, (the algorithm
of Lemma 6.1 already places X, in this way; this is not
specified in the statement of the lemma, however, so we
repeat the operation here).

In what follows, an application of Lemma 6.1 as above
will be called simply “v-compacting 4, to 4,, for
i=1,..,m.” Lemma 6.] guarantees that a fixed element of a
well-supplied color class will be unlucky with probability at
most 27°. Furthermore, if the number of nonzero input
numbers is O(n/v*), as in most applications of Lemma 6.1 in
the present paper, then the algorithm uses O(n) operations
and O(n) space.

In the remainder of the section we extend the definition of
complete linear compaction to the case of several colors and
prove a result corresponding to Theorem 4.6.

3

DEefFINITION. Foralln,meNand d|, .., d,, =0, the com-
plete linear colored compaction problem of size n and with
limits d,, ..., d,, 1s, given n integers x, .., X, in the range
0.m such that [{j: 1 <j<n and x,=i}|<d,, for i=
1, ..., m, to compute a complete placement for x,, ..., x,, with
bounds O(d,), ..., O(d,,}.

The problem, discussed before the statement of Lemma
6.1, of allocating m disjoint arrays A,, .., A,, is easy in a
special case, namely when m is so small that the allocation
can be done by means of brute-force prefix summation
(Corollary 2.5). This leads to the following result.

THEOREM 6.2. There is a constant ¢>0 such that for
all given n, m, =, d,, ...d, eN with m=(logn)*" and
7 2z log* n, complete linear colored compaction problems of
size n and with limits d,, ..., d,, can be solved on « TOLERANT
PRAM using O(r) time, [n/t7| processors and
O(n+Y7" . d) space with probability at least 1—2 "™
(Las Vegas).

Proof. We first devise a nonoptimal algorithm that
solves the problem in O(log* n) time using » processors and
afterwards show that optimality can be achieved essentially
as in the proof of Theorem 4.6. The basic idea 1s to place the
active elements in log* n successive stages, similarly as in
the algorithm of Corollary 4.5. With a view towards a future
application (Lemma 9.1), we first consider a more general
setting, in which we ignore the difficulties of space allocation
discussed above, but in return show how to tolerate
m= 0(n' %) different colors, for arbitrary fixed é > 0.

Without loss of generality assume that § is rational and at
most 1 and that d, < n, fori=1, ..., n (otherwise the elements
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in A, can be deactivated in a trivial manner). Say that a
color class 4, is small if b, <n®?, and large otherwise, and
note that the total number of elements in small color classes
is O(n'~°.n°?)=0(n'"%?). We begin by reducing the
number of active elements in large color classes to a similar
level, but in a balanced way (i.c., each large color class loses
most of its elements).

Define the active fraction as zero if all color classes are
small, and otherwise as the maximum, over all large color
classes 4, of the ratio of the number of (currently) active
elements in 4, to b,. We aim at decreasing the active frac-
tion to at most n~ %%, after which the total number of
remaining active elements will be O(n' 97 +n' %) =
O(n' ~%*). We first show that if the active fraction has
been reduced to at most v, for some given ve N, then in
constant time it can be reduced further to at most
max{2 ~*, n~°®*} with high probability. If v >n°>*, there
is nothing to show. Otherwise use the algorithm of
Lemma 6.1 to 3v-compact the remaining active elements in
#, 10 an array of size [6-3d,/v>7, for i=1, ..., m. Assuming
that the active fraction is at most ¢ *, Lemma 6.1 shows
that the 3v-compaction can be carried out in constant time
using O(n+uvi(n' 2243 | (b,/t})))=O(n) processors
and that for each fixed large color class 4, (which, by
assumption, is well-supplied), the number of active elements
in 4, after the 3v-compaction is bounded by max{b,/2%,
h}4}, except with probability at most 2¢° where
= (BYH2%b, 6% - (Bu)) = Qb1 = Q(n°*). With
high probability, the fraction of active elements left in each
large color class 4, after the 3u-compaction therefore
is at most max{2 ", b "} <max{27", n=°*}, for
i=1,.. m, 1e., the active fraction has been reduced to the
same level. Applying this procedure at most log* n times
with ¢ =1, 2, 2% 2%, .. with high probability reduces the
active fraction to at most n ** as desired. Note that the
successive arrays used by a color class can be taken as
tightly packed subarrays of a single array.

In order to complete the compaction, we first use the
algorithm of Corollary 4.3 to move the remaining O(n' ~°%)
active elements to an array of size O(n'~*%), after which
constant time and n processors suffice to | n®® J-scatter the
active elements of 4, over an array of size 2. max{d,,
[n*47}, fori=1, ..., m. Since the number of active elements
in a large color class %, is at most b,/n** < d,/n°"®, the den-
sity of each of these multi-scatterings is bounded by 1/2, so
that Lemma 3.6(a) ensures that with high probability all
elements are successful. At this point, for i=1, .., m, the
elements of #, are stored in an array of size [ 184, /177 +
F184,/2°7 + 18d,/4°7 + -+ + 2 - max{d,,[n**7} =
O(d, +n**). For all color classes 4, with d,>n*"* this
compaction is sufficiently tight, while the remaining color
classes can be compacted into linear space using the algo-
rithm of Corollary 4.3 (recall that we have @(n’} processors
for each color class).

Under the restriction m = (log n)“'" of the theorem, the

allocation of an array to each color class, which was ignored
above, can clearly be done in constant time using the
algorithm of Corollary 2.5.

The algorithm described so far can be executed in
O(log* n) time with n processors. To achieve optimal
speedup, it suffices, in light of Theorem 4.6, to show that the
number of active elements can be reduced to O(n/t) in O(7)
time. To this end assume that 7 < (log n)/32 (otherwise sort
the input numbers using the algorithm of Lemma 2.9),
divide # into [ n/t7] clusters of at most 7 input elements each
and associate a processor with each cluster. Then use the
algorithm of Corollary 2.5 to allocate an array A, of size
8d;, to 4, for i=1,..,m. Similarly as in the proof of
Theorem 4.6, each processor now attempts in 2t rounds to
place the active elements of its cluster in the arrays corre-
sponding to their colors. The argument in the proof of
Theorem 4.6 shows that with high probability the number
of active elements left after the last round is O(n/7). ||

7. INTERVAL ALLOCATION

While the compaction problem asks that unit intervals be
placed in a base segment, the interval allocation problem,
defined below, specifies intervals of varying length to be
placed. Viewed another way, each input element is a request
for a block of consecutive indices of a size given by the value
of the request. Informally, condition {2) means that blocks
do not overlap, and (3) means that the allocated blocks are
optimally packed, except for a constant factor. Another dif-
ference between complete linear compaction and interval
allocation is that in the case of compaction, an upper bound
on the number of elements present (the limit d) is provided
as part of the input. while in the case of interval allocation
the choice of an appropriate size for the base segment is left
to the algorithm. Since a suitable value for d could actually
be computed using the algorithm of Theorem 5.3 as in the
proof of Lemma 6.1, this difference is of no particular
significance, but merely convenient for the exposition.

DerFinITION.  For all neN, the (complete) interval
allocation problem of size n is the following: Given » non-
negative integers x,, ..., x,,, compute » nonnegative integers

¥Y1. - ¥, such that
(I) Forj=1,..n x,=0<y,=0;
(2) For I<i<j<nm, if 0¢{x.x;}, then {y, ..p+

N 1} N {yj# oy ~Vj+xj— l} = @5
(3) max{y:1<j<n} =0T, x))

A natural extension of the interval allocation problem
would augment the solution by an appropriate size for the
base segment, i.¢., by an integer s with s > max{ y, + x,— 1 :
1<j<n}, but s=0(37_, x,). Such a quantity is usually

i=1-
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needed in applications of interval allocation, and our algo-
rithm for interval allocation essentially generates it inter-
nally. By Lemma 2.6, however, a suitable choice for s
(namely, max{y,+x,—1:1</<n}) can be computed
from the output of interval allocation, as defined here, for
which reason we have refrained from including it in the
problem definition.

While interval allocation is a generalization of compac-
tion, we will now show that interval allocation reduces to
colored compaction. First note that if all nonzero requests
{ie., requests of nonzero value) are of value 1. 1e., if
x;€{0, 1}, for j=1, .., n, then we can indeed first use the
algorithm of Theorem 5.3 to compute a linear overestimate
b for the number b of nonzero requests, and subsequently
solve the complete linear compaction problem with input
X. ... X, and limit b. Informally, what happens is that non-
zero requests are interpreted as active elements in the usual
sense; once the correct size of the destination array 4 has
been established, a unit block (i.e., a single index) is
associated with each cell of 4, the active elements are placed
in A by the compaction algorithm, and the block associated
with a cell in A4 is allocated to the element, if any, placed in
that cell (i.e., the requests are satisfied). The same approach
works as long as all nonzero requests are of a common value
{—we simply associate a block of / consecutive indices with
each cell of A4, rather than a single index.

If there are nonzero requests of m distinct values, we
clearly have to use m distinct destination arrays 4, ..., 4,,,,
each associated with blocks of a different size; i.e., we have
to resort to colored compaction. A number of difficulties
have to be tackled in this generalization. First, we need to
estimate the sizes of several color classes simultaneously;
this can still be done by the algorithm of Theorem 5.3 if
m=0(n' %), for some fixed 6 >0. Second, the colored
compaction can be carried out using the algorithm of
Theorem 6.2, but only under the {more stringent) restric-
tion m = (log n)?'". Third, the blocks of indices associated
with 4, ..., 4,, must be allocated from an appropniate base
array. More precisely, with each array 4, we allocate a seg-
ment consisting of | A,| blocks of the appropriate size, i.e., of
the size associated with the color i, after which the associa-
tion of a single block with each cell in A, is trivial. Since this
allocation reduces to prefix summation, we aim to carry it
out using the algorithm of Corollary 2.5. This requires, on
the one hand, that m = (log n)™", as above, and, on the
other hand, that the sizes of the blocks to be allocated is
polynomial in n. On the outset, these requirements are not
satisfied: The numbers x,, ..., x, could all be distinct, which
would give us as many as n color classes, and they could be
arbitrarily large. However, the input can be scaled and
rounded to satisfy the requirements, as we show next.

First observe that if M denotes the maximum request
value, i.e, M=max{x;: 1<, <n}, then replacing each
nonzero request value x; by the nearest multiple of

u=[M/n"] no smaller than x, increases the sum W of all
request values by at most ub < M + b, where b is the number
of nonzero requests, i.e., at most triples W. As a result of this
transformation, we can consider all request values to be
integers in the range 0.n (simply measure requests and
blocks in units of size u). If at this point we replace each
nonzero (modified) request value by the nearest larger
power of 2, W at most doubles, and only O(log ») different
request values remain; i.e., the compaction-based algorithm
sketched above becomes applicable with n1 = O(log n) color
classes. Every modified request value is at least as large as
the corresponding original value; since the modified values
sum to at most six times the original sum, however, solving
the interval allocation problem defined by the modified
request values produces a solution to the original interval
allocation problem.

The maximum request value M can be computed using
the algorithm of Lemma 2.6. In fact, for the applications of
Theorem 7.1 in the present paper, we will frequently have
M = O(n), in which case it is not necessary to actually com-
pute M (because the procedure described above, with trivial
modifications, can be employed with =1 whenever M is
polynomial in »#). Summing up, we have seen that interval
allocation reduces to complete linear colored compaction
with a logarithmic number of colors.

THEOREM 7.1. There is a constant ¢ >0 such that for all
given n, te N with © 2 log* n, interval allocation problems of
size n can be solved on a TOLERANT PRAM using O(1) time,
[nit7] processors and O(n) space with probability at least
1 —2 " (Monte Carlo).

Proof. By the discussion above and Theorem 6.2. In
particular, note that since resources (indices) are divided
optimally between color classes and with a constant-factor
“waste™ within color classes, the overall “waste factor” is
bounded by a constant, as required by condition (3} in the
definition of interval allocation. |}

Remark. Part of the development of Theorem 7.1 took
place in a dialog with Joseph Gil. An earlier version of the
present paper achieved running times of O(log log n log* n/
log log log n), the bottleneck being compaction. After
receiving a preliminary sketch of the algorithm of
Theorem 7.1 geared towards this running time, Gil
informed us of the results of Matias and Vishkin (1991),
unpublished at the time, and observed their applicability in
the context of the algorithm, which allowed him to derive a
first interval allocation algorithm with a running time of
O(log* 1). We improved his result by giving an algorithm
with optimal speedup and a lower failure probability and by
implementing the algorithm on the weaker TOLERANT
PRAM, after which the communication with Gil ceased.
Theorem 7.1 states the last result mentioned above, except
for a still smaller failure probability. A slightly weaker result
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was published in (Gil e «l, 1991). A time bound of
Otlog log n) for a less general load balancing problem was
shown by Gil (1990, 1994 ).

Remark. At this point we can give only a Monte Carlo
algorithm for interval allocation, and Theorem 7.1 is for-
mulated accordingly. This is due to the use of the Monte
Carlo fine-profiling algorithm of Theorem 5.3. Using
Corollary 10.5 instead of Theorem 5.3, however, allows us
to obtain a Las Vegas algorithm for interval allocation. The
same remark applies to Theorem 7.2 below.

Whereas the use of Theorem 7.1 in memory allocation is
obvious. one additional observation is needed for its
application to the allocation of processors. The reason is
that a processor i1s an active device that needs to know
about the task that it is to execute. Theorem 7.1 can be used
to communicate this information to the first processor in
each ream, ie., in each group of consecutively numbered
processors allocated to a common task, but the information
must subsequently be broadcast to the remaining pro-
cessors in each team. In recognition of this fact, we consider
a shght variation of the interval allocation problem called
the interval marking problem. In the definition below, infor-

mally, v,, .., x, are the sizes of n requests for processors.
The output consists of a size indicator s together with s
integers =, ..., =, and specifies the allocation of s virtual pro-
cessors P, ... P, as follows: For j=1, .., 5, the meaning of

z,=ie{l, .., n} isthat P,is a member of the team allocated
to the ith request; the meaning of -, = 0 is that P, is not part
of any team. Condition (1) requires the processors in each
team to be consecutively numbered, (2) expresses that the
number of virtual processors in the team allocated to the ith
request 1s indeed exactly x;, for i=1,..,n, and (3) states
that the total number of virtual processors exceeds the num-
ber of requested processors by at most a constant factor;
this allows the allocated processors to be simulated without
loss, up to a constant factor, by any number of available
physical processors.

