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Abstract Nonlinear control-affine systems described
by ordinary differential equations with time-varying
vector fields are considered in the paper. We pro-
pose a unified control design scheme with oscillating
inputs for solving the trajectory tracking and stabiliza-
tion problems under the bracket-generating condition.
This methodology is based on the approximation of a
gradient-like dynamics by trajectories of the designed
closed-loop system. As an intermediate outcome, we
characterize the asymptotic behavior of solutions of
the considered class of nonlinear control systems with
oscillating inputs under rather general assumptions on
the generating potential function. These results are
applied to examples of nonholonomic trajectory track-
ing and obstacle avoidance.
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1 Introduction

Consider a nonlinear control system

ẋ =
m∑

k=1

fk(x, t)uk, (1)

where x = (x1, . . . , xn)� ∈ D ⊆ R
n is the state,

u = (u1, . . . , um)� ∈ R
m is the control, D is a domain,

and the time-dependent vector fields fk : D × R
+ →

R
n are regular enough to guarantee the existence and

uniqueness of solutions to the Cauchy problem for sys-
tem (1) with any initial data x(t0) = x0 ∈ D, t0 ≥ 0,
and any admissible control u : [t0,+∞) → R

m . We
will formulate the required regularity assumptions pre-
cisely below.

Thedriftless control-affine system (1) is an extremely
importantmathematicalmodel in nonholonomicmechan-
ics, which represents the kinematicswith nonintegrable
constraints in the case m < n (we refer to the book [3]
for general reference). In this area, the class of sys-
tems with time-independent vector fields is of special
interest:
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ẋ =
m∑

k=1

f̃k(x)uk, x ∈ D ⊆ R
n, u ∈ R

m,

f̃k ∈ C1(D;Rn). (2)

In contrast to linear control theory, the controllability of
system (2) does not imply its stabilizability by a regular
feedback law of the form u = h(x). A famous example
of a completely controllable system (2) with n = 3 and
m = 2, which is not stabilizable in the classical sense,
was presented in [5]. Since then, the stabilization and
motion planning problems of nonholonomic systems
have been extensively studied by many experts in non-
linear control theory,mechanics, and robotics.A survey
of essential contributions in this area is performed in
Sect. 2, where the advantages and limitations of known
approaches are discussed.

To the best of our knowledge, the present paper con-
tains the first description of a unified control design
method for solving a variety of different control prob-
lems such as stabilization of an equilibrium point
x = x∗, tracking an arbitrary curve in the state space,
and motion planning with obstacles for rather general
nonautonomous systems (1). The main idea behind our
construction is to design time-dependent feedback con-
trollers in such a way that the trajectories of the corre-
sponding closed-loop system approximate the trajecto-
ries of a gradient-like system of the form

ẋ = −γ
∂

∂x
P(x, t), x ∈ R

n, (3)

where the potential function P(x, t) and gain γ > 0 are
to be defined according to the specific problem state-
ment. In particular, the use of Lyapunov-like functions
P allows to solve the stabilization and trajectory track-
ing problems, while so-called navigation functions or
artificial potential fields can be exploited for generat-
ing collision-freemotion of system (1) in domains with
obstacles. In more details, we discuss these problems
in Sect. 3. The key contribution of our work is twofold:

– a unified approach for solving the stabilization and
motion planning problems for driftless control-
affine systems of the form (1) under the bracket-
generating condition;

– convergence results under relaxed regularity assump-
tions on the vector fields and their directional
derivatives. In particular, the vector fields of the
considered class of systems are not required to be
smooth.

The subsequent presentation is organized as follows.
The outcomes of the literature study are reported in
Sect. 2. A family of ε-periodic feedback controllers is
introduced in Sect. 3 in the form of trigonometric poly-
nomials with respect to time with coefficients depend-
ing on the system state. It is shown in Sect. 3.2 that
the proposed controllers allow approaching an arbi-
trary neighborhood of the set of critical points of P
by the solutions of system (1) at large time t under a
suitable choice of the small parameter ε. These approx-
imation schemes are then adapted to derive stabilizing
controllers for the equilibrium stabilization problem
(Theorem 3 and its corollary in Sect. 3.3), tracking
problem (Theorem 4 and its corollary in Sect. 3.4),
and obstacle avoidance (Sect. 3.5). We illustrate the
proposed control design methodology with examples
in Sect. 4. Finally, concluding comments are given in
Sect. 5 to summarize the key results of the present paper
and underline its contribution with respect to the pre-
vious work. The proofs of the main results are given in
Appendices A–D.

Notations
Throughout the text, we will use the following nota-

tions:
R

+—the set of nonnegative real numbers;
R>0—the set of positive real numbers;
δi j—the Kronecker delta: δi i=1 and δi j=0 when-

ever i 	= j ;
dist(x, S)—the Euclidean distance between a point

x ∈ R
n and a set S ⊂ R

n

Bδ(x∗)—δ-neighborhood of an x∗ ∈ R
n with δ > 0;

Bδ(S) =
⋃

x∈S

Bδ(x) – δ-neighborhood of a set S ⊂
R

n with δ > 0;
∂ M , M—the boundary and the closure of a set M ⊂

R
n , respectively; M = M ∪ ∂ M ;
|S|—the cardinality of a set S;
K—the class of continuous strictly increasing func-

tions ϕ : R+ → R
+ such that ϕ(0) = 0;

[ f, g](x)—the Lie bracket of vector fields f, g :
R

n → R
n at a point x ∈ R

n , [ f, g](x) = L f g(x) −
Lg f (x), where Lg f (x) = lim

s→0

f (x+sg(x))− f (x)
s ,

L f g(x) = lim
s→0

g(x+s f (x))−g(x)
s ; if f and g are differ-

entiable, then Lg f (x) = ∂ f (x)
∂x g(x) and L f g(x) =

∂g(x)
∂x f (x);
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for a differentiable function P : Rn → R, the gra-
dient of P(x) evaluated at a point x0 ∈ R

n is denoted

by ∇ P(x0) = ∂ P(x)
∂x

∣∣∣
x=x0

;

if P : R
n × R → R is differentiable with

respect to its first argument, we denote ∇x P(x0, t0) =
∂ P(x,t)

∂x

∣∣∣
x=x0,t=t0

for given x0 ∈ R
n and t0 ∈ R.

2 Related work

In this section, we briefly summarize some known
results on the stabilization and motion planning of
control-affine systems of the form (1). Note that, to our
best knowledge, most of the related publications focus
on autonomous systems with time-independent vector
fields. A number of efficient control design methods
have been developed in the literature with the emphasis
on special classes of systems, such as flat systems [8],
chained-form systems [26,40], unicycle- and car-like
systems [7,29,30,33,36], manipulator models [9,28],
and Chaplygin systems [34].

For planning the motion of general nonholonomic
systems, a broad class of approaches is based on
the application of Lie algebraic techniques. With this
respect, an essential assumption is that the vector fields
of system (2) together with their iterated Lie brackets
span the whole tangent space at each point of the state
manifold (Hörmander’s condition). Several authors
used this assumption to produce time-periodic control
laws such that the trajectories of a nonholonomic sys-
temapproximate the trajectories of an extended system.
The papers [27,39] exploited an unbounded sequence
of oscillating controls with unbounded frequencies for
such an approximation in case of driftless systems. The
paper [23] addresses the limit behavior of solutions of
a control-affine systemwith input signals of magnitude
ε−α and frequency scaling 1/ε as ε → 0. It is assumed
that the primitives of input signals and their iterated
primitives up to a certain order are bounded. Then it is
shown that the limit behavior of the considered oscil-
lating system is either defined by its drift term or by
a linear combination of certain iterated Lie brackets,
depending on the value of α. In the paper [4], the aver-
aged system as a differential inclusion is constructed
for driftless control-affine systems with fast oscillating
inputs. It is proved that an arbitrary solution of such a
differential inclusion can be approximated by a family
of solution of the original system when the oscillation

frequency tends to infinity. This approximation result
is also extended to the class of systems with drift under
a time reparametrization and the assumption that the
drift generates periodic dynamics.

An overview of motion planning methods for non-
holonomic systems is presented in the book [18]. For
nilpotent systems, exact solutions to the motion plan-
ning problem are proposed with the use of sinusoidal
inputs. In general case, the local steering problem can
be solved by constructing a nilpotent approximation
under a suitable choice of privileged coordinates. Then
the global steering algorithm is summarized in [18] as a
finite sequence of stepswhich steers the given nonholo-
nomic system to an arbitrary small neighborhood of the
target point. The nilpotentization of a wheeled mobile
robot model with a trailer is proposed in the paper [1]
for planing local maneuvers of this kinematic system.
On the basis of solving the related sub-Riemannian
problem, an algorithm for suboptimal parking has been
implemented and tested for several robot configura-
tions.

Analgorithm formotionplanningof kinematicmod-
els of nonholonomic systems in task space is developed
in [31]with the use of theCampbell–Baker–Hausdorff–
Dynkin formula. The motion planning in task space
is treated in the sense of steering the system output
to a neighborhood of the desired point. The proposed
algorithm is illustrated with a unicycle and kinematic
car examples. A nonholonomic snakelike robot model
with m (m ≥ 3) rigid links is considered in [17]. The
motion planning problem is treated there in the sense
of generating a gait such that the origin of the snake’s
bodymoves along a given planar curve. This problem is
solved by expressing the body velocity from the com-
patibility equation and reconstruction equation.

