Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Cue-based preparation and stimulus-based priming of tasks in task switching

MPG-Autoren
/persons/resource/persons19783

Koch,  Iring
Department Psychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Koch, I., & Allport, A. (2006). Cue-based preparation and stimulus-based priming of tasks in task switching. Memory & Cognition, 34(2), 433-444. doi:10.3758/BF03193420.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0010-A739-8
Zusammenfassung
In this study, we investigated the interaction of three different sources of task activation in precued task switching. We distinguished (1) intentional, cue-based task activation from two other, involuntary sources of activation: (2) persisting activation from the preceding task and (3) stimulus-based task activation elicited by the task stimulus itself. We assumed that cue-based task activation increases as a function of cue-stimulus interval (CSI) and that task activation from the preceding trial decays as a function of response-stimulus interval. Stimulus-based task activation is thought to be due to involuntary retrieval of stimulus-associated tasks. We manipulated stimulus-based task activation by mapping each of the stimuli consistently to only one or the other of the two tasks. After practice, we reversed this mapping in order to test the effects of item-specific stimulus-task association. The mapping reversal resulted in increased reaction times and increased task shift costs. These stimulus-based priming effects were markedly reduced with a long CSI, relative to a short CSI, suggesting that stimulus-based priming shows up in performance principally when competition between tasks is high and that cue-based task activation reduces task competition. In contrast, lengthening the response-cue interval (decay time) reduced shift costs but did not reduce the stimulus-based priming effect. The data are consistent with separable stimulus-related and response-related components of task activation. Further theoretical implications of these findings are discussed. Copyright 2006 Psychonomic Society, Inc.