DEerFINITION.  For all n e N, the interval marking problem
of size n is the following: Given n nonnegative integers

Xy, .., X,, compute nonnegative integers s, z,, .., 2, such
that

(1) For all integers i, j, k with 1<i<j<k<s, if
5= #0,then 2, =25

(2) Fori=1,..n|{ji1<j<sandz;=i}|=x;

(3) s= O(Z}’:, X;).

In applications of interval marking, it is essential for each
processor to know its relative position within its team. This
information does not appear explicitly in the problem
definition. Since the processors in each team are con-
secutively numbered, however, each processor in a team can

compute its relative position as the difference between its
own number and the smallest number of a processor in the
team; the latter quantity can be made available in a cell
indexed by the number of the request to which the team is
allocated.

In most applications of interval marking in the present
paper we will have 3’7 | x;=O(n). We next show that
under this restriction, we can solve the interval marking
problem with input x,, ..., x,, in constant deterministic time
with n processors after solving the interval allocation
problem with input x,,..x, using the algorithm of
Theorem 7.1. The reader may think of this as a reduction of
interval marking to interval allocation; this is not quite
exact, however, since we will use a special property of the
solution produced by Theorem 7.1 (conversely, under the
restriction 3’7_, x;= O(n), it is easy to show that interval
allocation reduces to interval marking).

We view interval allocation with input x,..., x, as
allocating disjoint subarrays A4, ..., 4, of sizes x,, .., x,
from a base array and note that it is trivial to mark the first
cell of 4; with the integer i, for i=1, ..., n. As already dis-
cussed above, the corresponding interval marking problem
can essentially be solved by copying the integer stored in the
first cell of A4; to the remaining cells of 4,, fori=1, .., n In
other words, it suffices to provide each cell of a subarray
with a pointer to the beginning of the subarray. Now recall
that our algorithm for interval allocation actually allocates
all subarrays from O(log n) segments, each of which consists
of tightly packed subarrays of the same size. If we store the
subarray size of each segment in the first cell of the segment,
which is easy to do, it suffices to provide each cell of a seg-
ment with a pointer to the beginning of the segment, since
with this pointer and the relevant subarray size it can easily
compute the beginning of its subarray. We are now left with
a problem that can be viewed as an instance of the segmen-
ted broadcasting problem defined in Section 2; each begin-
ning of a segment corresponds to one nonzero input bit. If
>0 x;=0(n/h), where h=_n"" |, the segmented broad-
casting problem is of size O(n/h), and we can solve it using
negligible resources, according to part (b) of Lemma 2.8. In
the opposite case, on the other hand, we can ensure that the
length of each of the O(log 1) segments mentioned above is
a multiple of 4 by appending a suitable number of dummy
cells—this increases the total length by O(4-logn)=
O(n/h)= O( _;’:1 X;), ie., by at most a constant factor.
Then, however, the output of the segmented broadcasting
problem will be constant within blocks of size /1; i.e., we have
in effect reduced the size of the segmented broadcasting
problem by a factor of A, and we can again appeal to part
(b) of Lemma 2.8 and obtain the following result.

THEOREM 7.2.  There is a constant £ > O such that for all
given n, te N with t 2 log* n, interval marking problems of
size n can be solved on a TOLERANT PRAM using O(t)
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time, [ (n+ W)/t processors and O(n+ W) space with
probability at least 1 —2 ™ {Monte Carlo), where W is the
sum of the input numbers.

Proof. By the discussion above, Lemma 2.8(b) and
Theorem 7.1. The dependence of the resource bounds on W
is due to the fact that the size of the output is O(W+1). 1|

The proof of Theorem 7.2 shows how to allocate pro-
cessors to requesting tasks, each of which requests one or
more processors. A situation frequently encountered is that
many tasks are so small that they do not require “an entire
processor,” while at the same time the number of tasks is so
large that we cannot afford to allocate a processor to each.
Theorem 7.2 easily extends to cover this situation as well.
Let n, e N with 7 > log* n, assume that we are given a
collection 7,,..,.7, of n tasks, and suppose that for
Jj=1, ... n, we know a positive integer g,, called the length of
7, such that .7} can be executed in O(q;) time with one pro-
cessor, or in O(t) time with ["¢,/t7] processors. Then the
tasks can be executed in O(t) time with [ W/r"] processors,
where W=37_, ¢q;>n. To see this, define 7, to be small if
q; <7, and large otherwise, for j=1, ..., n. Begm by allocat-
ing | q;/t_| processors to .7;, for j= l , 1, clearly a total of
at most W/t processors. For j=1, .., n, if 7} is large, then
Lg,/tl1= w|’q,/ﬂ so that the processors dUOCdted to .7, suf-
fice to execute .7; in O(7) time. What remains is to execute
the small tdsks Partition these into m=[n/t7] groups
G,, .., G, of at most 7 tasks each. For i=1, ..., m, compute
the total length Q, of G, as the sum of the lengths of the tasks
in G,. Then allocate [ Q,/77] processors to G, fori= 1, .., m,
a total of at most m + W)/t <2[ W/t processors. It is not
difficult to see that using sequential prefix summation, the
tasks in each group can be distributed among the processors
allocated to the group in such a way that each processor
receives tasks of total length O(7). All that remains is to let
each processor execute the tasks given to it sequentially in
O(1) time.

When invoking the principle above, we will speak of
“operation allocation” rather than processor allocation.

While Theorems 7.1 and 7.2 are our main results concern-
ing the interval allocation and interval marking problems,
we also need a more technical lemma (Lemma 7.3 below)
that parallels Lemma 6.1 and allows us to perform what we
call incomplete allocation In constant time. Just as
Lemma 6.1 claims efficient deactivation only of elements in
well-supplied color classes, those for which the available
array is at least 6v times larger than the number of elements
to be placed there, Lemma 7.3 is wasteful in a sense that we
make explicit through the introduction of a so-called slack
parameter. Incomplete allocation, recognized independently
by Gil et al. (1991) as a useful technique, was introduced
and first used in the hashing algorithm of (Bast and
Hagerup, 1991).

DEFINITION.  Forallne N and 2 > 1, an incomplete inter-
val placement with slack 4 for n nonnegative integers

Xy, .., X, IS a sequence ¥, ..., J, of n nonnegative integers
such that
(1) Forj=1, .., n, if\‘:O then v, =0;
( ) For 1<1<j<n if 0¢{y.y}, then {y., .3+
—ndy Ly =0
( ) max{ 1< j<n} =04 3)_, X))

The set {j: 1 <j<n, x,;#0and y,=0} is called the residue
set of the incomplete mterval placement. If the residue set is
empty, the interval placement is complete.

Contrasted with the definition of (complete) interval
allocation, the definition above does not require a block to
be allocated to every request, and blocks may be allocated
from a range 4 times as large. An algorithm that computes
complete interval placements with constant slack performs
standard interval allocation.

LEmMMA 7.3. There is a constant € >0 such that for all
given n, v, te N, an incomplete interval placement for n given
nonnegative integers x,, ... x,, with slack v can be computed
on a TOLERANT PRAM using O(z) time, [(n+ o W)/t
processors and O(n+ v* W) space with probability at least
1 —2-" (Monte Carlo), where W= i< 1 X, such that the
residue set D of the placement satisfies the following:

(a) n Pr(jeD)<2 %
(b)  For every fixed nonempty subset R of {

Forj=1, ..,
1, .., n} and

forall =2 |R|/2",

Pr(|[RA D}z z) < 2e =0 IR,

(¢) For every nonnegative real function S of D that
satisfies a Lipschitz condition with constant c,
S=O0(E(S) + cv’n®?)

with probability at least 1 —=2-"""

Proof. The reduction of interval allocation to complete
linear colored compaction with a logarithmic number of
colors extends to incomplete interval allocation and incom-
plete colored compaction in a straightforward way. Once
each request has been marked with its color, an integer in
the range 1..m, we can use the algorithm of Theorem 5.3 to
compute a linear overestimate b, for the size of 4, for
i=1,..,m, and that of Corollary 2.5 to allocate arrays
Ay, .y A, with |4, =6vA,, for i=1,..,m, and their
associated blocks. Since b = O W) both the arrays
and the blocks can be dllocated from a base array of size
O(vW). Lemma 7.3 now follows easily from Lemma 6.1; in
particular, note that since the number of nonzero input
numbers is bounded by W, the number of operations and
memory cells needed is O(n + v W). |
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Because of the near-equivalence of interval allocation and
interval marking, Lemma 7.3 can be used for incomplete
allocation of processors as well as of memory cells. Extend-
ing our earlier terminology, we call an input element
unlucky in an application of Lemma 7.3 if its index belongs
to the residue set, and fucky otherwise. Just as we intro-
duced the concept of v-compaction to facilitate the applica-
tion of Lemma 6.1, let us agree to use the term “v-alloca-
tion,” for v € N, to denote an application of Lemma 7.3 with
slack v, followed by the actual allocation of memory celis or
processors to the lucky elements. By Lemma 7.3(a), the
probability that a fixed element is unlucky in a v-allocation
is at most 27" and if the “total resource demand”
W=3%/_,x is O(njv"), then the v-allocation uses O(n)
operations and O(n) space.

8. COARSE-PROFILING

While many applications call for the profiling of sequen-
ces of values in the range 1..n stored in an array of size n,
our best strong fine-profiling result (Theorem 5.3} allows
only O(n'~?) different values, for fixed § >0. It is hence
necessary to relax the requirements imposed on a profile.
Whereas the defimition of fine-profiling seems quite natural,
it is not obvious how to define a computationally more trac-
table profiling problem. The following definition of a coarse-
profile, which at first glance may seem rather artificial, turns
out to be useful.

DerFINITION. Let n, me N, and let x,, ..., x, be n integers
in the range O.m. For i=1,.,m, take b,=|{j: 1 <j<n
and x,=i}|. An m-color coarse-profile for x,,..,x, is a
sequence of m independent nonnegative integer random
variables 5,, s b,, such that

(A) X7 b,=0(n);

(B) Fori=1,..,mandforalla=1, Pr(b,->a13,-) <27

For n, m e N, the m-color coarse-profiling problem of size n
is to compute an m-color coarse-profile for »# given integers
in the range 0..m.

We will refer to condition (A) in the definition above as
the linear-sum condition. As in the case of fine-profiling,
input elements of value 0 are “dummy elements” that do not
take part in the profiling.

In the following, we show that n-color coarse-profiling
problems of size » can be solved with optimal speedup in
O(log* n) time. We first explain the main ideas in the con-
text of an algorithm that uses »n processors and later indicate
how to achieve optimal speedup. We begin by tackling a
simpler problem, that of estimating just the large multi-
plicities. Our approach is to extrapolate from a fine-profile
for a random sample of size n! =7, for some suitably chosen
constant ¥ > 0. One small complication is that although the
sample certainly contains at most n' ~ 7 distinct values, these

are spread out over the entire range of size n, whereas for an
application of Theorem 5.3 a much smaller range is
required. The following technical lemma, which will be used
frequently in the remainder of the paper, allows us to
rename the sample values as required, i.e., to compute an
injective function (namely, i+ y;) from the set of original
sample values to a range of size O(n' 7).

Lemma 8.1, For all given n, d, s, te N with d= O(n/t),
the following problem reduces, using O(t) time, [ n/t7 pro-
cessors and O(n) space on a TOLERANT PRAM, to a complete
compaction problem of size n and with parameters d— 0
Given d integers x|, ..., x, in the range 0..n, compute n non-
negative integers y, ..., y, such that

(1) Fori=1,..ny,#0=ic{x;:1<j<d};
(2) Forl<i<j<n ify,#0,theny #y;
(3) max{y;:1<i<n}<s

Proof. Just as we associate a record X; with value x,
with each input variable x;, let us associate an output record
Y, with value y; with the output variable y,, fori=1, ..., n.

The problem is simply to mark those output records that
are to receive nonzero values, since afterwards the problem
can be solved by compacting the marked records. Whereas
the marking would be trivial on the ARBITRARY PRAM, on
the TOLERANT PRAM several occurrences of a value i might
prevent the marking of Y,. Our solution is to use guarded
writing of a new kind that we call inverted guarded writing.
For 7> 1 we do not have a (physical) guard processor for
each output record, which is the reason why guarded writ-
ing of the kind employed in previous sections cannot be
used. Instead note that by assumption, we can associate a
processor with each element je {1, ...d}. If x,#0, then let
this processor continuously write some value to Y, . At the
same time associate a virtual guard processor with each out-
put record and let ['n/t7] physical processors simulate the
virtual guard processors in O(t) time. If each virtual guard
processor attempts to modify the value stored in its
associated output record and marks the record if and only
if this fails, the desired marking will result. |

In the theorem below, condition (1) says that every non-
zero estimate is a linear overestimate for the multiplicity
that it estimates. Condition (2) ensures that nonzero
estimates are in fact obtained at least for the large multi-
plicities.

THEOREM 8.2. For every fixed & >0 there is a constant
&> 0 such that the following holds: Let n, te N be given, let
X,y X, be n given integers in the range 0.n and take
b,={j 1<j<n and x;=1i}|, for i=1,..,n Then it is
possible, with probability at least 1 — 2" (Monte Carlo) and
on a TOLERANT PRAM using O(t) time, [n/t7] processors
and O(n) space, to compute n independent nonnegative
integer random variables b, . ... b, such that conditions (1)
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and (2} below hold for some constant K= 1 and for each
iell,..n}.