An interesting example of nonholonomic system
with the growth vector (4,7) is studied in [16]. Such
an example is a modification of the trident snake robot
with three 1-link branches of variable length. A nilpo-
tent approximation of this system is constructed, and
the local optimal steering problem is analyzed by the
Pontryagin maximum principle. Controls for gener-
ating the motion in the direction of higher-order Lie
brackets were proposed in [10,11] for systems with
two inputs.

A hybrid path planning method based on the com-
bination of a high-level planner with a low-level con-
troller performing in autonomous vehicle is described
in [37]. The high-level planner (D∗ Lite planner) works
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on the discretized 2Dworkspace to produce a reference
path such that at each step the robot model moves from
a given cell to one of the eight neighboring cell which
does not have an obstacle. The output of the high-level
planner is collected as a set of waypoints ending at the
goal, and the cost is the total length of the path. Then the
low-level controller, running on the autonomous vehi-
cle, provides control inputs to generate motion from
the current state to the next waypoint. This path plan-
ning method is experimentally validated on a differen-
tial drive robot in rough terrain environments.

Stabilizing time-varying controls were proposed in
[45] for second degree nonholonomic systems (follow-
ing the terminology used in [25]). Unlike other publi-
cation in this area, the exponential convergence to the
equilibrium was proved without the assumption that
the frequencies of controls tend to infinity. Besides,
the paper [45] presented a rigorous solvability analy-
sis of the stabilization problem in the proposed class
of controls. For detailed reviews of other motion plan-
ning and stabilizing strategies we refer to [3,15,22].
It has to be emphasized that, in spite of a large num-
ber of publications on nonholonomic motion planning,
only particular results are available for the stabilization
together with the obstacle avoidance. Even for static
obstacles, this problem was studied only for specific
systems (see, e.g., [21,35,38]). A general class of non-
holonomic systems was considered in the paper [41],
where a time-independent controller was constructed
based on the gradient of a potential function. Note that
such a result ensures only stability (but not asymp-
totic stability) property. An algorithm computing time-
periodic feedback controls for approximating collision-
free paths was presented in [14]; however, no solvabil-
ity issues concerning the general collision avoidance
problem have been addressed in that paper.

For a class of driftless control-affine systems, the tra-
jectory tracking problem was addressed in [43] under
the assumption that the target trajectory is feasible, i.e.,
satisfies the dynamical equations with some control
inputs. However, to the best of our knowledge, there
are no results available for the stabilization of general
classes of nonlinear control systems in a neighborhood
of nonfeasible curves or in domains with obstacles.

3 Unified control framework for second degree
nonholonomic systems

In this section, we present the main idea of our con-
trol design scheme by considering the nonholonomic
systems of degree 2, according to the classification of
[25]. The proposed control design provides a generic
approach for stabilization and motion planning of
underactuated driftless control-affine systems.

3.1 Definitions and assumptions

To generate stabilizing control strategies, we will
exploit sampling, similar to the approaches of [6,45].
With this respect, we introduce the following defini-
tion,which extends the notion ofπε-solutions to nonau-
tonomous systems.

Definition 1 (πε-solution) Consider a control system

ẋ = f (x, u, t), x ∈ D ⊆ R
n, u ∈ R

m,

t ∈ R, f : D × R
m × R → R

n,

and assume that a feedback control is given in the form
u = h(a(x, t), t), a : D×R → R

l , h : Rl ×R → R
m .

For given t0 ∈ R and ε > 0, define a partition πε of
[t0,+∞) into the intervals

I j = [t j , t j+1), t j = t0 + ε j, j = 0, 1, 2, . . . .

A πε-solution of the considered closed-loop corre-
sponding to the initial value x0 ∈ R

n is an abso-
lutely continuous function xπ (t) ∈ D, defined for
t ∈ [t0,+∞), which satisfies the initial condition
xπ (t0) = x0 and the differential equations

ẋπ (t) = f
(
xπ (t), h(a(xπ (t j ), t j ), t), t

)
,

t ∈ I j , for each j = 0, 1, 2, . . . .

We will illustrate the relation between πε-solutions
and classical solutions with examples in Sect. 4.

Before formulating basic results of this paper, we
introduce the main assumptions on the state space D,
vector fields fk , and the potential function P used in
the gradient flow dynamics (3).
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Assumption 1 The vector fields fk(x, t) : D×R
+ →

R
n are twice continuously differentiable w.r.t. x , and

fk , L f j fk are continuously differentiable w.r.t. t , for
all j, k = 1, m.

Moreover, for any family of compact subsets D̃t ⊂
D, t ≥ 0, there exist constants M f , L f x , L2 f > 0,
L f t , H f x , H f t ≥ 0 such that

(1.1) ‖ fk(x, t)‖ ≤ M f ,

(1.2) ‖ fk(x, t)− fk(y, t)‖ ≤ L f x‖x−y‖,
∥∥∥ ∂ fk(x,t)

∂t

∥∥∥ ≤
L f t , ‖L f j fk(x, t)‖ ≤ L2 f ,

(1.3) ‖L fl L f j fk(x, t)‖ ≤ H f x ,

∥∥∥
∂(L f j fk (x,t))

∂t

∥∥∥ ≤
H f t ,

for all t ≥ 0, x, y ∈ D̃t , j, k, l = 1, m.

Another important assumption is related to the con-
trollability property of system (1). As it has already
been mentioned, in this section we focus on systems
with the degree of nonholonomy 2, i.e., those whose
vector fields together with their Lie brackets span the
whole n-dimensional space.

Assumption 2

(2.1) System (1) satisfies the bracket-generating con-
dition of degree 2 in D, i.e., there exist sets of
indices S1 ⊆ {1, 2, . . . , m}, S2 ⊆ {1, 2, . . . , m}2
such that |S1| + |S2| = n and

span
{

fi (x, t), [ f j1 , f j2 ](x, t) | i ∈ S1,

( j1, j2) ∈ S2
} = R

n

for all t ≥ 0, x ∈ D.

(4)

(2.2) For any family of compact subsets D̃t ⊂ D, t ≥ 0,
there exists an MF > 0 such that

‖F−1(x, t)‖ ≤ MF for all t ≥ 0, x ∈ D̃t ,

where F−1(x, t) is the inverse matrix for

F(x, t) =
((

f j1(x, t)
)

j1∈S1

([ f j1, f j2 ]
(x, t)

)
( j1, j2)∈S2

)
. (5)

It is important to note that the rank condition (4) implies
nonsingularity of the n×n matrixF(x, t) for all t ≥ 0,
x ∈ D.

The next two assumptions describe properties of the
potential function P for the gradient-like system (3).

Assumption 3 The function P : D × R
+ → R

is twice continuously differentiable w.r.t. x . More-
over, for any family of compact subsets D̃t ⊂ D,
t ≥ 0, there exist constants m P ∈ R, L Px > 0,
L2Px , L2Pt , L Pt , HPx ≥ 0 such that

(3.1) m P ≤ P(x, t),

(3.2)
∥∥∥ ∂ P(x,t)

∂x

∥∥∥ ≤ L Px , ‖P(x, t) − P(y, τ )‖ ≤
L Px‖x − y‖ + L Pt‖t − τ‖,

(3.3) ‖∇x P(x, t) − ∇x P(y, τ )‖ ≤ L2Px‖x − y‖ +
L2Pt‖t − τ‖,

(3.4)
n∑

i, j=1

∥∥∥∥
∂2P(x, t)

∂xi∂x j

∥∥∥∥ ≤ HPx ,

for all t, τ ≥ 0, x ∈ D̃t , y ∈ D̃τ .

To formulate the last assumption of this section, we
introduce families of level sets for a function P(x, t).
Namely, given a constant c ∈ R, we denote

LP,c
t = {x ∈ D : P(x, t) ≤ c},

L∇ P,c
t = {x ∈D : ‖∇x P(x, t)‖≤ c} for t ≥ 0.

Assumption 4 For every x0 ∈ D, there exist λ > 0

and ρ > 0 such that, for all t ≥ t0 ≥ 0, LP,P(x0,t0)+λ
t

is nonempty, compact, convex set, and

L∇ P,ρ
t ⊆ LP,P(x0,t0)+λ

t ⊂ D.

3.2 Convergence results

Below we propose a universal control strategy which
ensures the convergenceof the trajectories of system (1)
to the set of extremum points of a given function P .
Suppose that the index sets S1, S2 and the matrix
F(x, t) are described in Assumption 2, then we param-
eterize the controls as

uk = uε
k(a(x, t), t) =

∑

i∈S1

ai (x, t)δki

+ ε
− 1
2

∑

( j1, j2)∈S2

√
|a j1 j2(x, t)|φ(k,ε)

j1 j2
(t), k = 1, m.