(1) b,>0=b,<b <Kb,;
(2) b,zn’=h,>0.

Proof. Without loss of generality assume that J is
rational and at most 1. By Lemma 2.9, we can also assume
that 7 <n°*, so that at least n' ~ ** processors are available.
Let 4 = #°*7 and carry out the following algorithm:

Step 1. Draw a random sample # of # by including
each input element in # independently of other clements
and with probability 1/h. Fori=1,...n, letb” = |4, %|.

Step 2. Use the algorithm of Theorem 5.3 to estimate
b, fori=1, .., n. First place the elements of # in an array
of size O(n' ~9%), Since |#| = O(n' **) with high probabil-
ity by Chernoff bound (a), this can be done by the algorithm
of Corollary 4.3. Then use the algorithms of Lemma 8.1 and
Corollary 4.3 to replace the values represented among the
elements in # by values in a range of size O(r' %*). The
algorithm of Theorem 5.3 now provides estimates 57", ... 5
such that with high probability, »” <bh” <K'b”. for
i=1,...n and for some constant K' (take l;,‘"’=0 for all
ie{l,..n} with b =0).

Step 3. Fori=1,..nifh? >n’? then take b, =2hb?;
otherwise take b, =0.

In order to analyze the algorithm, fix ie{l, .., n}. If
b,2n°", then by Lemma?2.l, with high probability
b, /(2h)<b!<2b,/h and hence b,/(2h)<bh! <2K'b,/h,
from which it follows that either ;=0 or b, < b, <4K'b,. If
b; = n°, clearly with high probability b,>0. On the other
hand, if b, <n°?, then with high probability b <n°?/K’,
hence 6 <n®? and h,=0. |

LemMa 8.3. There is a constant € >0 such that for all
given n € N, n-color coarse-profiling problems of size n can be
solved on a TOLERANT PRAM using O(log* n) time, n pro-
cessors and O(n) space with probability at least 1—-2 ™
(Monte Carlo).

We begin by describing the algorithm informally. As in
the profiling algorithm of Theorem 5.3, the basic idea is that
a GCS for each color can be used to estimate the multi-
plicity of that color. Assume that we estimate the size of each
color class by determining a 1-row of a GCS of the color
class with parameters r x 5. Then r should be &(log n), since
color classes may be of size up to n. As can be seen from
Lemma 3.3, increasing s has the effect of increasing the
reliability of estimates derived from a 1-row of the GCS. It
turns out, however, that choosing s as a constant already
yields sufficiently reliable estimates to provide a coarse-
profile.

The outstanding problem is how to determine a 1-row for
each of the »n graduated conditional scatterings. A complete

evaluation of each GCS, as per Lemma 3.4, would use
O(nlog n) processors and @(nlog n) space, whereas we want
to get by with a linear amount of resources. Observe,
however, that a small color class is likely to have a small
l-row, which can be found using fewer than @(logn)
resources by evaluating only the first few rows of its GCS.
At the outset we do not know which of the color classes are
small (indeed, we are in the process of estimating their
sizes). But consider the GCS of a particular color class U
and assume that it fills some row, say of index v. The GCS
then has a 1-row no smaller than v, and thus Lemma 3.3(a)
implies that | U] is unlikely to be much smaller than 2, so
that spending @(2") resources on the GCS of U is okay. If
the GCS does not fill its row 2°, it has a 1-row between v and
2%, and such a l-row can be determined in constant time by
the algorithm of Lemma 3.4(a) using the ®(2") resources
justified above. If the GCS fills its row 2° as well, on the
other hand, this indicates that still more resources can be
devoted to U. Each color class thus inspects “sample” rows
1,2, 2%, .. of its GCS until encountering a row that is not
full; this takes O(log* 1) time. Processors and space are then
allocated to the color classes accordingly, and the 1-rows of
all color classes are determined in constant time.

We now provide a more formal description of the algo-
rithm and begin by using the algorithm of Theorem 8.2 to
obtain accurate estimates for all color classes of sizes n'/* or
more, whose elements can subsequently be replaced by
“dummy elements” of value 0 (see the discussion preceding
the definition of a fine-profile in Section 5). We can there-
fore assume that b, <n"® for i=1, .., n. Associate a pro-
cessor with each element of nonzero value, and then execute
the following steps, where r =[ (log #)/47 and K = 60:

(1) forie{l, .. n} pardo
(2)  begin
(3) Let the elements of 4, carry out a GCS .%
(4) with parameters r x 6;
(5) {u;, v):=(0, 1)
(6) while v, < r and row v; of ¥ is full do
(7) (u; v;) := (v, min{ 2", r});
(8) Allocate 6, processors and 6v; memory cells to 4,;
9) [, =a l-row of ¥ with u; <!/, <v;;
(10) b,:=K.2"
(11)  end;

The statements in lines (5) and (7) are simultaneous
assignments to u; and v;; it is easy to see that after the first
iteration of the while loop, u,; will always hold the value of
v; in the previous iteration. Since the graduated conditional
scatterings carried out for different color classes are inde-
pendent, the random variables 4,, ..., 5, are clearly also
independent, as required. Note also that when line (9) is
executed, there is indeed a 1-row of % between u, and r;; this
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follows easily from the observation that if #; > 0, then row u,
is full, while if v; <r, then row v, is not full.

The allocation of processors and space in line (8) of the
algorithm can be done in O(log* n) time using the algo-
rithms of Theorems 7.1 and 7.2, and these resources enables
the computation of /; in line (9) in constant time using the
algorithm of Lemma 3.4(a). The algorithm therefore runs in
O(log* n) time. The lemmas below show that the resources
allocated are not excessive (Lemma 8.5) and that the
sequence b,, ..., b, is indeed a coarse-profile (Lemmas 8.4
and 8.6).

With high probability, ¥7_ b,= O(n).

i=1

LEMMA 8.4.

Proof. Fix ie{l,..,n}. Since always b, <K.2'=
O(n'*), by a martmgale argument it suffices to show that
E(l;,) =0(b,+1). If b,=0, all rows of & are nonfull and 0
is the only 1-row of &, so that b, = K. Otherwise we find that

Eb)) ZPI‘[)>])

;=0

Kb;— 1

=Y Prb,>j)+ Z Pr(b,> )

j=0 Jj=Kb;

<Kb,+ Y 2'Kb, Pr(b,>2'Kb,).
1=0
Pr(6-2">6-

Now by LEmmd33(a), Pr(b,>2'Kb,) =

2b,26)<(2e/(6-2'))°< 2% for all /20, and it follows
that
E(b)<Kb+ Y 2'Kb,-2%=0(b). 1
1=0
LemMMA 8.5. With high probability, the algorithm uses

O(n) processors and O(n) space.

Proof. For i=1,..,n, v,<2*<2" Therefore the total
amount of processors and space used by the algorlthm is

On+3Y" 1 v)=0n+37_,2"y=0(n+3¥"_,b,)= O(n)
with high probability, where the last relation follows from
the previous lemma. |

LEMMA 8.6. For i=1,..n and for all azl,
Pr(b;>ab;) <274
Proof. b,>ab, is equivalent to b,>aK-2" which

14y<r. Hence by Lemma

implies that /; <log b, <log(n

3.3(b),

Pr(l;<r and b,> (aK/6)-6-2")
12 2 5a<2—a

Pr(b,>ab,) =
<6-2'

Ka/12 __

This ends the proofs of Lemmas 8.6 and 8.3. ||

643:123/1.7

We now describe a simple procedure called scattering in
time that will be used on four separate occasions. Since in
each case we shall need different properties of the procedure,
we believe that it serves little purpose to list at this point all
the properties of the procedure that we shall ever need. After
describing the procedure, we therefore analyze it only with
respect to its resource requirements; later we will refer back
to the procedure and derive whatever properties are of
interest. In three of the four cases, scattering in time is used
as a “profile enhancer”; i.e., informally, it _inputs a profile
b,,.., b, and produces a “better” profile 5,. ... 5,. In the
fourth case we input a very good profile dnd use it to
semisort.

Scattering in time takes as input » input elements
X, ..., X, (the primary input) with values in the range 0..n
(input elements with a value of 0 are dummy elements
signifying “no element”) and »n nonnegative integers
by, ... b, (the profile input) with Y7, b;=0(n), as well as
an integer 7 (the phase count) with log n<r<ﬁ. As
usual, let #, be the set of input elements of value i, for
i=1, .., n. We begin by using the algorithm of Theorem 7.1
to allocate an array A, of size b, to A, fori=1, .., n, each
cell of which contains a counter, initialized to zero, and a list
header, initially denoting an empty list. Fori= 1, ..., n, every
element of 4, now chooses a random integer, called its /ist
number, from the set {1,.., .}, and another random
integer, called its phase number, from the set {1, ... t}. By
Chernoff bound (a), with high probability the set %, of
elements with phase number /is of size O(n/7).for /=1, .., t
Using the algorithm of Theorem 6.2 if 7 <log »n and that of
Lemma 2.9 if t > log n, we can therefore store the elements
of % in an array Q, of size O(n/t),forI=1, ...t

The arrays Q,, ..., Q. are next processed one by one. To
process an array , means to associate a processor with
each cell in Q,, and then to process all cells in Q,
simultaneously and in constant time. If a cell of Q, is empty
or contains a dummy element, the processor in charge of
that cell does nothing. Otherwise, suppose that the element
X stored in the cell belongs to 4, and chose j as its list num-
ber. The processor then attempts to increment the counter
stored in 4,[ j] by 1. If this fails, i.e., if some other processor
attempts to increment the same counter in the same time
step, X is said to collide. Otherwise X is noncolliding, and the
processor in charge of X proceeds to insert X in the list
whose header is stored in 4,[ j/]. An important fact to note
is that an element X of 4, collides exactly if some other ele-
ment of %, chooses both the same list number and the same
phase number as X, fori=1, .., n, i.e., the scattering in time
of #, can be analyzed as a 1- scattermg of #4; over an array
of tb, cells; the advantage of scattering in time is that it uses
less space and (therefore) fewer operations.

Once a first pass as described above has been completed,
we shall sometimes carry out a second pass exactly like the
first pass, except that the only elements taking part in the
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computation are those that collided in the first pass. In
either case, we say that an element is successful if and only
if there is some pass in which it does not collide. It is easy
to see that one-pass or two-pass scattering in time can be
carried out with high probability using O(r) time, [ 1/t
processors and O(n) space. After the scattering in time, the
set 2’ of successful elements as well as all counters and lists
are available for further processing. In particular, note that
for all ie {1, .., n} such that b,=7°", we can compute
{8, ~ A'| exactly in O(t) time using operation allocation, as
described in Section 7. It suffices to observe that if , = 7",
Lemma 2.4 can be used to compute the sum of the counters
stored in A, either in O(l; ) time with one processor, or in
O(t) time with |‘b,1 t] processors. Since »7_, b, = O(n), the
resource requirements remain as stated above

Our first application of scattering in time is to the com-
putation of a profile with the somewhat unnatural proper-
ties listed in Lemma 8.7 below. Once Lemma 8.7 has been
established, a second application of scattering in time will
allow us to obtain a coarse-profiling algorithm with optimal
speedup. The proof of Lemma 8.7 is rather technical, but the
main ideas behind it are as follows: We already have an
n-processor coarse-profiling algorithm (Lemma 8.3). In the
context of an algorithm with optimal speedup and a running
time of @(t), we can allow ourselves to apply this nonop-
timal algorithm to a random sample of the input set of size
@(n/7). It turns out that this yields suitable estimates of mul-
tiplicities somewhat larger than t, say, at least T2 On the
other hand, very small color classes are likely not to be
represented in the sample at all, so that their sizes must be
estimated in a different way. We here use the scattering in
time described above, which enables us to estimate multi-
plicities up to roughly 7. Finally, in order to bridge the gap
between 7 and t*2, we use another scattering in time, but
this time applied to a random sample of the input set of size
@(ﬂ/\/;). The complete algorithm hence consists of three
essentially independent subalgorithms, each of which
“caters to” a different range of multiplicities.

LemMA 8.7. There is a constant € >0 such that for all
given n, te N with v =log* n, the following problem can be
solved on a TOLERANT PRAM using O(t) time, [n/t7] pro-
cessors and O(n) space with probabi/ity at least 1 =2-"
{Monte Carlo). Given n integers x,, ..., x,, in the range 0..n,
compute independent nonnegative mteger random variables
by, ... b, such that

(A) Zl—lb - ( )

(B) For i=1,..n and for dall az1, Pr(b,->a5,-)<
2 — b H(8T) + 2 73«;

(Cy Fori=1, .., n, Pr(b,>\/;5,-)<2*

where b, =|{j: 1<j<nand x;=i}|, fori=1,..,n

Proof. Without loss of generality, we can assume that
2<t<n"? since otherwise the problem is easily solved
using the algorithm of Lemma 2.9. Let K= 2* and carry out
the following algorithm:

Step 1. Apply one-pass scattering in time with phase
count t to the primary input X, .., X, and the (trivial)
profile input 8K, ..., 8K and let 7" be the resulting set of non-
colliding elements. For i=1, .., n, take &'"'=4|4,n 2’|
(since 8K =1t?" we argued above that this quantity is
readily available).

Step 2. Draw a random sample # <# by including
each input element in % independently of other elements
and with probability 1/['f? Repeat Step 1, but this time
include only elements of # in the primary input (i.e., replace
each element not in % by a dummy element with a value of

0), and let %’ be the resulting set of noncolliding elements.
Fori=1,..,n, take 5> =81 /17|84, #'|.