(6)

Here the column vector a(x, t) = (
ai1(x, t)

∣∣
i1∈S1

,

a j1 j2(x, t)
∣∣
( j1, j2)∈S2

)� ∈ R
n is obtained from

a(x, t) = −γF−1(x, t)∇x P(x, t), (7)
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and the oscillating components are

φ
(k,ε)
j1 j2

(t) = 2
√

πκ j1 j2

(
δk j1sign(a j1, j2(x, t))

× cos
2πκ j1 j2

ε
t + δk j2 sin

2πκ j1 j2

ε
t
)
, (8)

where κ j1 j2 ∈ N are pairwise distinct numbers, γ > 0
is a control gain, and ε > 0 is a small parameter.

Remark 1 Inwhat follows, sufficient conditions for the
convergence of our control scheme will be proposed
for large values of γ and small values of ε. In this
framework, the gain γ , corresponding to the ampli-
tude of control signals (6), has the same meaning as γ

in (3). Thus, the bigger the γ , the faster the transient
behavior could be achieved. From the practical view-
point, there is a trade-off between the convergence rate
and control constraints in possible applications, so the
amplitude parameter γ should not exceed the actuator

bounds, and the frequency parameters ω j1 j2 = 2πκ j1 j2
ε

,
( j1, j2) ∈ S2 should be within the actuator bandwidth.
The requirement for κ j1 j2 > 0 to be pairwise distinct
integers in (8) means that there are no resonances up to
order 2 between the frequencies ω j1 j2 (see, e.g., [45]
and [2, Chap. 6] for the resonance conditions). If the
value ε > 0 is fixed, then an optimal choice (with
respect to minimizing the frequencies) is to define κ j1 j2
as the minimum natural numbers from 1 to |S2|, i.e.,
{κ j1 j2 : ( j1, j2) ∈ S2} = {1, 2, . . . , |S2|}.

The first result of this section is as follows.

Lemma 1 Let Assumptions 1–4 be satisfied for sys-
tem (1)with a function P(x, t). Then there exist a γ̄ > 0
and ε̄ : [γ̄ ,+∞) → R>0 such that, for any γ ≥ γ̄ and
any ε ∈ (0, ε̄(γ )], the πε-solution xπ (t) of system (1)
with the controls uk = uε

k(a(x, t), t) given by (6)–(8)
and the initial data xπ (t0) = x0 ∈ D, t0 ≥ 0 is well

defined and xπ (t) ∈ LP,P(x0,t0)+λ
t for all t ≥ t0, and

there exists a T ≥ 0 such that

P(xπ (t), t) ≤ sup
t≥t0+T

sup
ξ∈L∇ P,ρ

t

P(ξ, t)

for all t ≥ t0 + T,

where λ, ρ are positive numbers from Assumption 4.

The proof is given in Appendix B.
In the case of time-independent function P(x) and

vector fields fk(x), it is possible to prove a stronger
result under milder assumptions. Let us denote the set
of local minima of the function P by

S∗
min = {x∗ ∈ D : there exists r > 0 s.t.

P(x) ≥ P(x∗) for all x ∈ Br (x∗)}.
The following theorem holds for the system

ẋ =
m∑

k=1

fk(x)uk, x ∈ D ⊆ R
n, u ∈ R

m . (9)

Theorem 1 Given system (9), let fk ∈ C2(D;Rn)

satisfy Assumption 2 in a domain D ⊆ R
n, and let

a function P ∈ C2(D;R) be such that its level sets
LP,P(x0) = {x ∈ D : P(x) ≤ P(x0)} are compact for
all x0 ∈ D.

Then for any γ > 0 there exists an ε̄ > 0 such that,
for any ε ∈ (0, ε̄], the πε-solution xπ (t) of system (9)
with the controls uk = uε

k(a(x), t) given by (6)–(8) and
the initial data t0 ≥ 0, xπ (t0) = x0 ∈ D is well defined
and satisfies the following property:

P(xπ (t)) → α∗ ∈ S∗
Pmin

as t → +∞, (10)

provided that x0 /∈ {x ∈ D : ∇ P(x) = 0}\S∗
min. Here

S∗
Pmin

= {P∗ ∈ [m P , P(x0)] : there exists x∗ ∈ S∗
min

such that P∗ = P(x∗)}.
The proof of the asymptotic convergence of P(xπ (t))
to the set of critical values of P can be found in [47].
More strict property (10) follows from the fact that, for
small enough ε,

P(x0) ≥ P(xπ (t0 + ε)) ≥ P(xπ (t0 + 2ε)) ≥ . . .

and the uniqueness of the solutions of system (9) with
the controls uk = uε

k(a(x), t) and the initial data t0 ≥
0, x(t0) = x0 ∈ D.

The approximate convergence of a time-varying
function P to its minimum value can be proved under
an additional requirement, which also allows to esti-
mate the convergence rate:

Theorem 2 Let Assumptions 1–3 be satisfied for sys-
tem (1) with a function P(x, t), and let ρ > 0 be such
that ∅ 	= LP,m P +ρ

t ⊂ D for all t ≥ 0. Assume more-
over that, for any family of compact subsets D̃t ⊂ D,
t ≥ 0, there exists a μ > 0 and ν ≥ 0 such that

‖∇x P(x, t)‖2
≥ μ(P(x, t) − m P )ν for all x ∈ D̃t , t ≥ 0. (11)

Then for any γ ∗ > 0 there is a γ̄ > γ ∗ such that,
for any γ > γ̄ and ε ∈ (0, ε̄) (ε̄ > 0 depends on γ ),
the πε-solution xπ (t) of system (1) with the controls
uk = uε

k(a(x, t), t) given by (6)–(8) and the initial
data t0 ≥ 0, xπ (t0) = x0 ∈ Dt0 is well defined and
satisfies one of the following properties:
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(I) If ν = 1, then

P(xπ (t), t) − m P

≤ (P(x0, t0) − m P )e−μγ ∗(t−t0−ε) + ρ

for all t ≥ t0.

(II) If ν > 1, then

P(xπ (t), t) − m P ≤ (
(P(x0, t0) − m P )1−ν

+μγ ∗(ν − 1)(t − t0 − ε)
) 1
1−ν + ρ, t ≥ t0.

The proof is given in Appendix C.

Remark 2 As it follows from the proof of Theorem 2,
it suffices to take

γ̄ = γ ∗ + 22ν

ρνμ

(
L Pt + L Px cR1(

√
MF L Px

+HPx cR1MF ε̄)) ,

where cR1 = L f t
2 + H f t

6

√
MF L Px . Obviously, onemay

put γ̄ = γ ∗+ 22ν

ρνμ
L Pt if the vector fields of system (1)

are time-independent, and γ̄ = γ ∗ if, additionally, the
function P does not depend on t .

Corollary 1 Assume that the constants required
in Assumptions 1–3 (and in (11)) exist for all x ∈
LP,P(x0,t0)

t , x0 ∈ D, t0 ≥ 0. Then the assertions of
Lemma 1 (Theorem 2) remain valid even if the level
sets of the function P(x, t) are not compact.

Similarly, if the functions fk(x) are globally Lips-
chitz in LP,P(x0), for any x0 ∈ D, the functions fk(x),

L f j fk(x, t), L fl L f j fk(x), ‖F−1(x)‖, ∂ P(x)
∂x , ∂2P(x)

∂x2
are bounded, and the function P(x) is bounded from
below for all x ∈ LP,P(x0), x0 ∈ D, then the assertion
of Theorem 1 remains valid even if the level sets of the
function P(x) are not compact.

Corollary 2 Let the conditions of Theorem 1 be satis-
fied. Furthermore, assume that for any compact subset
D̃ ⊂ D there exist a μ > 0 and ν ≥ 1 such that
‖∇ P(x)‖2 ≥ μ(P(x) − m P )ν for all x ∈ D̃, where
m P is defined in Assumption 3.1.

Then for any γ > γ ∗ > 0 there exists an ε̄ > 0
such that, for any ε ∈ (0, ε̄), the πε-solution xπ (t) of
system (9) with the controls uk = uε

k(a(x), t) given
by (6)–(8) and the initial data t0 ≥ 0, xπ (t0) = x0 ∈
D is well defined and satisfies one of the following
properties:

(I) If ν = 1, then

P(xπ (t)) − m P

≤ (P(x0) − m P )e−μγ ∗(t−t0−ε) for all t ≥ t0.

(II) If ν > 1, then

P(xπ (t)) − m P ≤ (
(P(x0) − m P )1−ν

+μγ ∗(ν − 1)(t − t0 − ε)
) 1
1−ν for all t ≥ t0.

These results follow from the proofs of Lemma 1 and
Theorem 2.

Lemma 1 and Theorem 1 give rise to several impor-
tant results applicable to more specific control prob-
lems. Namely, one can choose a function P so that
the corresponding gradient system (3) possesses some
desired properties, such as asymptotic stability of a
given point or set and collision-free motion. In the next
section, we will consider different classes of functions
P in order to solve the stabilization, trajectory tracking,
and obstacle avoidance problems.

3.3 Stabilization problem

In this section, we consider a classical control problem
of finding control laws which ensure the asymptotic
stability of a point x = x∗ ∈ D for system (9).

Problem 1 (Stabilization problem) Given system (9)
and a point x∗ ∈ D, the goal is to construct a feedback
control of the form (6)–(8) ensuring the asymptotic sta-
bility of x∗ for the corresponding closed-loop system.

To solve Problem 1, we apply the results of Sect. 3.2
with a Lyapunov-like function P(x), which ensures the
asymptotic stability of x∗ for the gradient system (3).