Step 3. Draw a random sample Z <% by including
each input element in 2 independently of other elements
and with probability 1/r. By Chernoff bound (a), we can
assume that || = O(n/7). Use the algorithms of Lemma 8.1
and Theorem 4.6 to store 7 in an array of size O(n/t) and
to replace the values of the elements in % by values in a
range of size O(n/t). Then apply the algorithm of
Lemma 8.3 to # to obtain a profile 57, ..., b7 (take b7 =0
for each ze{ cown) with 4,n 27 =) Fori=1, .., n let

H) 41[)]

Step 4. Fori=1, .. n compute the final estimate of b,
as b,=max{h\", h'?, b‘” K}.

onlet b =|#8,n%| and b7 = |4, Z|. We
can assume thdt b’ b 7 is indeed a coarse-profile for (the
sequence of values of elements in) #. It is easy to see that
with high probability, the resource requirements of the algo-
rithm are as stated in the lemma. The correctness of the
algorithm 1s demonstrated in the lemmas below, each of
which shows one of the properties (A)—(C).

Lemma 8.8. With high probability, Z,,l = O(n).

Proof. Y'_ bV = 43" BN <4X"_, b=4n
In the same way, Y7_, h”’<8['\/7']|WI and |#|
O(n/\/;) with high probdblhty by Chernoff bound (a
Finally, by the linear-sum condition, Y7_, b‘,”
430 b7 =02y =0(n). |

LEMMA 89. Fori=1,..nandforallax1, Pr(b,>ab,)
gz—b,x‘(xr) +2,3,,-

Fori=1,

nmE

Proof. Clearly, b7 is binomially distributed with
expected value b,/7. Hence by Chernoff bound (b), Pr(b/ <
b,/(21)) <2 " Furthermore, by property (B) of a
coarse-profile, Pr(h? >2ah7) <2 But b7 >b,/(21) and
b7 <2ab? together imply b,<2rb" <4atb"—abm Hence
Pr(h,>ab,) < Pr(h,>ab'V) <22/ 4 2~ 2, |
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Lemma 8.10. Fori=1,...n Pr(b,>/th)<2 V",

Proof. Without loss of generality assume that
b, > Kﬁ. By the definition of 4, if b,> \/; b,. then
b,>/T b for I=1, 2, 3, so that for each ie {1, .. n} we
can show the event b, > \/; b, to be unlikely in any of three
ways. Correspondingly, we consider three cases. If 7 <4,
Case 2 disappears, and Cases 1 and 3 overlap; the argument
remains valid, however.

Case 1. b,<2Kt. If b,>/ThV, then |#nA"|=
b\"/4<b,/(4./T)<b,/2, which implies that at least b,/2
elements of 4, collide in Step 1. But since b, < 2K7, the den-
sity of the scattering in time of 4, is b, /(8Kt) < 1/4; hence,
by Lemma 3.6(b), the probability that at least ,/2 elements
of #, collide is bounded by e ¢ where {=(b,/2)/
(32b,-1)=b,2" 2K /7/2"=2 /7, from which the claim
follows. Note that we actually showed the stronger relation
Prib, >4 /7 | 4,0 4"])<2 >V, which will be used in
Case 2 below.

Case 2. 2Kt <b,<Kt*. Ifb,> /7 b, then | B, ']
= 1;‘,.2'f‘(8|_\/;—|) < b,;’(\ﬁ- SF\HW), which happens only if
either b < b,-/(2[’\/;“|) (the sample is small) or |4, " #'| <
b’/4 \/;) (many elements collide). Since b is binomially
distributed with expected value b,,,r"['\/;’l, Chernoff bound
(b) implies that Pr(b) < I),‘,«’(ZI_\/;'I)) e VTN Op
the other hand, we know from Casel that Pr(b/>
4 \/; | BAY| | b <2KT)<2 2V and by Chernoff bound
(a). Pr(h,"">2Kr)<Pr(b,'f'/>2b,/['\/h)S(’"’“’”W”'. Using
that b,/ /71> (2K0)/(2/T)=K /7, we finally obtain
that Pr(b,> \/; 512)) <e — bR ST +2 —2 /7 t+e- BT
<2 —K /T8 +2-2 N& +2 —K 3 <2 7VG_

Case 3. b,>Kr*. By Lemma89, Pr(h,>./75h,)<
2—/7, (8r|+2—2\/;<2——l\’\,rrﬂx+2———2\,/?<2—\/?. .

THEOREM 8.11.  There is a constant ¢ >0 such that for all
given n,teN with t=log*n, n-color coarse-profiling
problems of size n can be solved on a TOLERANT PRAM using
O(1) time, [ n/t7] processors and O(n) space with probability
at least 1 —2 " (Monte Carlo).

Proof. Assume without loss of generality that t<n"*
and that b,<n'® for i=1,..n Begin by computing a
profile A,. ... b, for x,. ... x, with the properties described
in Lemma 8.7. Then apply two-pass scattering in time with
phase count 7 to the primary input X, .., X, and the profile
input b,....b,. For i=1,...n call B well-estimated if
b,»g\/?ﬁ,, and call each element of #, good if %, is
well-estimated, and bad otherwise. By property (C) of
Lemma 8.7, the expected number of bad elements in
U/_, #; 1s at most n-2° v and a martingale argument
shows the actual number of bad elements to be O(n/t +
n**)y = O(n/t) with high probability. It is easy to see that the
probability that a good element collides in one pass of a

scattering in time is at most 1 /\/1_'. Since we actually execute
two passes, the probability that a good element is unsuc-
cessful is at most 1/7. so a martingale argument shows that
the number of (good or bad) unsuccessful elements is O(n,/7)
with high probability. Let #” be the set of successful
elements.

Consider the situation after the scattering in time. For
i=1, .., n, call #, resolved if every element of .4, was success-
ful in the scattering in time, and b, < 167. The total number
of unsuccessful elements being O(r/7), we can use inverted
guarded writing as in the proof of Lemma 8.1 to determine
the set of resolved color classes. The important observation
is that if 4, is resolved, then we can compute b, exactly as
|B,~ 4|, fori=1, .., n. Hence for i =1, ..., n, do the follow-
ing: If 4, is resolved, replace (the estimate) b, by (the exact
value) b,; otherwise replace b, by max{h,. 167}. Since all
except O(n/t) color classes are resolved, these changes
preserve the linear-sum condition.

We must finally show that Pr(b, >ah,) <274 for
i=1,..,n and for all a>1. Since this is obvious if 4, is
resolved, let us assume that this is not the case. Then,
however, b,>167, so we can assume without loss of
generality that b,>16ta. Now by property (B) of
Lemma 8.7, Pr(b,>ab)<2 "0 42 242 p-2g
271

9. SEMISORTING

We first define the semisorting problem precisely and
then outline the rest of the section.

Informally, the mi-color semisorting problem inputs »
elements with values in the range 0. (elements with a
value of 0 being dummy elements) and places these in an
output array of size O(n) such that all elements with a given
color (i.e., nonzero value} occur together, separated only by
empty cells. As usual, we model the input as » integers
X1, . X, In the range 0..m and the output as » nonnegative
integers y,, .., »,, where y; should be thought of as the
position in the output array of the jth input element, for
j=1,..,n. Condition (1) below means that distinct (real)
elements are not placed in the same output cell, condi-
tion (2) says that no element of a different color intervenes
between two elements of the same color in the output array,
and condition (3) requires the output array to be of
size O(n).

DEerFINITION.  For all n, me N, the m-color semisorting
problem of size # is the following: Given » integers x|, ..., x

in the range 0..m, compute n nonnegative integers y,, ..., 1:
such that

(1) Forl<i<j<a ifx;#0, then y,#

(2) Forallij keil, ..,
then x; = x,;

(3) max{y;:1<j<n}=0(n).

ny, if y, <y, <y and x,=x,,
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The m-color strong semisorting problem is identical, except
for the additional requirement(4) below, where b,=
[{ji1<j<nand x,=i}| fori=1, ., m.

(4) For all j, kefl,..n}
x;=x; =1, then |y, — yi| = O(b,).

and ie{l,..m}, if

It is perhaps instructive to compare the definition of semi-
sorting with that of complete linear colored compaction
given in Section 6. Informally, complete linear colored com-
paction requires upper bounds 4|, ..., d,, on the sizes of the
color classes to be specified as part of the input, and the
input elements are placed in arrays A,,.., A, of sizes
0id,), ... O(d,,,), respectively, each of which is indexed start-
ing at 1. In order to use an algorithm for complete linear
colored compaction to semisort, one could therefore first
compute estimates &, , ..., b, withb,=b,, fori=1, .., m. but

. b,= O(n), then use the given compaction subroutine
with limits b, . ..., b,,. and finally place the arrays 4,, .., 4,,
together in a base array of size O(n).

The present section culminates in a proof that n-color
semisorting problems of size n can be solved in O(log* n)
time with optimal speedup (with high probability). As men-
tioned in the introduction, this leads to an algorithm with
optimal speedup for computing n-color fine-profiles in
O(log* n) time (Corollary 10.5). On the other hand, our
path to optimal semisorting takes us via two auxiliary
profilers (i.e., algorithms that compute profiles) of different
types, both of which are finally subsumed by the n-color
fine-profiler. More precisely, we are going to first describe
an algorithm that, guided by a coarse-profile, can semisort
in O(log* n) time (Lemma 9.1); this algorithm, however,
uses n processors and hence is not optimal. As a corollary
we obtain a nonoptimal profiler that, informally speaking,
overestimates all multiplicities while still satisfying the
linear-sum condition {Corollary 9.12). Scattering in time
together with an optimal coarse-profiler allows us to derive
from this nonoptimal profiler an optimal profiler with
almost the same properties, except that a small fraction of
elements may belong to “badly estimated” color classes
{Lemma 9.13). Using this last result, another application of
scattering in time together with the nonoptimal semisorting
algorithm finally vields an optimal semisorting algorithm
(Theorem 9.14).

As mentioned above, our first goal is to devise an n-pro-
cessor semisorting algorithm. The basic idea is simply to use
techniques similar to those of Section 6 to compact the
elements of each color class into an array of suitable size.
However, this approach meets with major complications.
Multiplicities must be estimated using a coarse-profiling
algorithm, which means that the estimates obtained are not
very reliable. Arrays must be allocated as described in
Section 7, and colors cannot be handled independently. as
far as the placement in arrays is concerned, since the failure
probability for small color classes cannot be ignored.

HAGERUP

Instead it is necessary to monitor the progress of the colors
throughout the process, pushing more resources towards
colors that are not keeping pace with the rest.

LemMa 9.1, There is a constant ¢ >0 such that for all
given ne N, n-color semisorting problems of size n can be
solved on ¢ TOLERANT PRAM using O(log* n) time, n
processors and O(n) space with probability at least 1 —2 "
(Las Vegas).

Proof. In order to let the basic idea stand out clearly, we
first describe and analyze a simplified algorithm that ignores
a number of complications, and afterwards motivate the
various bells and whistles that have to be added to the
algorithm to actually make it work.

In the following the word “element” will be used
exclusively to denote elements of color classes. The
simplified algorithm is quite similar to the first part of the
algorithm given in the proof of Theorem 6.2, the crucial dif-
ference between the two settings being that now we have to
tolerate 1 color classes, rather than @(n' ~9), for § > 0. We
begin by computing a strictly increasing sequence v, ..., Uy
of positive integers similar to the sequence of successive
values of v used in the proof of Theorem 6.2 (the exact
requirements will be specified below), and then execute the
following:

Let all elements be active;
for::=1to T do
for each color class 4, pardo
begin
Allocate an array 4, , of size 6b,/v} to 4;;
v,-compact the active elements in %4, to 4, ,,
deactivating every lucky element in 4;;
end;

The algorithm hence consists of T stages, each of which
attempts to place the elements of each color class in an array
of suitable size. The elements that are successfully placed in
the array become inactive and do not participate in subse-
quent stages. Conceptually, if the algorithm succeeds in
deactivating all elements, the elements of each color class %;
afterwards are stored in T arrays 4, ,, .., 4; - In actual
fact, there is no need to preserve A, , beyond the end of
Staget,fori=1,...,nand t=1, .., T, and the algorithm can
reclaim the space allocated in each stage for reuse in the
following stage. Instead, in Stage ¢, the algorithm remem-
bers the total size /| |4, ,| of the arrays allocated to 4, in
earlier stages, for i=1,...n and t=1, .., T, and each ele-
ment of 4, deactivated in Stage 7 adds this offset to its posi-
tion in A; , and stores the resulting absolute position. Infor-
mally, this has the effect of gluing the array A, , onto the
right end of an array already containing 4, ,,.., 4, ,_;.
After the last stage, it is therefore an easy matter to use the
algorithm of Theorem 7.1 to allocate a single array A, of size
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|4, |+ -+ + |4, 7] to #; and to place the elements of :%; in
A; (informally, to move the elements of #; from 4, |, ... A, r
to A4;). Provided that 3 7_, |4, =O(n), this produces a
solution to the semisorting problem. In other words, if all
elements are deactivated, the correctness of the algorithm
will be guaranteed if we can show that ¥_ 7 |4, | =

O(n). In the idealized algorithm above, this condition 1s
satisfied, smce S S A4 = S (6b e <
Z,,, (6njv; = O(n).

In order to analyze the rate with which elements are deac-
tivated, fix ie {1, ... n},letre {1, .., T} and assume by way
of induction that the number of active elements in 4, has
decreased to at most b,/v? before Stage . Then 4, is well-
supplied in the v,-compaction in Stage ¢, so that a fixed ele-
ment in .4, remains active with probability at most 2" (by
Lemma 6.1(a)). Therefore the expected number of elements
in 4, that remain active is at most b;-2 ", which, for a
suitable choice of the sequence v, .., v, is significantly
smaller than the b,/v}, | required for the induction.

We now proceed to discuss the problems with the algo-
rithm above. One such problem is that color classes may be
too small to exhibit a “reliable” behavior, in a statistical
sense. E.g., in the analysis in the preceding paragraph, even
though the expected number of elements in 4, that remain
active is significantly below b,/¢7 ,, the probability that
their actual number exceeds b,/v?, | may not be negligible
(cf. Lemma 6.1(b), which yields little unless = is much larger
than v). We counter this problem by treating small color
classes specially; in particular, the space allocated to small
color classes is larger, relative to their sizes, than for other
color classes.

More significantly, we do not know the multiplicities
by, .., b,. s0o we have to resort to estimates 1;,, 1;,,. One
consequence of this is that we do not really know whether
a color class is small; the color classes that are treated spe-
cially, as mentioned in the previous paragraph, are hence
those whose estimates let them “appear” small.

Another difficulty is posed by the allocation of space to
color classes. Since we intend to execute @(log* n) suc-
cessive stages in a total of O(log* n) time, we cannot carry
out the allocation using the algorithm of Theorem 7.1, but
have to resort to the incomplete allocation of Lemma 7.3
(the color classes themselves will be requesting elements in
the sense of Lemma 7.3; however, recall our convention in
this section to use the word “element” only for elements of
color classes). As a consequence of the incomplete alloca-
tion, in each stage certain color classes will be unlucky
(recall that this means that they do not receive the resources
that they requested), so that they cannot participate in
the v,-compaction; this adds another complication to the
analysis. Furthermore, in order for the resource require-
ments of the incomplete allocation to remain O{n) in
spite of the increase in v, over the stages, it is necessary to
ensure that the number of requests per stage decreases over

the course of the execution. We therefore initially let all
nonempty color classes be active, declare a color class to
become inactive when it loses its last active element, and
allocate space only to active color classes. Since the number
of active color classes cannot exceed the number of active
elements, the number of active color classes will decrease as
required, provided that the number of active elements does
$0.

Finally, although for most color classes the incomplete
compaction in a particular stage will succeed in deactivating
most elements in the color class, for some color classes
almost all elements may remain active; in particular, this
surely happens for color classes that are unlucky in the stage
under consideration, and it is likely to happen for those
whose sizes were heavily underestimated. Given the algo-
rithm as described so far, the problem will be aggravated
over successive stages, since the available space decreases.
In such cases we need to resort to an “emergency escape,”
which will be to compact into an array of size 61*,17,, rather
than 61;,»/L'f. Note that we certainly cannot use 61‘,[7, space
always, since the total space requirements would be super-
linear. In order to decide when to apply the emergency
escape, we begin each stage with a “test scattering” for each
active color class, except those that appear small. The test
scattering is simply a conditional scattering by the active
elements in the color class, with parameters chosen to allow
color classes that are in need of the emergency escape to be
roughly distinguished from those that are not; the actual bit
observed is whether or not the fullness of the scattering
equals 1.

Before describing the algorithm proper, we define the
sequence t,, ..., 7 and collect in Lemma 9.2 below those of
its properties that will be needed later. We can no longer
define vy, ..., v, simply as a sequence of “towers of two,” as
in the proofs of Theorem 6.2 and Lemma 8.3, since our
analysis requires a somewhat smaller gap between con-
secutive elements in the sequence. The basic idea remains
the same, however, and we will still have T = O(log* n).

Briefly let f(z)=z—44log:z, for >0. Then f(2)<0,

F(2°)>0, f(z) = oo for = — oc, and /" has only one zero, so

that ->44 log z > 22 log 7] for all = 2", The algorithm
below hence outputs a finite sequence, Wthh we take to be

Ur, ..., Uy (note the reverse indexing).

o= n'®87;
repeat
write(Z),
z:=22log =7
until - <2'5;

15

Clearly v, <2°"=0(1). We will assume without loss of
generality that 7 > 2 (otherwise n 1s bounded by a constant).
Then 2" <, <vy< -+ <vp=[n"®¥7 For a sufficiently
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large constant =z, clearly 22[log(22[log =)<
44 log(44 log =) =44(log(44) +loglog z) <log = for all
z2zy. Hence T<2log* n+ O(1).

Lemma 92, (a) Fort=1,.,T—1,072 ,<2"<v¥ |;
(by Fort=1,..T—1,v”<v,,,.
Proof. (a) log(v?2,) = 22logv,, <22 loge,, 1=

v,<44loguv,,,=log(r¥ ), from which the relation follows
by exponentiation.

(b) We noted above that 2°>:* for ->2° Since
v,>44.2° part (a) therefore implies that v, ,>2"*>
(o4 =7 |

The algorithm begins by computing a coarse-profile
b,, .. b, for x,, .., x,. By Theorem 8.2, we can assume that
b, is a linear overestimate for b, for all ie I, where [ is a
known subset of {1, ..., n} with the property that i e I for all
colors i with b; = n'/®*®. Since we can clearly remove all colors
i with b, <n"*® from I without affecting the property of I
just mentioned, we can also assume that || = O(n*"%%). We
want to apply (the nonoptimal part of) the algorithm of
Theorem 6.2 to place the elements of A4, in an array of size
O(b;) (with 5,- serving as the limit for 4,), for all i e /. Recall
that the algorithm of Theorem 6.2 can cope with up to
©(n' %) colors, for arbitrary fixed J >0, as long as we
provide a means of performing the necessary space alloca-
tion. Since Theorem 7.1 is now available, the latter condi-
tion no longer 1s a problem. Using the algorithms of
Theorem 4.6 and Lemma 8.1 to replace the colors in / by
colors in a range of size O(n*"**), we can therefore apply the
algorithm of Theorem 6.2 as stated. This preprocessing
serves to let us assume without loss of generality that
b, <n"® for i=1,..,n We want to work with estimates
that are at least 1 and at most #n'** and therefore take b, —
min{max{b,, 1}, Ln"® J}, for i=1,...n It is easy to see
that 5,, b, is still a coarse-profile for x,, ..., x,; in par-
ticular, b,, ..., b, are independent random variables. Addi-
tionally, b,<t,b, and b, <n'*®, for i=1, .., n The algo-
rithm now computes the sequence v, .., t;, which can
obviously be done in O(log* n) time, and proceeds as
follows:

Let all elements and all nonempty color classes be
active;

(2) fort:=1 to Tdo (* Stage 1 )

(3) for each active color class 4, pardo
(4) begin

(5) if b, <v)

(6)

then (* apparently-small %) Size, ,:=6v]"
else
(7) begin (* base Size, , on test scattering *)
(8) v,-allocate v, memory cells and v,

processors to 4;;

BAST AND HAGERUP

(9) if #, was unlucky in the allocation in
line (8)
10) then goto line (21);
11) Let the elements in 4, carry out a condi-
tional scattering . with probability v,7/13,-
and of width v,;
(12) if % has fullness 1
(13) then (x apparently-huge *) Size; ,:=
602b,
(14) else (x normal case ) Size, , :=[6b,/v7;
(15) end;
(16) v,-allocate an array A4, , of size Size; , to 4,;;
(17) if 4, was lucky 1n the allocation in line (16)
(18) then v,-compact the active elements in 4, to
A, ,, deactivating every lucky element in 4,;
(19) if no element in 4, remains active
(20) then make 4, inactive;
(21} end;

For t=1, .., T, let Staget be the rth execution of lines
(3)-(21) and say that a color class is active in Stage 7 if it is
active at the beginning of Stage ¢ and that it is unlucky in
Stage ¢ if 1t is unlucky in the incomplete allocation in either
line (8) or line (16) in Stage 1. A color class that is unlucky
in some stage drops out of that stage and rejoins the com-
putation in the beginning of the next stage, if any; this is
realized via a goto instruction in line (10) and a conditional
instruction in line (17).

The goal of the analysis 1s to show that with high prob-
ability, the algorithm deactivates all elements using O(#)
processors and O(n) space and allocating arrays A4, , of total
size O(n). Since a stage can be executed in constant time, the
algorithm is then correct and its resource requirements are
as claimed in Lemma 9.1. A key property established below
is that the number of active elements (and hence of active
color classes) decreases rapidly over the execution of the
algorithm. More precisely, we will show (Lemma 9.8) that
with high probability the number of elements active at the
beginning of Stage ¢, for t =1, ..., T\ is O(n/v}*). The proof of
this key property consists of two main parts. We first iden-
tify certain favorable conditions that may apply to a color
class in a stage, show that these conditions together imply
that the color class is well-supplied, in the sense of
Lemma 6.1, in the v,-compaction in the given stage
(Lemma 9.3), and note that for well-supplied color classes
the rate of deactivation is essentially as in the idealized
analysis of the simplified algorithm earlier in this section
(Lemma 9.6). We then show that only very few color classes
lack the favorable conditions (Lemma 9.7).

Fori=1,.,nand t=1, .., T, denote by N, , the number of
active elements in #; at the start of Stage t. 4, is said to be
apparently-small in Stage ¢ if b, <v!”, and to be apparently-
huge in Stage ¢ 1f a test scattering for 4, 1s carried out in Stage ¢
and achieves a fullness of 1. 4, is well-estimated in Stage ¢ if
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b,<u,b, (ie. the size of 4, may have been underestimated,
but at most by a factor of v,), and 4, is well-supplied in
Stage ¢ if it is active in Stage £, not unlucky in any of the
incomplete allocations in lines (8) and (16) in Stage ¢, and
well-supplied in the incomplete compaction in line (18) in
Stage ¢. Recalling the definition of “well-supplied” in Sec-
tion 6, we observe that .4, is well-supplied in Stage ¢ if and
only if an array A, , of size at least 6v, N, , is allocated to 4,
in Stage 7. A sufficient set of conditions for this to happen is
formulated in the following lemma.

LEMMA 93. For i=1,..n and t=1, .., T, 4 is well-
supplied in Stage t if it is active in Stage t and each of the
Jfollowing conditions holds:

(1) A, is well-estimated in Stage t,

(2) A, is not unlucky (in any of the v,-allocation steps) in
Stage t,

(3) A, is apparently-small or apparently-huge in Stage 1.
or N, < b, /es.

Proof. Let ie{l,..,n} and te{l,.., T} and assume
that .4, is active in Stage 7 and that conditions (1)—(3) hold.
In particular, an array A, , of size Size, , is allocated to 4,
{condition (2)). If 4, is apparently-small in Stage s, then
b, <v,b,<e! (condition (1)) and Size, , = 6v!?. Otherwise
Size, ,=6b,/v}, and if N,_,>b,jv? then Size, ,=60°h,>
6v,b, (conditions (3) and (1)). In all cases Size, , = 6v,N, ,.
1e., 4, 1s well-supplied in Stage 1. |

Recall that the density of a conditional scattering with
probability p and of width s carried out by a set of m
elements is defined as mp/'s.

LEMMA 94. For t=1,..,T, if a test scattering is
executed in Stage t by a color class B, with N, > b,/v}, then
the probability that #,; does not become apparently-huge in
Stage t is at most 21,

Proof. The density of the test scattering is at least
(b, /v}y-(v]/b)) - (1/r,)=v; Hence by Lemma 3.1(c), the
probability in question is at most v,- 27 <27 |

LemMA 9.5.  With high probability, the algorithm deac-
tivates all elements.

Proof.  We first show that with high probability, condi-
tions (1)-(3) of Lemma 9.3 are satisfied in Stage T for all
active color classes. We already noted that b, <uv,b,, for
i=1,.. n so that every color class is well-estimated in
Stage T, i.e., condition (1) is satisfied. By Lemma 7.3(a), the
probability that some active color class is unlucky in
Stage 7 is at most 2n-27'7; ie., condition (2) is also
satisfied with high probability. Condition (3), finally,
follows directly from Lemma 9.4.

By what was shown above and Lemma 9.3, with high
probability every active color class is well-supplied in

Stage 7. Lemma 6.1(a) implies that the probability that a
fixed active element in an active and well-supplied color
class is unlucky in the v, -compaction in Stage T is at most
277 Hence with high probability, no element remains
active at the end of Stage 7. ||

LEMMA 9.6. Fort=1, .., T— 1, with high probability the
number of active elements in well-supplied color classes at the
end of Stage t is O(n/v2 ).

t+1

Proof. An element whose color class is well-supplied in
Stage / remains active at the end of Stage: only if it
is unlucky in the p,-compaction in Stage: However,
Lemmas 6.1(b) and 9.2 show the number of such elements
to be no larger than n/v? |, except with probability 2,
where (= (n/v]2 )3 (2%0)) = n/(2°cE ) = Q(n'Y), e,
except with negligible probability. ||

Lemma 9.6 shows that the number of elements in well-
supplied color classes decreases as required. In Lemma 9.7
we prove that the clements in color classes that are active
but not well-supplied are so few that they can be ignored in
this context. Informally, the reason for this is that if an
active color class is not well-supplied in Stage 1, then either
it is unlucky, or its estimate is off by a factor of more than
v,, or the test scattering for the color class does not achieve
fullness 1 although its density is at least v7, all of which are
unlikely.

Lemma 97. Let te{l,..T—1} and take I=1{i: 1<i
<n and A, is active but not well-supplied in Stage t}. Then,
with high probability, Y, (b, + b)) = O(njr32 ).

[N
Proof. If a color class #; is active but not well-supplied
in Stage ¢, then one of Conditions (1)—(3) of Lemma 9.3
must be violated. Therefore the index sets /', I”, and [
defined below cover all of 7, 1.e., I' 1" LI =1, we will
show that with high probability the sum 3, (b, +b,) over

22

each of these index sets is O(n/v; ).