Theorem 3 Given system (9) with fk ∈ C2(D;Rn)

satisfying Assumption 2 in a domain D ⊆ R
n and a

point x∗ ∈ D, let a function P ∈ C2(D;R) satisfy the
following conditions:

– 3.1) there exist functions w11, w12 ∈ K such that
{x ∈ R

n : ‖x − x∗‖ ≤ w−1
11

(
P(x0) − m P

)} ⊂ D
for all x0 ∈ D, and

w11(‖x − x∗‖) ≤ P(x) − m P

≤ w12(‖x − x∗‖) for all x ∈ D;
– 3.2) ‖∇ P(x)‖ = 0 if and only if x = x∗, and there

exists a function w2 ∈ K such that

‖∇ P(x)‖ ≤ w2(‖x − x∗‖) for all x ∈ D.
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Then for any γ > 0, there exists an ε̄ > 0 such that
the point x∗ is asymptotically stable for system (9) with
the controls uk = uε

k(a(x), t) given by (6)–(8) and any
ε ∈ (0, ε̄), provided that the solutions of the closed-
loop system (9), (6)–(8) are defined in the sense of Def-
inition 1.

The proof of this theorem is based on the proofs
of Lemma 1 and Theorem 1 (see Appendix D). The
following result directly follows from Theorem 3 and
Corollary 2:

Corollary 3 Given system (9) with fk ∈ C2(D;Rn)

satisfying Assumption 2 in a domain D ⊆ R
n and a

point x∗ ∈ D, let a function P ∈ C2(D;R) satisfy the
following conditions:

– C3.1) there exist constants ω11, ω12, v1, v2 > 0
such that

ω11‖x − x∗‖v1

≤ P(x) − m P ≤ ω12‖x − x∗‖v2 for all x ∈ D;
– C3.2) there exist constantsμ1, μ2 > 0andν1, ν2 ≥

1 such that

μ1(P(x) − m P )ν1

≤ ‖∇ P(x)‖2 ≤ μ2(P(x) − m P )ν2 for all x ∈ D.

Then for any γ > 0 there exists an ε̄ > 0 such that the
point x∗ is asymptotically stable for the closed-loop
system (9) with the controls uk = uε

k(a(x), t) given
by (6)–(8) and any ε ∈ (0, ε̄), provided that the solu-
tions of the closed-loop system are defined in the sense
of Definition 1. Moreover,

(I) If ν1 = 1, then x∗ is exponentially stable; namely,
for any γ > γ ∗ > 0, there exists an ε > 0 such
that

‖xπ (t) − x∗‖
≤ β‖x0 − x∗‖

v2
v1 e

− μ1γ ∗
v1

(t−t0−ε)
for all t ≥ t0,

where β =
(

ω12
ω11

) 1
v1 .

(II) If ν1 > 1, then x∗ is polynomially stable; namely,
for any γ ∗ > 0 and γ > γ ∗ there exists an ε > 0
such that

‖xπ (t) − x∗‖ ≤
(
β1‖x0 − x∗‖v2(1−ν1)

+β2(t − t0 − ε))
1

v1(1−ν1) for all t ≥ t0,

where β1 =
(

ω12

ω11

)1−ν1

, β2 = μ1γ
∗(ν1 − 1)

ω
1−ν1
11

.

In particular, to exponentially stabilize system (9) at
x∗, one can simply put

P(x) = ‖x − x∗‖2.
The above-stated decay rate estimates are illustrated
with numerical examples in Sect. 4.1.

Remark 3 It is interesting to note that for the degree 1
nonholomonic systems, i.e., for the case m = n, S1 =
{1, . . . , n}, the proposed stabilizing controls are time-
invariant functions

uε
i (x, t) = ui (x) = −(

f1(x) f2(x) . . . fn(x)
)−1∇ P(x),

which is the classical control design for stabilization of
fully actuated driftless control-affine systems.

Remark 4 The proposed control algorithm (6)–(8) sig-
nificantly simplifies the stabilizing control design pro-
cedure introduced in [45] and makes it possible to
express control coefficients explicitly without solving
a cumbersome system of algebraic equations.

3.4 Trajectory tracking problem

The proposed control design procedure with a time-
varying function P(x, t) can be used for ensuring the
motion of system (1) along desirable curves. Note that
we consider arbitrary continuous curves x∗(t) which
may not be feasible for system (1). Consequently, we
consider a relaxed problem statement for the approxi-
mate trajectory tracking as follows:

Problem 2 (Trajectory tracking problem) Given sys-
tem (1), a continuous curve x∗ : R

+ → D, and a
constant ρ > 0, the goal is to construct a feedback law
ensuring the attractivity of the family of sets

Lρ
t = {x ∈ D : ‖x − x∗(t)‖ ≤ ρ}t≥0. (12)

for the corresponding closed-loop system.

Note that attracting (locally/globally pullback attract-
ing) families of time-varying sets have been studied in
the paper [24] for nonautonomous systems of ordinary
differential equations. Here we treat this notion in the
sense of πε-solutions (Definition 1) for system (1) with
control inputs. To be precise, we introduce the follow-
ing definition.
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Definition 2 (Attracting family of sets in the sense of
πε-solutions) Let a feedback control of the form (6)–
(8) be given, and let ρ > 0. We call the family of
sets (12) attracting for the closed-loop system (1), (6)–
(8), if there exist � > 0, γ̄ > 0, and ε̄ : [γ̄ ,+∞) →
R>0 such that, for any t0 ≥ 0, x0 ∈ B�(Lρ

t0) ∩ D,
γ ≥ γ̄ , ε ∈ (0, ε̄(γ )], the corresponding πε-solution
xπ (t) satisfying the initial condition xπ (t0) = x0 is
well defined and

dist(xπ (t),Lρ
t ) → 0 as t → +∞.

Based on Theorem 2, we are in a position to state
sufficient conditions for the solvability of Problem 2.

Theorem 4 Given system (1), a continuous curve x∗ :
R

+ → D, and a function P : D × R
+ → R, let

Assumptions 1–4 be satisfied, and assume that the fol-
lowing conditions hold:

– 4.1) there exist constants ω11, ω12, v1, v2 > 0 such
that

ω11‖x − x∗(t)‖v1 ≤ P(x, t) − m P

≤ ω12‖x − x∗(t)‖v2 for all t ≥ 0, x ∈ D;
– 4.2) there exist constants μ1, μ2 > 0 and ν1, ν2 ≥
1 such that

μ1(P(x, t) − m P )ν1 ≤ ‖∇x P(x, t)‖2
≤ μ2(P(x, t) − m P )ν2 for all t ≥ 0, x ∈ D.

Then, for any ρ > 0, the family of sets Lρ
t = {x ∈ D :

‖x − x∗(t)‖ ≤ ρ}t≥0 is attracting for the closed-loop
system (1) with the controls uk = uε

k(a(x, t), t) given
by (6)–(8) in the sense of Definition 2. Moreover, one
of the following assertions holds for any γ > γ ∗ ≥ γ̄ ,
ε ∈ (0, ε̄(γ )], and x0 ∈ B�(Lρ

t0) ∩ D:

(I) if ν1 = 1, then {Lρ
t }t≥0 is exponentially attractive,

i.e.,

‖xπ (t) − x∗‖ ≤ β‖x0 − x∗‖
v2
v1 e

− μ1γ ∗
v1

(t−t0−ε) + ρ

for all t ≥ t0,

where β =
(

ω12
ω11

) 1
v1 ;

(II) if ν1 > 1, then {Lρ1
t }t≥0 is polynomially attractive,

i.e.,

‖xπ (t) − x∗‖ ≤
(
β1‖x0 − x∗‖v2(1−ν1)

+β2(t − t0 − ε))
1

v1(1−ν1) + ρ for t ≥ t0,

where β1 =
(

ω12

ω11

)1−ν1

and β2 = μ1γ
∗(ν1 − 1)

ω
1−ν1
11

.

The proof is similar to the proof of Theorem 3.

Corollary 4 Given system (9) with fk ∈ C2(D;Rn)

satisfying Assumption 2 in a domain D ⊆ R
n, let a

curve x∗ : R+ → D be Lipschitz continuous such that
Bδ(x∗(t)) ⊂ D for all t ≥ 0 with some δ > 0.

Then, for any ρ > 0, the family of sets Lρ
t = {x ∈

D : ‖x − x∗(t)‖ ≤ ρ}t≥0 is (exponentially) attract-
ing for the closed-loop system (9) with the controls
uk = uε

k(a(x, t), t) given by (6)–(8) in the sense of
Definition 2.

The above result has been proved in [13] for continu-
ously differentiable x∗(t)with bounded first derivative.

3.5 Obstacle avoidance problem

Another important problemwhich can be solved by the
proposed approach is generating collision-free motion
of system (9) in environmentswith obstacles. To formu-
late such problem, assume that the set D is represented
as a closed bounded domain with “holes,” i.e.,

D = W \
N⋃

j=1

O j ,

whereW ⊂ R
n is a closedboundeddomain (workspace),

and O1,O2, . . . ,ON ⊂ W are open domains (obsta-
cles). The resulting set D is supposed to be valid [21],
i.e., Oi ⊂ intW and Oi ∩ O j = ∅ if 	= j , for all
i, j ∈ {1, . . . , N }.
Problem 3 (Obstacle avoidance problem) Given sys-
tem (9), an initial point x0 ∈ int D, and a destination
point x∗ ∈ int D, the goal is to construct a feedback
control such that the corresponding solution x(t) of the
closed-loop system (9) with the initial data x(0) = x0

satisfies the conditions:

– collision-free motion: x(t) ∈ int D for all t ≥ 0;
– convergence to the target: x(t) → x∗ as t → +∞.

As it is implied byTheorem1, the above problemcanbe
solved by the controls uk = uε

k(a(x, t), t) from (6)–(8)
with a proper function P ∈ C2(D;R) being such that
its level sets LP,P(x0) = {x ∈ R

n : P(x) ≤ P(x0)}
are compact and LP,P(x0) ⊂ D for all x0 ∈ D (see
also [12]). There is a broad range of potential functions
ensuring collision-free motion for specific classes of
systems, see, e.g., [32]. Some of those functions can be
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used under our control design framework for general
classes of nonholonomic systems. As possible candi-
dates for the function P , one can consider, e.g., the
following:

– Navigation functions. According to [32], a map
P ∈ C2(D; [0, 1]) defined on a compact connected
analytic manifold D with boundary is a navigation
function, if it is: 1) polar at x∗ ∈ intD, i.e., has a
unique minimum at x∗; 2) Morse, i.e., its critical
points on D are nondegenerate; 3) admissible, i.e.,
all boundary components have the same maximal
value, namely ∂ D = P−1(1).
In particular, if W = {x ∈ R

n : ϕ0(x) ≥ 0} and
Oi = {x ∈ R

n : ϕi (x) < 0}, i = 1, N , with convex
functions ϕ0, ϕi ∈ C2(Rn;R), then the navigation
function can be taken in the form

P(x) = ‖x − x∗‖2
(‖x − x∗‖2� + ϕ(x)

) 1
�

,

ϕ(x) =
N∏

i=0

ϕi (x), (13)

provided that � is large enough and, for all x ∈
∂Oi , i = 1, N ,

∇ϕi (x)�(x − x∗)
‖x − x∗‖2 < ci

ϕ,

where ci
ϕ is the minimal eigenvalue of the Hessian

of ϕi (x) (see [32] for more details).
– Artificial potential fields, which represent a com-
bination of attractive and repulsive potential fields.
In particular, one can take [19]:

P(x)

=
⎧
⎨

⎩
‖x − x∗‖2 + K

( 1

ϕ(x)
− 1

ϕ(ξ)

)2
if ϕ(x) ≤ ϕ(ξ),

K‖x − x∗‖2 if ϕ(x) > ϕ(ξ),

(14)

where K is a positive constant gain, ξ belongs to
a neighborhood of obstacles (see [19] for more
details). Another function of such type was pro-
posed in [42]:

P(x) = ‖x − x∗‖2
(
1 + K

ϕ(x)

)
, K > 0. (15)

4 Examples

In this section, we demonstrate the proposed con-
trol design approach on the mathematical model of

a unicycle, which is a well-known example with the
degree of nonholonomy 2. The equations of motion
have the form (9) with n = 3, m = 2, f1(x) =(
cos x3, sin x3, 0

)�, f2(x) = (
0, 0, 1

)�:

ẋ1 = u1 cos x3,

ẋ2 = u1 sin x3,

ẋ3 = u2.

(16)

Here (x1, x2) denote the coordinates of the contact
point of the unicycle wheel, x3 is the angle between the
wheel and the x1-axis, and u1 and u2 control the for-
ward and the angular velocity, respectively. Note that
the above control system can also be represented on the
Lie group SE(2) ⊂ GL(3). We refer the reader to [3,
Chap. 4.3] for more details on the Lie group represen-
tation.

It is easy to see that the vector fields of system (16)
satisfy Assumptions 1–2 in D = R

3. In particular,
Assumption 2 holds with the set of indices S1 = {1, 2},
S2 = {(1, 2)}:
span

{
f1(x), f2(x), [ f1, f2](x)

} = R
3 for all

x ∈ D = R
3,

so that the matrix

F(x) = ( f1(x) f2(x) [ f1, f2](x))

=
⎛

⎝
cos x3 0 sin x3
sin x3 0 − cos x3
0 1 0

⎞

⎠

is nonsingular in D, and the corresponding inverse
matrix

F−1(x) =
⎛

⎝
cos x3 sin x3 0
0 0 1

sin x3 − cos x3 0

⎞

⎠ (17)

has bounded norm for all x ∈ D.
According to the proposed control laws (6), we take

u1 = uε
1(a(x, t), t) = a1(x, t)

+ 2

√
π |a12(x, t)|

ε
sign(a12(x, t)) cos

2π t

ε
,

u2 = uε
2(a(x, t), t) = a2(x, t)

+ 2

√
π |a12(x, t)|

ε
sin

2π t

ε
.

(18)

In the above formulas, κ12 is taken to be equal 1 (as
suggested in Remark 1 with |S2| = 1), and the vector
of state-dependent coefficients a(x, t) is defined by (7):

a(x, t) = (a1(x, t) a2(x, t) a12(x, t))�
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(a)

(b)

Fig. 1 Exponential stabilization. a Time plots of ‖x(t) − x∗‖:
for the classical solution x(t) of the closed-loop system (blue);
for the πε-solution (green); for the gradient system (red); expo-
nential decay envelope ‖x0 − x∗‖e−2γ (t−ε) (dark blue). b Time

plots of d(t) = ‖x(t) − x̄(t)‖: for the classical solution x(t) of
the closed-loop system (blue) and for the πε-solution (green).
Here x̄(t) is the solution of ˙̄x = −γ∇ P(x̄)

= −γF−1(x, t)∇x P(x, t),

where γ > 0 and ε > 0 are control parameters, the
matrix F−1(x, t) is given by (17), and P ∈ C2(D ×
R;R). Thus,

a1(x, t) = −γ

(
∂ P(x, t)

∂x1
cos x3 + ∂ P(x, t)

∂x2
sin x3

)
,

a2(x, t) = −γ
∂ P(x, t)

∂x3
,

a12(x, t) = −γ

(
∂ P(x, t)

∂x1
sin x3 − ∂ P(x, t)

∂x2
cos x3

)
.

Next, we will illustrate the behavior of solutions to sys-
tem (16), (18) with different functions P(x, t), depend-
ing on the control goal. As it has been mentioned in
Sect. 3.1, the obtained control scheme can be used
within the framework of sampling in the sense of Defi-
nition 1, and for classical solutions as well. In the simu-
lations below, we depict the trajectories of system (16)
with both types of solutions of the closed-loop system.

4.1 Stabilization problem

We start with Problem 1 considered in Sect. 3.3. To
exponentially stabilize system (16) at an arbitrary x∗ ∈
R
3, one can take the simple quadratic function

P(x) = ‖x − x∗‖2. (19)

According to Corollary 3.I, the following decay rate
estimate holds:

‖xπ (t) − x∗‖ ≤ ‖x0 − x∗‖e−2γ (t−ε) for all t ≥ 0.

Figure 1 shows the trajectories of system (16) for x∗ =
(1,−1, π)�, γ = 1, ε = 0.1, x(0) = (0, 0, 0)�.

To illustrate the polynomial decay rate estimate
stated in Corollary 3.II, consider the function

P(x) = ‖x − x∗‖4. (20)
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Fig. 2 Polynomial stabilization. a Time plots of ‖x(t) − x∗‖:
for the classical solution x(t) of the closed-loop system (blue);
for the πε-solution (green); for the gradient system (red); poly-

nomial decay envelope
(‖x0 − x∗‖−2 + 8γ (t − ε)

)−1/2
. b Time

plots of d(t) = ‖x(t) − x̄(t)‖: for the classical solution x(t) of
the closed-loop system (blue) and for the πε-solution (green).
Here x̄(t) is the solution of ˙̄x = −γ∇ P(x̄)

In this case, ‖xπ (t) − x∗‖ ≤ (‖x0 − x∗‖−2 +8γ (t −
ε)
)−1/2 for all t ≥ 0. Figure 2 illustrates the behavior

of trajectories of system (16) for x∗ = ( 12 ,− 1
2 ,

π
2 )�,

γ = 1, ε = 0.1, x(0) = (0, 0, 0)�.

4.2 Trajectory tracking

For a given curve x∗(t) ∈ R
3 on a finite time hori-

zon t ∈ [0, T ], we will illustrate solutions to the tra-
jectory tracking problem (Problem 2) for system (16)
with controls of the form (18) generated by the follow-
ing potential function:

P(x, t) = ‖x − x∗(t)‖2, x ∈ R
3, t ∈ [0, T ].