I'={iel: 4 is not well-estimated in Stage ¢},

I"={iel: A, is unlucky in Stage ¢}, and

I"={ieI\(I" U1"): A, is neither apparently-small

nor apparently-huge in Stage r and N, , > 1;,»/“1';‘}.
By definition, if i € I, then §, < b,/v,, which, by property (B)
of a coarse-profile, happens with probability at most 2.
A martingale argument and Lemma 9.2(a) then shows
that with high probability, ¥,., (b,+6)<2Y,., b,=
O(n/2° + n'®n>%) = O(n/v?, |). In the rest of the proof we
consider all random choices made by the algorithm in
Stages 1, .., t —1 to be fixed in an arbitrary manner. Write
I"=17ul}, where I and I are the residue sets of the
v,-allocations in lhines (8) and (16), respectively. If we
furtherdefine S, =3, - (b, + byand S, = ien b+ b,) as
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functions of these residue sets, it is easy to see that both S,
and S, satisfy a Lipschitz condition with a constant of size
O(n'™®®) (recall that b, +b,=O(n"™), for i=1,...n). We
also know for each v,-allocation that a fixed color class is
unlucky with probability at most 2~ (Lemma 7.3(a)), so
that E(S, + §,) = O(n/2"). By two straightforward applica-
tions of Lemma 7.3(c), we thus obtain that with high prob-
ability, .., (b; +5 ) =S5, +S,=0(n/2" + n'"pin>®) =
O(njv?  +n**)y=O0(nfv;7 ). Finally, if a color class A, is
neither apparently-small nor unlucky in Stage?, a test
scattering is carried out for 4, in Staget Hence, by
Lemma 9.4, Pr(ielI”)<2 " for i=1, .., n and therefore
E(Y,om (bi+b)y=0(3"_, (b, +b)/27) = O(n/2"). A sim-
ple martingale argument now ensures that, with high prob-
ability, 3, (b, + 5,) = O(n2" + n**) = O(njv?2 ).}

LEMMA 98. Fort=1, .., T— 1, with high probability the
number of elements (and hence color classes) active at the end
of Stage t is O(n/v?2 ).

Proof. Immediate from Lemmas 9.6 and 9.7. |

We finally show that the total size of the arrays A4,
allocated in Stage tis O(n/v}), for =1, .., T (Lemma 9.10),
from which it will follow not only that the algorithm is
correct, but also that it uses O(n) processors and O(n)
space. Disregarding the arrays allocated to apparently-huge
color classes, this can easily be done using Lemma 9.8. In
order to handle the apparently-huge color classes, however,
we first have to show the following technical lemma, which
says that if a color class 4, 1s well-supplied in Stage 1, then
it is unlikely to contain more than max{c, \/b_, b./ed,
active elements at the beginning of Stage 7 + 1.

LemMa 99. Let te{l,...T—1} and take I=1{i:1<
z<n A, is active and w e//-supphed in Stage t and N, >
max{e,, \r,, b, /L,+l Then, with high probability,

Yiesl bi+bi)= O(n; 711)~

Proof. Consider all random choices made in the algo-
rithm before the ¢,-compaction in line (18) in Stage ¢ to be
fixed in an arbitrary way and let 7e{l, .., n}. Since b,/
v¥ =2 b,/2" Lemmas 6.1(b) and 9.2(b) imply that if 4,
is active and well-supplied in Stage: then N,,, >
maxiu,, ﬁ b; /L,H} with probability at most 2¢ *,
where {=v>_,b,/(2°h,0]) 2 v}¥/(2%])) = 2v,. We have thus
shown that Pr(iel)<2 227" Similarly as in the
proof of Lemma 9.7, let S=Y,_, (b, +b,) and note that S
satisfies a Lipschitz condition with a constant of size
O(n"‘%). Now E(S)STI_, (b,+b)-2 =02 )=

O(n/v?> ), and by Lemma 6. l(c) With high probability
S=0( (S)+n”88v?n5°‘”8)— (nfv2  +n¥)=0m/vE ). 1

LemMma 9.10. For t=1, .., T, the total size of the arrays
A, , allocated in Stage t is O(n/v))
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Proof. The claim is obvious for 1 =1 since v, = O(1), so
fix te{2,.., T}. By Lemma 9.8, with high probability the
total number of arrays allocated in Stage s is O(n/v??).
Hence the total size of the arrays allocated in Stage ¢ to
color classes that are not apparently-huge is

= O(n/v}),

(0] <(n/v,22) WP+ 1)+ Z ([;,-/L’?))

i=1

as desired.

What remains is to bound the total size of the arrays
allocated to apparently-huge color classes. Let I={::
I <i<nand 4 is dpparently huge in Stage ¢}. 1t suffices to
show that 3, b, = O(n/r}) with high probability, since
then the total size of the arrays allocated to apparently-huge
color classes in Stage t is O(3,.;v%h,) = O(n/v}). To this
end we partition / into three subsets:

I'={iel: #,is not well-supplied in Stage:—1 or

4, is not well-estimated in Stage ¢},

I" = {iel\I': N, ,>b,/v]}, and
I" = {ieI\I': N, ,<b,/v]}.
Using property (B) of a coarse-profile as in the proof

of Lemma 9.7 as well as Lemma 9.7 itself, we find that
with high probability, ., b,= O(nfv? +nf2" +n**) =
O(n/v?). Suppose next that ie I". Then N, , > b,/v7 and 4, is
well-estimated in Stage 1, ie., b,2b,/v,. Also, since 4, is
apparently-huge in Stage ¢, it cannot be apparently -small in
Stage ¢, 50 b,>0v!7. It follows that N, ,>b,/v® and also that
N, >b" '7"/1 = b, vit=v \/17, But then, by
Lemma 9.9, Z,E b= 0( n/vf) with high probability.

As concerns [ ﬁnally, we use the fact that a color class
4, with N, < <b, /v is very unlikely to become apparently-
huge in Stage . Spemﬁcally, according to Lemma 3.1(d), the
probability of this event is at most

NG
<_i~—%4e-— <2,
’I b[ vf

and a simple martingale argument shows that >, ;~ 13,:
O(nfv +n"®n**) = O(n/v?) with high probability. |

-~

-~

LEMMA 9.11. With high probability, the algorithm is
correct and uses O(n) processors and O(n) space.

Proof. We have already argued that the correctness of
the algorithm follows from Lemmas 9.5 and 9.10. It uses
O(n) processors and O(n) space, plus the resources needed
for the incomplete allocations in lines (8) and (16), which
are O(n) by Lemmas 9.8, 9.10 and 7.3, and the resources
needed for the incomplete compaction in line (18), which
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are O(n) by Lemmas 9.8 and 6.1. This ends the proofs of
Lemmas 9.11 and 9.1. |

COROLLARY 9.12.  There is a constant & >0 such that for
all given ne N, the following problem can be solved on a
TOLERANT PRAM using O(log* n) time, n processors and
O(n) space with probability at least 1 —27"" (Las Vegas):

Given n integers x,, ... X, in the range O.n, compute n
nonnegative integers b, ..., b, such that

(A) X1y b;=0(n);

(B) Fori=1,..nb>b,

where b,=|{j: 1 <j<nand x;=i}|, fori=1,...n

Proof. After semisorting the input elements into an
array A of size O(n) using the algorithm of Lemma 9.1, we
can use the algorithm of Lemma 2.8(a) to store them in a
linked list in the order in which they occur in 4. This makes
it easy to compute the first and the last element in 4 of each
nonempty color class, which identifies nonoverlapping sub-

arrays A,, .., A, of A such that 4, contains all elements of
#,, for i=1, .., n. All that remains is to take b,=|4,|, for
i=1.,n |

The final goal in this section is to take the step from the
nonoptimal algorithm of Lemma 9.1 to an optimal semisor-
ting algorithm. We first describe an algorithm with optimal
speedup for computing a profile with the properties
described in Corollary 9.12, except that condition (B) may
be violated in a few cases.

LEMMA 9.13.  There is a constant & >0 such that for all
given n, 1€ N with t = log* n, the following problem can be
solved on a TOLERANT PRAM using O(t) time, [ n/t7] pro-
cessors and O(n) space with probability at least 1 —2~"
(Monte Carlo): Given n integers x,, ..., X,, in the range 0..n,
compute n nonnegative integers 5, y e 1;,, such that

(A) Xi_, b,=0(n);
(B) 2ic/b,=0(n/7),

where b= [{j: 1<j<n and x;=i}|, for i=1, ..,
I={i:1<i<nandb,>b}.

n, and

Proof. Assume that t<n'® and that b,<n'® for
i=1, .., n. First use the algorithm of Theorem 8.11 to com-
pute a coarse-profile b,,...b, forx,, .., x,. Then apply two-
pass scattering in time with phase count r to the primary
input X, ..., X,, and the profile input b,,..b,and let 4’
and #" be the resulting sets of successful and unsuccessful
elements, respectively. It follows almost exactly as in the
proof of Theorem 8.11 that |#™"| = O(n/t) with high prob-
ability. We can hence use the algorithms of Theorem 4.6 and
Lemma 8.1 to store Z" in an array of size O(n/7) and to
replace the values of elements in 2" by values in a range of
size O(n/t), after which we can use the algorithm of
Corollary 9.12 to compute a profile A7, ... 5" such that
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i bl =0(nfr), but b7 = | B~ 47|, for i=1, .., n (take
br=0foreachie {1, .., n} with B, 2" = ).

Now draw a random sample # from #” (not from the full
input set #') by including each element of 4" in % with prob-
ability 1/7 and independently of other elements. By Chernoff
bound (a), with high probability |#| = O(n/t). Exactly as
described for 4 above we can compute a profile b”. .. b”

1]

such that Y7_, 67 =0(n/t), but b’ >|4,n4%|, for
i=1,.,n Fori=1 . ,nletb;=|4.n4"|, bl = |8, H"|
and b =|#B,~n%| Fori=1,.,n if b,<t’ then we can

compute b} exactly (cf. the description of scattering in time
preceding Lemma 8.7) and take b,= b/ + b6/ 2 b+ b" =b,;
otherwise take b, = max{2th/, 1} + b

Property (A) 1s satisﬁed since Y_, B, <Y, (bl +
2th? + b") + O(n) = 11|+2r|”/l+|J1”|+n O(n).
As for property (B), fix ie {1, ... n} and note first that we
cannot have b,> 5, unless b’>mdx{2rb t*}. However,
b > 7rb 1mplles b?” < b}/(27), which under the condition
b >1? happens with probability at most ¢ ~ ¥ < ¢~ ¥ by
Chernoff bound (b). The desired result now follows by a
martingale argument. |

THEOREM 9.14.  There is a constant ¢ > O such that for all
given n, 1€ N with 1 2log* n, n-color semisorting problems
of size n can be solved on a TOLERANT PRAM using O(1)
time, [ n/t7] processors and O(n) space with probability at
least 1 =27 " (Las Vegas).

Proof. Observe first that it suffices to partition the input
into two subsets and to semisort these into arrays Q' and Q"
of size O(n) each. For then, as in the proof of Corollary 9.12,
we can divide Q' into nonoverlapping subarrays A}, ..., A},
and Q" into nonoverlapping subarrays A7, ..., 4 such that
each element of 4, is stored either in A or in A4/, for
i=1,..,n after which we can use the algorithm of
Theorem 7.1 to allocate an array A, of size | 4}| + IA”| to 4,
from a base array of size O(3"7_, ( IA | + IA”I n) and
store all elements of #,in 4, fori=1,.

By this observation, it suffices to semisort the » input
elements with a “waste” of O(#n/7) elements, i.e., with O(n/t)
elements not placed in the output array. This is because the
elements that could not be placed are sufficiently few to be
semisorted by the algorithm of Lemma 9.1 (following a
compaction and renaming according to Theorem 4.6 and
Lemma 8.1), after which we are in the situation described
above.

As usual, assume that t<n'* and that b,<n'® for
i=1,..,n The algorithm begins by computing a profile
by,...b, for x,,..,x, with the properties described in
Lemma 9.13, after which it applies one-pass scattering in
time with phase count 7 to the primary input X', .., X, and
the profile input &, .., b,. Similarly as in the proof of
Theorem 8.11, call 4, well-estimated if b, < b,, and call each
element of 4, good if 4, is well-estimated, and bad otherwise,
for i=1,..,n Our first source of “waste” are the bad
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elements; by property (B) of Lemma 9.13, their number is
O(n/t) with high probability. A second source of “waste”
are the colliding good elements. Since a good element
collides with probability at most 1/7, a martingale argu-
ment shows that the number of colliding good elements is
also O(nft +n**) = O(n/r) with high probability. A third
and last source of “waste” will be good elements that can-
not be placed in the output array although they did not
collide. We now describe a procedure that uses the output
of the scattering in time to semisort most of the noncolliding
good elements.

Recall that scattering in time with profile input &, ... b,,,
as described in Section 8, uses arrays A,... A4, of list
headers and counters allocated within a base array of size
O(n), where |4,|=b,, fori=1, .., n Fori=1,.. n, divide
A, into [,/ segments, each of size at most 7, and say that
an element 1s stored in a segment if it belongs to a list whose
header 1s stored in (a cell in) the segment. Further take
b= |A.nA"|, where 4" is the set of noncolliding elements.

Now associate a rarget array with each segment as
follows: For i= 1, ..., n, if b, <, then the target array of the
(single) segment of A; is of size min{b}, 2t} (as argued in
Section 8, this quantity is readily available). If 5, > 7, on the
other hand, the target array of each segment of 4, is of size
27, and the target arrays of all segments of A4, form a con-
tiguous block of memory cells—this is easy to ensure, since
they are all of the same size. Note that the total size of the
target arrays is Q(n), so that they can be allocated according
to Theorem 7.1 from a base array of size O(#), which will be
the output array of the semisorting.

We finally associate with each segment the task of placing
min{m, s} elements stored in the segment in its target array,
where m is the number of elements stored in the segment
and s is the size of its target array, and execute all the tasks
using operation allocation, as described in Section 7; if we
take the length of a task to be the sum of the size of its
associated segment and the size of the corresponding target
array, the necessary prerequisites are easily seen to be
satisfied (since every task is of length at most 3z, 1t suffices
to show how to process a task in linear sequential time,
which is straightforward).

We want to show that with high probability, the number
of elements not placed in the corresponding target arrays in
the computation above is O(#/7). To this end note that the
choice of a list number in the scattering in time implicitly is
a choice of a segment, and that the elements stored in a seg-
ment can be placed in the corresponding target array if their
number is no larger than the size of the target array, i.e., if
their number is at most 2z. The expected number of
elements of a well-estimated color class 4, choosing a par-
ticular segment is at most 7 {since b; < 5,-, the number of lists
associated with 44 at least equals the number of elements in
#;). Hence by Chernoff bound (a), the probability that a
fixed element of a well-estimated color class 4, finds itself in
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a segment containing 27 + 1 or more elements of 4, is at
most ¢ “*. A martingale argument now shows that with
high probability, the number of noncolliding good elements
that cannot be placed in the appropriate target arrays is
Oowmt). |

10. APPLICATIONS OF SEMISORTING

This section describes a few relatively straightforward
applications of Theorem 9.14. A number of less immediate
applications were mentioned in the introduction.