Nonfeasible curve. Consider the curve x∗ ∈
C1([0, 20π ];R3):

x∗(t) = (0.01x∗
c,1(0.1t), 0.01x∗

c,2(0.1t), 0)�,

t ∈ [0, 20π ],
where the equations for x∗

c,1(t) and x∗
c,2(t) are given

in [44]. The classical and πε-solutions of system (16)

with the feedback control (18) are shown in Fig. 3. For
these simulations, we take

ε = 0.25, γ = 1, x(0) = (−4, 0, 0)�. (21)

Figure 3 shows considerable oscillations of the x1 and
x2 solution components around their reference values
x∗
1 (t) and x∗

1 (t). Note that in this case the curve x∗(t)
is not feasible, i.e., x = x∗(t) ∈ R

3, t ∈ [0, 20π ]
is not a solution of system (16) under any choice of
admissible controls u1 and u2. Indeed, the only pos-
sibility to satisfy system (16) with x∗

3 (t) ≡ 0 is to
have x∗

2 (t) ≡ const, which does not hold in the con-
sidered case. We will show in the next simulation that
the oscillations due to nonfeasible character of the ref-
erence curve can be significantly reduced if x∗(t) is a
solution of the kinematic equations (16).

Feasible curve. Consider now the feasible curve
x∗ ∈ C1([0, 20π ];R3) such that

x∗(t) = (x∗
1 (t), x∗

2 (t), x∗
3 (t))

�,

x∗
i (t) = 0.01x∗

c,i (0.01t), i = 1, 2, tan x∗
3 (t) = ẋ∗

2

ẋ∗
1
.
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Fig. 3 Tracking nonfeasible curve x∗(t): classical solution
(blue); πε-solution (green), projection of x∗(t) (dark blue)

In this case, x∗(t) satisfies system (16) with continuous
controls u1 = ũ1(t) and u2 = ũ2(t), where ũ1(t) =
ẋ∗
1 (t) cos x∗

3 (t)+ ẋ∗
2 (t) sin x∗

3 (t) and ũ2(t) = ẋ∗
3 (t). To

illustrate solutions of the trajectory tracking problem,
we apply slightly modified controls of the form

u1 = uε
1(a(x, t), t)

= a1(x, t) + 2

√
π |a12(x, t)|

ε
sign(a12(x, t))

× cos
2π t

ε
+ ũ1(t),

u2 = uε
2(a(x, t), t) = a2(x, t)

+ 2

√
π |a12(x, t)|

ε
sin

2π t

ε
+ ũ2(t).

(22)

Figure 4 shows the behavior of the closed-loop sys-
tem (16), (22) with the same initial value and control
parameters as in (21).

Unbounded and non-Lipschitz curves. Note that the
approach of Sect. 3.4 is also applicable for unbounded
curves which are not continuously differentiable, e.g.,
x∗(t) = (t, 0.5|t − 10|, 0)�. The results of numeri-
cal simulations are in Fig. 5 with the control parame-
ters (21) and x(0) = (0, 0, 0)�. However, the Lipschitz
property required in Corollary 4 is important, see Fig. 6

Fig. 4 Tracking feasible curve x∗(t): classical solution (blue);
πε-solution (green), projection of x∗(t) (dark blue)

with x∗(t) = (t, 0.1t2, 0)�. As in Fig. 3, some zigzags
are present in Fig. 5 due to nonfeasible character of the
reference curve.

Although our theoretical estimates allow to track
even nonfeasible curves with any prescribed accuracy,
possible practical implementations of this approach
should take into account the trade-off between the
tracking accuracy and the frequency of switching
allowed by the actuators.

4.3 Obstacle avoidance

We consider the obstacle avoidance problem (Prob-
lem 3) for system (16) in the domain D ⊂ R

3 rep-
resented as

D = W \
7⋃

j=1

O j , W = {x ∈ R
n : ϕ0(x) ≥ 0},

Oi = {x ∈ R
n : ϕi (x) < 0},

where the cylindric workspaceW and obstaclesOi are
defined by the functions ϕi (x) = (x1 − xoi )

2 + (x2 −
yoi )

2 − r2i , i = 0, 7, whose parameters are

123



21660 V. Grushkovskaya, A. Zuyev

Fig. 5 Tracking the reference curve x∗(t) = (t, 0.5|t−10|, 0)�:
classical solution (blue); πε-solution (green); x∗(t) (dark blue)

Fig. 6 Tracking the reference curve x∗(t) = (t, 0.1t2, 0)�: clas-
sical solution (blue); πε-solution (green); x∗(t) (dark blue)

xo0 = 0, yo0 = 0, r0 = 3.5, xo1 = 2, yo1 = 1,

r1 = 1, xo2 = 0, yo2 = −0.25, r2 = 0.5, xo3 = −1.5,

yo3 = 2, r3 = 0.75, xo4 = −2, yo4 = 0,

r4 = 0.75, xo5 = 1.5, yo5 = −2, r5 = 0.75, xo6 = 0.5,

yo6 = 2.5, r6 = 0.5, xo7 = −1, yo7 = −2, r7 = 1.

The potential function P(x) is constructed in the
form (13),

P(x) = ‖x − x∗‖2
(‖x − x∗‖2� + ∏7

i=0 ϕi (x)
) 1

�

, (23)

with the target point x∗ = (−2, 1, 0)�. For this exam-
ple, we take � = 5. In Fig. 7, we present the classical

Fig. 7 Obstacle avoidance problem with the potential func-
tion (23): classical solution (blue); πε-solution (green); gradient
flow (red)

and πε-solutions of the corresponding closed-loop sys-
tem (16) with x0 = (1,−1, 0)� and the control (18)
with ε = 0.5, γ = 5. For the comparison, we illustrate
the solution of the above obstacle avoidance problem
with the potential function of form (15),

P(x) = ‖x − x∗‖2
(
1 + K

ϕ(x)

)
, K > 0. (24)

Figure 8 shows the closed-loop response with the same
initial and target points, K = 300, ε = 0.1, and
γ = 0.1. In both cases, the numerical simulations illus-
trate that the proposed controllers solve the obstacle
avoidance problem with acceptable accuracy.

It should be noted that solutions of the designed
closed-loop system inherit such properties of the gradi-
ent system as the convergence to an undesirable mini-
mum. In particular, consider the same problem setting,
but with the other initial and target points:

x0 = (2.3,−2.5, 0)�, x∗ = (−3, 0.6, 0)�. (25)

Then the solutionof thegradient system ẋ = −γ∇ P(x)

with P given by (23) “falls into a trap,” i.e., tends to a
local minimum of the function P . According to [20],
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Fig. 8 Obstacle avoidance problem with the potential func-
tion (24): classical solution (blue); πε-solution (green); gradient
flow (red)

this minimum can be avoided by increasing � which,
however, results in a larger convergence time. As it is
shown on Fig. 9, the trajectories of system (16) exhibit
the same behavior. A possible way to tackle this prob-
lem is to use another potential function, e.g., (24). Fig-
ure 10 illustrates the behavior of system (16) and the
gradient system with function (24) and the parameters
K = 300, ε = 0.01, γ = 0.1.

5 Conclusion

The proposed design methodology can be considered
as a multilayered hierarchical scheme, where the refer-
ence dynamics (upper level) is governed by the gradient
flow system (3) with some potential function P(x, t),
and the physical level is ruled by nonholonomic control
system (1) with oscillating inputs (6). In this frame-
work, the coordination between the physical and refer-
ence dynamics is performed via discrete-time sampling
at time instants t j = t0 + ε j , j = 1, 2, ... . The pro-
posed scheme generalizes and significantly extends the
approaches previously developed for particular con-

Fig. 9 Obstacle avoidance problem for the points (25) andpoten-
tial function (23): classical solution (blue); πε-solution (green);
gradient flow (red)

Fig. 10 Obstacle avoidance problem for the points (25) and
potential function (24): classical solution (blue); πε-solution
(green); gradient flow (red)

trol problems with time-invariant vector fields such
as stabilization [45], motion planning on a finite time
horizon [46], and obstacle avoidance [47]. It should be
emphasized that the contribution of this paper allows
the treatment of nonlinear control systems with time-
varying vector fields and relatively simple structure
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of the control functions (6), whose amplitude factors
a(x, t) are effectively defined by the matrix inversion
in (7). The latter feature is considered as an important
advantage with respect to the method of [45,46], where
solutions to a system of nonlinear algebraic equations
are required for the design procedure.

Although the formal proof of our results for small
ε is established for πε-solutions only, numerical simu-
lations illustrate the similar behavior of classical solu-
tions of the corresponding closed-loop system. Hence,
the analysis of asymptotic behavior of classical solu-
tions remains the subject of future study.
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Appendix A: Auxiliary results

In this appendix,we summarize some auxiliary lemmas
which are needed for the proof of the main results.

Lemma 2 Let D ⊆ R
n, t0 ≥ 0, and x(t) ∈ D, t0 ≤

t ≤ τ , be a solution of system (1). Assume that there

exist M, L ≥ 0 such that

‖ fk(x, t)‖ ≤ M, ‖ fk(x, t) − fk(y, t)‖ ≤ L‖x − y‖,
(26)

for all x, y ∈ D, t ≥ 0, k = 1, m. Then

‖x(t) − x(t0)‖
≤ (t − t0)e

L(t−t0)MU, for all t ∈ [t0, τ ], (27)

with U = max
t∈[t0,τ ]

m∑
k=1

|uk(t)|.

Proof Follows from the Grönwall–Bellman
inequality. ��

Lemma 3 Let D ⊆ R
n, t0 ≥ 0, and x(t) ∈ D,

t0 ≤ t ≤ τ , be a solution of system (1)with u ∈ C[t0, τ ]
and x(t0) = x0 ∈ D. Assume that the vector fields fk ∈
C2(D × R

+;Rn) are such that fk(·, t) ∈ C3(D;Rn)

for each fixed t ≥ 0, k = 1, m. Then xπ (t) can be
represented in the following way:

xπ (t) = x0 +
m∑

k=1

fk(x0, t0)

t∫

t0

uk(s1)ds1

+
m∑

k1,k2=1

L fk2
fk1(x0, t0)

t∫

t0

s1∫

t0

uk1(s1)

× uk2(s2)ds2ds1 + r1(t) + r2(t),

(28)

where

r1(t) =
m∑

k1,k2,k3=1

t∫

t0

s1∫

t0

s2∫

t0

L fk3
L fk2

fk1(x(s3), s3)

× uk1(s1)uk2(s2)uk3(s3)ds3ds2ds1,

r2(t) =
m∑

k=1

t∫

t0

s1∫

t0

∂

∂s2
fk(x(s2), s2)uk(s1)ds2ds1

+
m∑

k1,k2=1

t∫

t0

s1∫

t0

s2∫

t0

∂

∂s3

(
L fk2

fk1(x(s3), s3)
)

× uk1(s1)uk2(s2)ds3ds2ds1

(29)

Proof This result provides a modification of the Chen–
Fliess series expansion (see, e.g., [46]). ��
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Appendix B: Proof of Lemma 1

The proof consists of several steps. Throughout the
paper, we assume that

0 < ε ≤ ε0(γ ) = 1

γ
, (30)

and γ > 0 will be chosen in Step 3.
Step 1. The goal of the first step is to find ε1(γ ) > 0

such that, for all γ > 0and ε ∈ (0,min{ε0(γ ), ε1(γ )}],
the πε-solution xπ (t) of system (1) with the initial data
xπ (t0) = x0 and the controls uk = uε

k(a(x, t), t) is
well defined on t ∈ [t0, t0 + ε], i.e. xπ (t) ∈ D for all
t ∈ [t0, t0 + ε].

Let t0 ≥ 0, x0 ∈ D, and let P(x, t) satisfy Assump-
tions 3–4.Given any positive numbersλ > 0 andρ > 0
satisfying Assumption 4, consider the level sets

D̃t = LP,P(x0,t0)+λ
t

= {x ∈ R
n : P(x, t) ≤ P(x0, t0) + λ}. (31)

and

L∇ P,ρ
t = {x ∈ R

n : ‖∇x P(x, t)‖ ≤ ρ} (32)

for t ≥ 0. By Assumption 4, D̃t are compact subsets
and

L∇ P,ρ
t ⊆ LP,P(x0,t0)+λ

t ⊂ D for each t ≥ 0. (33)

Note that according to Definition 1, uk = uε
k(a(x0,

t0), t) for t ∈ [t0, t0 + ε]. Let us estimate the value of

U (x0, t0) = max
t0≤t≤t0+ε

m∑
k=1

|uε
k(a(x0, t0), t |:

U (x0, t0) = max
t0≤t≤t0+ε

m∑

k=1

∣∣∣∣∣∣

∑

i∈S1

ai (x0, t0)δki + ε
− 1
2

×
∑

( j1, j2)∈S2

√
|a j1 j2(x0, t0)|φ(k,ε)

j1 j2
(t)

∣∣∣∣∣∣

≤
∑

k∈S1

∣∣∣ak(x0, t0)
∣∣∣ + ε

− 1
2

m∑

k=1

∑

( j1, j2)∈S2

×
√

|a j1 j2(x0, t0)| max
t0≤t≤t0+ε

∣∣∣φ(k,ε)
j1 j2

(t)
∣∣∣ .

(34)

From (8) and properties of the Kronecker delta δi j ,

max
t0≤t≤t0+ε

∣∣∣φ(k,ε)
j1 j2

(t)
∣∣∣

≤ 2
√

πκ j1 j2 max
t0≤t≤t0+ε

∣∣∣δk j1sign(a j1, j2(x, t))

× cos
2πκ j1 j2

ε
t + δk j2 sin

2πκ j1 j2

ε
t
∣∣∣

≤ 2
√

πκ j1 j2 ,

(35)

therefore, U (x0, t0) ≤
∑

k∈S1

∣∣∣ak(x0, t0)
∣∣∣ + 2

√
π

ε

m∑

k=1∑

( j1, j2)∈S2

√
|a j1 j2(x0, t0)|κ j1 j2 .UsingHölder’s inequal-

ities with indices p = q = 2 and p = 4, q = 4
3 , we

further estimate the value of U (x0, t0) as

U (x0, t0)

≤
⎛

⎝
∑

k∈S1

∣∣∣ak(x0, t0)
∣∣∣
2

⎞

⎠
1/2

√|S1|

+ 2

√
π

ε

m∑

k=1

⎛

⎝
∑

( j1, j2)∈S2

|a j1 j2(x0, t0)|2
⎞

⎠
1/4

×
⎛

⎝
∑

( j1, j2)∈S2

κ
2/3
j1 j2

⎞

⎠
3/4

≤ ‖a(x0, t0)‖
√|S1| + 2‖a(x0, t0)‖1/2

√
π

ε

×
( ∑

( j1, j2)∈S2

|κ j1 j2 |2/3
)3/4

= ‖a(x0, t0)‖1/2
(

‖a(x0, t0)‖1/2‖
√|S1|

+ 2

√
π

ε

( ∑

( j1, j2)∈S2

|κ j1 j2 |2/3
)3/4)

.

(36)

From Formula (7) and Assumptions (2.2) and (3.2) we
conclude that, since x0 ∈ D,

‖a(x0, t0)‖
≤ γ ‖F−1(x0, t0)‖‖∇x P(x0, t0)‖
≤ γ MF‖∇x P(x0, t0)‖ (and ≤ γ M f L Px ),

so that

U (x0, t0) ≤
√

γ MF‖∇x P(x0, t0)
(√

γ M f L Px |S1|

+2

√
π

ε

( ∑

( j1, j2)∈S2

|κ j1 j2 |2/3
)3/4

⎞

⎠ .

(37)

Here the constant L Px is defined fromAssumption 3.2)
with {D̃t }t≥0 given by (31). Thus, for all γ > 0 and
ε ∈ (0, ε0(γ )],

U (x0, t0) ≤ cu

√
γ MF‖∇x P(x0, t0)‖

ε
(38)
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with

cu = √
γ M f L Px |S1| + 2

√
π
( ∑

( j1, j2)∈S2

|κ j1 j2 |2/3
)3/4

.

(39)

Let us also take constants M f > 0 and L f x ≥ 0 from
Assumption (1.1)–(1.2) with {D̃t }t≥0 given by (31):

‖ fk(x, t)‖ ≤ M f , ‖ fk(x, t) − fk(y, t)‖
≤ L f x‖x − y‖ for all t ≥ 0, x, y ∈ D̃t .

(40)

Then Lemma 2 together with (38) yields the following
estimate:

‖xπ (t) − x0‖ ≤ (t − t0)e
L f x (t−t0)U (x0, t0)M f

≤
√

εγ MF‖∇x P(x0, t0)‖eL f x ε

× cu M f for all t ∈ [t0, t0 + ε].
(41)

Let us underline that the latter estimate holds not only
for the chosen x0 ∈ D, but also for any x0 ∈ D̃t , t ≥ 0.
Using the obtained inequality and Assumption (3.2),
we estimate P(xπ (t), t) in the following way:

P(xπ (t), t)

≤ P(x0, t0) + ‖P(xπ (t), t) − P(x0, t0)‖
≤ P(x0, t0) + L Px‖xπ (t) − x0‖ + L Pt |t − t0|
≤ P(x0, t0) + √

εγ MF eL f x εcu M f L3/2
Px + εL Pt ,

(42)

for all t ∈ [t0, t0+ε]. Let us define ε1(γ ) as the smallest
positive root of the equation
√

εγ MF eL f x εcu M f L3/2
Px + εL Pt = λ. (43)

Then for any γ > 0 and ε ∈ (
0,min{ε0(γ ), ε1(γ )}],

P(xπ (t), t) ≤ P(x0, t0) + λ for all t ∈ [t0, t0 + ε],
(44)

that is xπ (t) ∈ D̃t ⊂ D for all t ∈ [t0, t0 + ε].
Step 2. The goal of this step is to show that the

πε-solution xπ (t) of system (1) with the initial data
xπ (t0) = x0 ∈ D and the controls uk = uε

k(a(x, t), t)
can be represented in the form

xπ (t0 + ε) = x0 − εγ∇x P(x0, t0) + R(t0 + ε),

where ‖R(ε)‖ = O
(
(ε‖∇x P(x0, t0)‖)1/2

)

+ O((ε‖∇x P(x0, t0)‖)3/2) as ε → 0.
Applying Lemma 3 to the πε-solution xπ (t) of sys-

tem (1) with the initial data xπ (t0) = x0 ∈ D and the
controls uk = uε

k(a(x, t), t) given by (6), we represent
xπ (ε) as

xπ (t0 + ε)

= x0 + ε

( ∑

i∈S1

fi (x0, t0)ai (x0, t0)

+
∑

( j1, j2)∈S2

[ f j1 , f j2 ](x0, t0)a j1 j2 (x0, t0)

)

+R(t0 + ε) = x0 + εF(x0, t0)a(x0, t0)

+R(t0 + ε),

R(t0 + ε) = r1(t0 + ε) + r2(t0 + ε)

+r3(t0 + ε), (45)

where r1, r2 are given by (29) and

r3(t0 + ε)

= ε3/2
∑

i∈S1

∑

( j1, j2)∈S2

[ fi , f j1 ](x0, t0)

× ai (x0, t0)

√
|a j1 j2(x0, t0)|

πκ j1 j2

+ ε2

2

∑

i1,i2∈S1

L fi2
fi1(x0, t0)ai1(x0, t0)ai2(x0, t0).