Our first goal is to extend the semisorting result to strong
semisorting. Recall that whereas usual semisorting places
the elements of each color class in a subarray of a base
array, strong semisorting additionally requires the size of
the subarray of each color class to be proportional to the
size of the color class, a property that is often useful in
applications.

Going from usual semisorting to strong semisorting
obviously 1s a matter of compacting each color class into
linear space. Treating color classes independently, we can
use the algorithm of Theorem 5.3 to choose a suitable size
for the destination array of each color and carry out the
actual compaction using the algorithms of Section 4. Since
color classes may be small, however, their sizes may be over-
estimated (as well as underestimated) by the algorithm of
Theorem 5.3; as a result, although the compaction of a color
class succeeds, it may fail in the sense that the destination
array is too large. Since this 1s an infrequent event, we have
enough resources to retry each unsuccessful compaction
many times, which achieves a high reliability. An indispen-
sable prerequisite for this, however, is the ability to tell
whether a particular compaction was indeed into linear
space. We therefore need a certified approximate counting
algorithm that with high probability estimates the number
of ones among n bits correctly, up to a constant factor, and
that exptlicitly reports failure if it is unable to do so. ie.,
a Las Vegas algorithm for approximate counting
(Lemma 10.3). Our idea for obtaining such an algorithm is
simple: Compacting the ones in the input into an array 4
furnishes a proof that their number b is at most |4|. On the
other hand, subsequently compacting the free cells in A4 into
an array Q proves that 14| — b < |QJ, which yields a lower
bound on 5.

We already know how to compact » elements into an
array of size ch, where c is a constant. It turns out, however,
that for the scheme above to work we cannot allow ¢ to be
arbitrarily large; in fact, we must demand that ¢ <2. We
therefore briefly depart from our usual philosophy of
1gnoring constant factors to show that the relevant result in
Section 4 (Theorem 4.6) actually holds for any constant
¢>1 (Lemma 10.1). Observations similar to Lemmas 10.1
and 10.2 were made independently and first reported by
Goodrich (1991).
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LemMa 10.1.  For every fixed p>0 there is a constant
&> 0 such that for all given n, d, e N with t = log* n, com-
plete compaction problems of size n and with parameters
d— 1,40 can be solved on a TOLERANT PRAM using O(7)
time, [njt7] processors and O(n) space with probability at
least 1 —2 " (Las Vegas).

Proof. Without loss of generality we can assume that
ud = 12, since otherwise the number of active input elements
is bounded by a constant, that ¢ <n and that g 1s rational
and at most 1. It suffices to describe a basic algorithm with
a failure probability of 2 ““". since for d<./n the active
elements can be compacted into an array of size O(f )
using the algorithm of Corollary 4.3, after which the basic
algorithm can be applied independently 9(\/1_1 times. It
also suffices, for a certain constant K e N, to place all except
at most ud/K elements in an array of size s =[ (1 + #,/2) d7,
since, provided that X is sufficiently large, the algorithm of
Theorem 4.6 can then be used to place the remaining
elements in an array of size [ ud/37, which for ud > 12 is at
most (1 +u)d—s.

We do this using repeated l-scattering over a fixed array
A of size s. Initially let all elements be active, and then carry
out a number of stages. In each stage the remaining active
elements are 1-scattered over A; colliding elements as well
as elements that hit an element placed in a previous stage
remain active, while the other elements are placed in 4 and
become inactive.

Assume that some stage starts with more than ud/K active
elements. It 1s easy to see that a fixed element collides or hits
an element placed in a previous stage with probability at
most /s < 1/(1 +4/2), so that the expected number of
elements deactivated in the stage is at least (ud/K)(1 — 1/
(14 22)) = p2d/(2K(1 + 1;2)) = (1°/(4K)) -d. By Lemma
2.2(b), with high probability the stage under consideration
deactivates at least (u°/(8K )) - d elements. We may conclude
that with high probability, [ 8K/u7 stages suffice to reduce
the number of active elements to at most ud/K, as desired. |

LemMMa 10.2.  For every fixed u >0 there is a constant
e>0 such that for all given n, te N with v =log* n, the
Jfollowing problem can be solved on « TOLERANT PRAM using
O(7) time, [ n/t7] processors and O(n) space with probability
at least 127" (Monte Carlo). Given n bits x, ... x,,
compute a nonnegative integer b such that b <b< (1 + ) b,
whereb=1{j: 1< j<nand x;=1}|.

Proof. Define an input element to be active if its value
1s 1, and assume without loss of generality that x is rational
and at most 1. Take 6 =u/3 and begin by using the algo-
rithm of Theorem 5.3 to compute an integer b such that with
high probability, b/K <5 < b, for some constant K> 1. If
0b <1, solve the problem in a trivial manner. Otherwise
repeatedly use the algorithm of Lemma 10.1 with =0 1o
attempt to compact the active elements with limit d =5,
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b+160b), b+2 0b, .. stopping after the first successful
complete compaction, and return as b the quantity
L{1+6)d_|, where d is the limit of the last (successful}
attempt.

The size of the destination array of the successful compac-
tion is at most (1 +60) d; i.e.. the relation b <b is satisfied.
On the other hand, the compaction will succeed with high
probability for any limit which is at least 5. Provided that
indeed b < b, the first limit with this property in the series
above is at most b + b < (1 + 6) b, so that with high prob-
ability, b<(14+0)>b<(14+30)b=(1+x)b. It is easy to
see from this that provided that indeed b = Q(b). with high
probability the algorithm of Lemma 10.1 is applied only a
constant number of times, i.e., the running time is O(7). |

Informally, the “true” output of the Las Vegas algorithm
below for approximate counting is the integer 5. The condi-
tion y =0 indicates the correctness of the output, whereas
v =1 signifies that the execution failed.

LemMA 10.3.  For every fixed 1t >0 there is a constunt
e£>0 such that for all given n, Te N with ©>log*n, the

Sfollowing problem can be solved on a TOLERANT PRAM using

O(t) time, [n/t7] processors and O(n) space. Given n bits

X\ X, COMpute a nonnegative integer b and a bit y such

that
(1
(2)

If y=0, thenb<b<
Priy=1)<2"".

(1 4+u)b, where b= Z,_l X,

Proof. Assume that u is rational, choose ) < | to make
(1-40)(1+u)=1 and begin by applying the algorithm
of Lemma 10.2 to obtain a nonnegative integer » such
that with high probability, b<b<b/(1—0). Taking
b=1(140)b], we now verify the two inequalities b <bg
(1 +u) b and set y =1 if the verification fails. Assume that
b>1, since for =0 the verification can be done trivially
according to Lemma 2.7.

Again define an input element to be active if its value is 1.
Let 4 be an array of size # and use the algorithm of
Lemma 10.1 with 4 =0 and d=5 to attempt to place the
active elements in A. If this succeeds, it clearly proves that
b < b. On the other hand, since b > b with high probability,
the compaction succeeds with high probability.

Assuming that the compaction into 4 succeeds, we next
use the algorithm of Lemma 10.1 with 4 =1 and d =1 206 |
to attempt to place the free cells in A in an array Q of size
L40bh |. More precisely, this entails deriving from A4 a bit
SEQUENCE X, ..., X| 44, Such that x;=1if and only if the jth
cell of 4 contains no input element, for j=1, .., |4], and
X;=0 for j=|4|+1,.., |4|+n, and then using x|, ..,
X14|+n a8 Input to the algorithm of Lemma 10.1 (X, , ..
X|4 4+ are added only to ensure that the algorithm works
correctly with high probability). Take y =0 if and only if
both compactions according to Lemma 10.1 succeed.
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The following happens with high probability: 5>
(1 —8) b, so the number & — b of free cells in A is at most
(1+6)b—(1—0)b=20b<20b, and the compaction into
Q succeeds. If it does, this is proof that the number of free
cells in 4 is at most |Q|, and hence that b >h—| 40b 1>
(1 — 40) b, from which it follows that 5 < (1 +u)b. |

THEOREM 10.4. There is a constant ¢ > 0 such that for all
given n, te N with t2log* n, n-color strong semisorting
problems of size n can be solved on a TOLERANT PRAM using
O(t) time, [ njt7] processors and O(n) space with probability
at least 1 —27"" (Las Vegas).

Proof. We begin by semisorting the input according to
Theorem 9.14. As in the proof of Corollary 9.12, we can
view this as providing us with » disjoint subarrays 4,, ..., 4,
of a base array A4 of size O(n) such that the elements of 4,
are placed in A4,, for i=1, .., n. Our goal is to move the
elements in 4, from A; to a subarray of A4, of size O(b,), for
i=1, .., n which provides a solution to the strong semi-
sorting problem.

We process A4, .., 4, using operation allocation, as
described in Section 7. The sequential processing of an array
is simply exact compaction by means of prefix summation.
The parallel processing of 4, is as follows, for i=1, .., n:
Apply the algorithm of Lemma 10.3 to A; with g =1 to
obtain a pair (13,,}',-), where b, is an estimate of b, and
v, is an indication of the validity of b, (if y,=0,
then b,<b,<2b,). Subsequently apply the algorithm of
Lemma 10.1 with 4 =1 to attempt to place 4, in a subarray
A, of A, of size at most 25, (if 2b,>|A4,|, simply take
A= A),). Ifeither y, = 1 or the compaction of 4, into 4/ fails,
we will say that the processing of 4, fails. Take ;=1 if the
processing of 4, fails, and y} = 0 otherwise.

By Lemmas 10.1 and 10.3, the processing of A, fails with
probability at most 2-2 1"’ for some fixed J >0 and for
i=1, .., n. In particular, with high probability the process-
ing of an array of size »'"® or more does not fail. As another
consequence, E(Y7_, y,-2'4")=0(n). Furthermore, by
a martingale argument, 3 7_, vig,=O(n) with high
probability, where ¢, =min{2M4"1 7'} fori=1, .., n.
However, this means that if the processing of A, fails, for
some i€ {1, .., n}, then we can expend @(q,) operations in
a second attempt to process 4,. We again use operation
allocation, now with a new collection of tasks. Since
|4,;] <n'?® with high probability, we can clearly compact 44,
exactly in O(q,) sequential time. Furthermore, if ¢, = 27417,
we can use prefix summation (Lemma 2.4) to compact 4, in
O(r) time using [¢q,/t] processors, while if instead
g;=n"*7, [q,/t7] processors suffice to carry out @(n'"*)
independent attempts to process A4, in O(z) time as above,
at least one of which will succeed with high probability. |

CorOLLARY 10.5. There is a constant ¢ > 0 such that for
all given n, teN with t>2log* n, n-color fine-profiling
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problems of size n can be solved on a TOLERANT PRAM using
O(r) time, [ n/t7| processors and O(n) space with probability
at feast 1 =27 (Las Vegas).

Proof. Immediate from Theorem 104 and Lemma
2.8(a) (see the proof of Corollary 9.12). ||

A second application of semisorting is to integer chain-
sorting. Recall that the chain-sorting problem is to store
given keys in sorted order in a linked list. In the formal
definition below, the linked list is represented by a circular
structure and a pointer to the last list element.

DerNITION.  For all n, m e N, the m-color chain-sorting
problem of size n is the following: Given » integers x,, ..., x,,
in the range 1..m, compute a cyclic permutation n, ..., %, of
I,..,n and an integer ge{l,..,n} such that for all

jeil,...nf\{q}, we have x, > x,.

THEOREM 10.6. There is a constant € > 0 such that for all
given n, 1€ N with T = log* n, n-color chain-sorting problems
of size n can be solved on a TOLERANT PRAM using O(1)
time, ['n/t7) processors and O(n) space with probability at
least 1 —27"" (Las Vegas).

Proof. Begin by semisorting the input elements into an
array A of size O(n) according to Theorem 9.14. Using the
algorithm of Lemma 2.8(a), it is then easy to construct a
linked list containing precisely the elements of 4, in the
order in which they occur in 4, for i =1, ..., n. The remaining
problem is to concatenate these lists in the right order. This
can be done by applying the algorithm of Lemma 2.8(a) a
second time, now to an n-bit input whose ith bit is 1 if and
onlyif #,# , fori=1,..n |

A claim similar to Theorem 10.6 above was made pre-
viously in (Gil et al., 1991). It seems unlikely, however, that
any algorithm based on the outline given in (Gil et al., 1991)
can be made to run in linear space.

An important application of Theorem 10.6 is to
(standard) integer sorting. Let us restrict attention to the
problem of sorting » integers in the range 1.7 on a CRCW
PRAM. Rajasekaran and Reif (1989) describe a randomized
algorithm with optimal speedup for this problem that uses
O(log n) time and O(#n/log n) processors with high probabil-
ity. Bhatt er al. (1991) give a deterministic algorithm that
works in O(log n/loglogn) time using O(n(loglogn)?/
log n) processors. We show how to combine the time bound
of (Bhatt er «l, 1991) with the time-processor product of
(Rajasekaran and Reif, 1989), thus achieving at the same
time optimal speed and optimal speedup. Similar results
were found independently by Matias and Vishkin (1991)
and Raman (1991); note, however, that the algorithms of
these authors (which are quite similar) are inherently much
less reliable than the algorithm given here—the failure prob-
ability is (2 ~°2"") for some fixed «, to be contrasted with
our failure probability of 2 """
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Our algorithm makes use of a subroutine for monotonic
list ranking with optimal speedup. The monotonic list rank-
ing problem of size n is, given a linked list of # elements such
that which of two given list elements precedes the other can
be determined in constant time by a single processor, to
mark each element of the list with its position within the list.

LemMa 10.7 (Bhatt et al., 1991).  For all given integers
nzd4 and 1>=logn/loglogn, monotonic list ranking
problems of size n can be solved on a (deterministic)
TOLERANT PRAM using O(t) time, [ n/t7| processors and
O(n) space.

THEOREM 10.8.  There is a constant € >0 such that for all
given integers n =4 and t = log n/log log n, n integers in the
range 1..n can be sorted on a TOLERANT PRAM using O(1)
time, [n/t7] processors and O(n) space with probability at
least 1 —2 " {Las Vegas).

Proof. Chain-sort the input elements using the algo-
rithm of Theorem 10.6 and compute the position of each
element within the resulting list using the algorithm of
Lemma 10.7. In order to determine the relative order of
two elements with the same value, compare their positions
in the semisorted array output by the algorithm of
Theorem 9.14. |

11. NONOPTIMAL ALGORITHMS

This section investigates the effect for the problems con-
sidered of allowing slightly superlinear processor and space
bounds. In some cases, we also have to generalize the
problems by introducing a so-called slack parameter (this
notion already appeared in Lemmas 6.1 and 7.3). We begin
by showing that compaction with slack can be done in
constant time.

Although, technically, the results stated in this section
allow k and 7 to vary independently as functions of n, it is
probably most useful to imagine that 7 = is constant. Our
informal discussion makes this assumption.

THeoOREM 11.1.  There is a constant ¢ >0 such that for
all given n, d, k, teN with t2k, complete compaction
problems of size n and with parameters d — |0, where
s=d| log'*" n], can be solved on a TOLERANT PRAM using
O(1) time, [ knit7 processors and O(n) space with probability
at least 1 —2 " (Las Vegas).

Proof. We can assume that (2] log* "' d7)* <log'*' d,
since otherwise k=Q(log*d) and we can apply the
algorithm of Theorem 4.6, Then apply the algorithm of
Lemma 4.4 O(k) times. The number of operations needed is
O(kn), which translates into [kn/t7] processors, for any
t > k. Omitting the size o of the destination array from the
notation d, —_d,, we can express the process symbolically
as follows:
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d| log*'d | d| log® d ]
< —
(2]—10g(k+ 1) d—])i 26]‘103"‘*“:1'\
d d d d

STlog® dT Tlog® a1 =~ “TlegdT &
The last step in this sequence reduces the number of active
elements below 1, i.e., to zero. The destination array used in
the first step is of size O(d log'*’ d) = O(s). and the sizes of
the destination arrays used in the remaining steps sum to
O(d). Hence all active elements can indeed be placed in an
array of size O(s). |}

We now extend Theorem 11.1 to the case of several
colors. In contrast with the algorithm of Theorem 11.1, the
generalized algorithm of Theorem 11.2 needs superlinear
space.

DerFiNiTION.  For all n, meN, d,,...d, >0 and 1> 1,
the complete colored compaction problem of size n and with

limits d|, ..., d,, and slack 1 is, given # integers x,, .., x, in
the range 0..m such that |{j: 1 <j<nand x,=i}| <d,, for
i=1, .., m, to compute a complete placement for x, ..., x,

with bounds Ad,, .., Ad,,.

THEOREM 11.2.  There is a constant ¢ > 0 such that for all
givenn,m k., t,d,,...d,,eN withm=(logm)®V and t 2 k,
complete colored compaction problems of size n with limits
d,,...d, and with slack O(log'*' n) can be solved on a
ToLERANT PRAM using O(t) time, [kn/t7] processors and
O(n+ 37 dlog® n) space with probability at least
1 —2"" (Las Vegas).

Proof. The idea of the proof is to apply the nonoptimal
part of the algorithm of Theorem 6.2 (with =1/2) in a
situation in which some of the elements have already been
deactivated. Fori=1, .., m, assume that d; < n and define 4,
to be large if b,>n'* Recall that the algorithm of
Theorem 6.2 essentially applies the algorithm of Lemma 6.1
log* n times to reduce the fraction of active elements in each
large color class below a certain threshold, after which the
compaction is finished using negligible resources. In the pre-
sent setting, where we are allowed O(log'*’ ) slack, we can
speed up the deactivation by first 1-scattering the elements
of #, over an array of size 2d,[log'*' n7, for i=1, .., m.
Lemma 3.6(b) shows that the number of elements in a fixed
large color class #, that collide in the 1-scattering is at most
b:/log®’ n, except with probability at most ¢ ¢, where { =
(b;/log™ n)*/(32b,) = Q(b,/(log'®' n)?) = Q(n'"*), so that
with high probability the fraction of active elements left
in any large color class is at most 1/log'*' . It is now easy
to see that all but the last O(k) applications of the algorithm
of Lemma 6.1 in the algorithm of Theorem 6.2 can be omit-
ted. Since all subroutines used can be made to run in O(z/k)
time using [kn/t7] processors, we can therefore deactivate
all elements in O(t) time. |
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Armed with Theorem 11.2, we can easily use the reduc-
tions of interval allocation and interval marking to colored
compaction given in Section 7 to derive similar results for
these problems.

DerFmiTiON.  For all ne N and 4 2 1, the interval alloca-
tion problem of size n and with slack 4 is, given » non-
negative integers x,, .., X, to compute a complete interval
placement for x, ..., x, with slack L.

THEOREM 11.3.  There is a constant ¢ > O such that for all
given n, k, te N with t 2k, interval allocation problems of
size n and with slack O(log®' n) can be solved on « TOLERANT
PRAM using O(z) time, [ kn/t7| processors and O(n log'*' n)
space with probability at least 1 —2 =" (Monte Carlo).

Proof. As the proof of Theorem 7.1, except that
Theorem 11.2 is used instead of Theorem 6.2. ||

In (Bast et al,, 1992), Theorem 11.3 is used to prove a
related result: For any ke N, usual interval allocation
problems (i.e., with constant slack) of size n can be solved in
O(k) time using O(n log™ n) processors and O(n log'*’ n)
space with high probability.

DEerFINITION. For all ne N and 2> 1, the interval mark-
ing problem of size n and with slack 2 is the following: Given
n nonnegative integers Xx,,.., X,, compute nonnegative
integers s, 7,, ..., Z, such that

(1) For all integers 7, j, k with 1<i<j<k<s, if
=5, #0,thenz;=z;;

(2) Fori=1l.,ml{j:1<j<sandz;=i}|=x;

3) s=0(2 Z}':l X;).

THEOREM 11.4. There is a constant € > 0 such that for all
given n, k, te N with t = k, interval marking problems of size
n and with slack O(log'*’ n) can be solved on a TOLERANT
PRAM using O(t) time, [ (kn+ Wlog'*) n)/t7 processors
and O((n+ W)log® n) space with probability at least
1 —27" (Monte Carlo), where W is the sum of the input
numbers.

=i

Proof.  As the proof of Theorem 7.2, using Theorem 11.3
instead of Theorem 7.1. ||

We next turn to the coarse-profiling problem, for which
there 1s no need to introduce a slack parameter.

THEOREM 11.5. There is a constant & >0 such that for all
given n, ke N, n-color coarse-profiling problems of size n
can be solved on a TOLERANT PRAM using O(k) time,
O(nlog'® n) processors and O(nlog'®’ n) space with prob-
ability at least 1 — 27" (Monte Carlo).

Proof. 1If the allocation of space and processors in the
algorithm of Lemma 8.3 is carried out using the algorithms
of Theorems 11.3 and 11.4, the only part of the algorithm
that needs more than constant time is the computation of
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ty, .., U, 1n lines (6)~(7). We will show how to compute
¥, ..» U, in constant time using O(n log'*’ n) processors and
O(n log'*' n) space. Fix ie {1, .., n} and recall that in the
algorithm of Lemma 8.3, the variable v, steps through a
sequence of values until hitting either r or the index of a
nonfull row in a GCS .#, which becomes its final value.

Let T=|log***n] and take w,=1 and w,=
min{2* ', T}, for 1 =2, .., T. Except for a suffix of length
bounded by &+ O(1), the sequence of successive values
assumed by v, 1s a prefix of w, ..., w. It is easy to see from
this that it suffices to determine the first nonfull row of &,
if any, among rows w,, .., w .

Given w, .., wp, it Is a trivial matter to construct a table
that maps w, to 1, forall re {1, ... T} with w, < T, and that
maps all other integers in the range 1..» to zero. Such a table
allows each processor associated with an element participat-
ing in .% to learn whether it occupies a position in a row of
the form w,, for some re {1, .., T} with w, < T, and, if so,
for which value of . We can now appeal to Lemma 3.4(a),
which shows that the first nonfull row of & among rows

Wy, .., wy, if any, can be found using O(T) additional
processors and O(T) space, as desired.
We still need to describe how to obtain w,, .., wy in

constant time. Let 4 be the set of sequences of length T
with elements drawn from {1, .., T}. Since [4|=T"=
O(log'® n), we can associate a ream of T processors with
each element of 4 without using more than ©&(n) processors.
Now let each team decide in constant time whether its
associated sequence is w,, ..., w, simply by verifying the
T local conditions w,=1 and w,=min{2"- T}, for
t=2, .., T, and, if so, output its associated sequence. |

Theorem 11.5 represents the best that we can do on the
ToLeraNT PRAM; in particular, the number of processors
needed 1s superlinear. On the ARBITRARY PRAM, on the
other hand, we obtain a constant-time algorithm with
optimal speedup with the sole drawback of superlinear
space requirements.

THEOREM 11.6. There is a constant € > 0 such that for all
given n, k € N, n-color coarse-profiling problems of size n can
be solved on an ARBITRARY PRAM using O(k) time, n
processors and O(nlog'*' n) space with probability at least
I — 27" (Monte Carlo).

Proof. Consider the algorithm of Theorem 11.5 and
note that the processors allocated by the algorithm serve
exclusively to evaluate (some of) the rows of a number of
graduated conditional scatterings according to Lemma
34(a). By Lemma 3.4(b), the same computation can be
carried out on the ARBITRARY PRAM with just one pro-
cessor per GCS in addition to those associated with the
elements participating in the GCS, so that clearly n pro-
cessors suffice. Finally observe that the allocation of space
can be done using the algorithm of Theorem 11.3. |
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We finally derive a constant-time algorithm for a variant
of semisorting defined below. Recall from Section 9 that the
n-processor semisorting algorithm proceeds in a number of
stages, each except the last of which essentially performs
bootstrapping for the following stage, while only the last
stage actually solves the entire problem. The key observa-
tion for the present section is that if we simply omit the
bootstrapping of the first stages, the algorithm still operates
in a well-defined way, but with a certain increase in its
resource requirements and, possibly, a certain degradation
in the quality of its output. It even turns out that if we start
with Stage 1,, for some ¢,, the bootstrapping effect of
Stage ¢, 1s not affected by the absence of Stages 1, ..., t,— 1,
so that our original analysis applies without modification to
all stages following Stage:,. It therefore suffices to
reanalyze Stage 7, with respect to its resource requirements
and its effect on the output.

DerIniTION.  For all n, meN and 2> 1, the m-color
semisorting problem of size n and with slack 4 is the follow-
ing: Given n integers x, ..., X,, in the range 0..m, compute n
nonnegative integers y,, ..., v, such that

(1)

(2) Forallijkefl, . ,n} ify,<y,<y,and x,=x,,
then x; =x,;

(3) max{y;: 1 <j<n}=0()n).

Forl<i<j<n ifx;#0, then y, #y;;

THEOREM 11.7.  There is a constant € >0 such that for all
given n, k € N, n-color semisorting problems of size n and with
slack O(log'® n) can be solved on a TOLERANT PRAM using
O(k) time, O(nlog*' n) processors and O(nlog'®' n) space
with probability at least | —2 " (Las Vegas).

Proof. Begin by computing a coarse-profile for the input
numbers using the algorithm of Theorem 11.5. Then execute
only Stages 1, ..., T of the algorithm of Lemma 9.1, where
to=max{1, T—2(k+1)}; note that v, = O(log"**" n).
Recall that each stage deactivates elements by placing them
in suitably-sized arrays, one for each color. In every stage,
the size of the array used for a particular color is chosen on
the basis of a test scattering for that color, which roughly
estimates the number of remaining active elements of that
color. As an important consequence of this “self-correcting”
mechanism, we were able to analyze the deactivation
capability of a stage without relying on the deactivation
carried out in earlier stages (if earlier stages perform poorly,
the resource requirements of the stage at hand go up, but it
will still reduce the number of remaining active elements to
the required level). Therefore Lemma 9.5 remains true (the
last stage always deactivates all remaining active elements)
and, with the additional restriction f = t,, the same holds for
Lemmas 9.6-9.9. We must show that the algorithm is
correct and bound its resource requirements. As in
Section 9, this essentially boils down to bounding the total
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size of the arrays A4, , allocated in Stage ¢, for r=¢,, .., T
For 1>1t,+ 1, this quantity can be seen to be O(n/v})
(Lemma 9.10); the reason is that in the analysis of a par-
ticular stage, Lemmas 9.7-9.9 can be applied to the previous
stage. As regards Stage ¢, itself, it is easy to see from lines
(6), (8), (13). (14) and (16) in the algorithm that the total
size of the arrays allocated in Stage 1, is O(nv,’). Since v}’ =

o

O(log'*’ n), by the choice of ¢, it now follows essentially as
in the proof of Lemma 9.11 that with high probability, the
algorithm uses O(nlog*' n) processors and O(nlog'*' n)
space and solves the semisorting problem with slack
O(log®' n). |

COROLLARY 11.8.  There is a constant ¢ >0 such that for
all given n, k € N, n-color chain-sorting problems of size n can
be solved on a TOLERANT PRAM using O(k) time,
O(nlog'* n) processors and O(nlog*' n) space with
probability at least 1 —2~" (Las Vegas).

Proof. As the proof of Theorem 10.6, using Theorem
11.7 instead of Theorem 9.14 and part (b) of Lemma 2.8
instead of part (a). |
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