(46)

Using Assumption (1.2)–(1.3), we estimate r1(ε),
r2(ε), r3(ε) as follows:

‖r1(t0 + ε)‖ ≤ ε3

6
H f xU 3(x0, t0)

≤ c3u H f x

6

(
εγ MF‖∇x P(x0, t0)‖

)3/2
,

‖r2(t0 + ε)‖ ≤ ε2

2
L f tU (x0, t0) + ε3

6
H f tU

2(x0, t0)

≤ cu L f t

2

(
ε3γ MF‖∇x P(x0, t0)‖

)1/2

+ c2u H f t

6
ε2γ MF‖∇x P(x0, t0)‖,

‖r3(t0 + ε)‖ ≤ 2ε3/2L2 f

√|S1|
( ∑

( j1, j2)∈S2

κ
−2/3
j1 j2

)3/4

× ‖a(x0, t0)‖3/2 + ε2

2
L2 f ‖a(x0, t0)‖2

≤ 2L2 f

√ |S1|
π

( ∑

( j1, j2)∈S2

κ
−2/3
j1 j2

)3/4

× (
εγ MF‖∇x P(x0, t0)‖

)3/2

+ L2 f |S1|
2

(
εγ MF‖∇x P(x0, t0)‖

)2
.

Here the constant cu is given by (39), and M f , L2 f ,
L f t , H f x , H f t are defined from Assumptions (1.2)–
(1.3) and (2.2) with {D̃t }t≥0 given by (31). Thus,
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for any t0 ≥ 0, x0 ∈ D, γ > 0, and ε ∈(
0,min{ε0(γ ), ε1(γ )}],

‖R(t0 + ε)‖ ≤ cR1
(
ε3γ MF‖∇x P(x0, t0)‖

)1/2

+cR2
(
εγ MF‖∇x P(x0, t0)‖

)3/2
, (47)

where

cR1 = cu

2

(
L f t + cu H f t

3

√
MF L Px

)
,

cR2 = c3u H f x

6
+ 2L2 f

√ |S1|
π

( ∑

( j1, j2)∈S2

κ
−2/3
j1 j2

)3/4

+ L2 f |S1|
2

√
MF L Px .

(48)

Finally, inserting (7) into (45), we obtain the represen-
tation

xπ (t0 + ε) = x0 − εγ∇x P(x0, t0) + R(t0 + ε), (49)

and thus reach the goal of Step 2.
Step 3. In this step we will estimate the value

P(xπ (t0+ε), t0+ε). Given a ρ > 0, we will show that
there exist an ε2(γ ) > 0 and a γ̄ (ρ) > 0 such that, for
any γ ≥ γ̄ (ρ) and ε ∈ (

0,min{ε0(γ ), ε1(γ ), ε2(γ )}],
the πε-solution xπ (t) of system (1) with the initial data
xπ (t0) = x0 ∈ D and the controls uk = uε

k(a(x, t), t)
satisfies the property

P(xπ (t0 + ε), t0 + ε)

≤ P(x0, t0) provided that ‖∇ Px (x0, t0)‖ ≥ ρ

2
. (50)

To analyze the value P(xπ (t0+ε), t0+ε), we use the
Taylor formula with Lagrange’s form of the remainder
for P(xπ (t0 + ε), t0):

P(xπ (t0 + ε), t0 + ε) = P(xπ (t0 + ε), t0)

+ P(xπ (t0 + ε), t0 + ε) − Pπ (x(t0 + ε), t0)

= P(x0, t0) + ∇x P(x0, t0)(xπ (t0 + ε) − x0)�

+ 1

2

n∑

i, j=1

∂2P(x, t0)

∂xi∂x j

∣∣∣
x=x0+θ(xπ (ε)−x0),θ∈[0,1]

× (
xπ i (t0 + ε) − x0i

)(
xπ j (t0 + ε) − x0j

)

+ P(xπ (t0 + ε), t0 + ε) − P(xπ (t0 + ε), t0).

(51)

Inserting (49) into the obtained representation and
using Assumption (3.2), (3.4) with {D̃t }t≥0 given

by (31), we obtain

P(xπ (t0 + ε), t0 + ε)

≤ P(x0, t0) − εγ ‖∇x P(x0, t0)‖2
+ ‖∇x P(x0, t0)‖‖R(t0 + ε)‖
+ HPx

2

(
εγ ‖∇x P(x0, t0)‖ + ‖R(t0 + ε)‖)2

+ L Ptε.

(52)

With the use of estimate (47) we conclude that, for all
ε ∈ (

0,min{ε0(γ ), ε1(γ )}],
P(xπ (t0 + ε), t0 + ε)

≤ P(x0, t0) − εγ ‖∇x P(x0, t0)‖2
(
1 − √

εγ cp1
)

+ ε3/2
√

γ ‖∇x P(x0, t0)‖cp2 + L Ptε,

(53)

where cp1 = cR2

√
MF

3L Px +HPx
(
1+c2R2MF

3L Px +
2cR1cR2εMF

2
)
, cp2 = cR1

√
MF L Px + HPx c2R1MFε.

Therefore,

P(xπ (t0 + ε), t0 + ε)

≤ P(x0, t0) − ε
(
γ ‖∇x P(x0, t0)‖2

(
1 − √

εγ cp1
)

−‖∇x P(x0, t0)‖cp2 − L Pt

)
.

Assume that ‖∇x P(x0, t0)‖ ≥ ρ

2
> 0. Then the

above inequality can be rewritten as

P(xπ (t0 + ε), t0 + ε)

≤ P(x0, t0) − ε‖∇x P(x0, t0)‖2
(
γ
(
1 − √

εγ cp1
)

−2cp2

ρ
− 4L Pt

ρ2

)
. (54)

Let us fix any σ ∈ (0, 1), γ̃ > 0, and put

ε2(γ ) = (1 − σ)2

γ c2p1
,

γ̄ (ρ) = 1

σ

(
γ̃ + 2cp2

ρ
+ 4L Pt

ρ2

)
. (55)

We obtain that, for any γ ≥ γ̄ (ρ), ε ∈ (
0,

min{ε0(γ ), ε1(γ ), ε2(γ )}],
P(xπ (t0 + ε), t0 + ε)

≤ P(x0, t0) − εγ̃ ‖∇x P(x0, t0)‖2, (56)

that is,

P(xπ (t0 + ε), t0 + ε) ≤ P(x0, t0) (57)

whenever ‖∇x P(x0, t0)‖ ≥ ρ

2
.Moreover, the obtained

inequality is strict if ‖∇x P(x0, t0)‖ >
ρ

2
. Similarly to
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Step 2, we emphasize that the results of the current
step hold for any x0 ∈ {D̃t }t≥0 provided that the corre-
sponding πε-solution xπ (t) is well defined in {D̃t }t≥0

for all t ∈ [t0, t0 + ε].
Step 4. The goal of this step is to ensure the follow-

ing property: after some finite time t = T ≥ 0, the
πε-solution xπ (t) of system (1) enters the set L∇ P,ρ/2

t0+T

and remains in L∇ P,ρ
t , t ∈ [t0 + T, t0 + T + ε]. More

precisely, we will show that there exists an N ∈ N∪{0}
such that ‖∇x P(xπ (t0 + Nε), t0 + Nε)‖ ≤ ρ

2
and,

moreover, there exists an ε3(γ ) > 0 such that, for any
γ ≥ γ̄ (ρ) and ε ∈ (

0,min{ε0(γ ), . . . , ε3(γ )}], the
πε-solution xπ (t) of system (1) with the initial data
xπ (t0) = x0 and the controls uk = uε

k(a(x, t), t) sat-
isfies the property

‖∇x P(xπ (t), t)‖ ≤ ρ for all t ∈ [t0 + Nε,

t0 + (N + 1)ε]. (58)

We have obtained in Step 3 that xπ (t0 + ε) ∈
LP,P(x0,t0)

t0+ε . Applying the results of Step 1 with the
same choice of parameters ε and γ and the initial data
xπ (t0 + ε) ∈ LP,P(x0,t0), t ≥ 0, we get xπ (t) ∈ D̃t

for all t ∈ [t0, t0 + 2ε]. Furthermore, we may repeat
Steps 2–3 and conclude that

P(xπ (t0 + 2ε), t0 + 2ε)

≤ P(xπ (t0 + ε), t0 + ε) provided that ‖∇ Px (xπ (t0

+ε), t0 + ε)‖ ≥ ρ

2
.

Let us show that there exists an N ∈ N∪{0} such that
‖∇x P(xπ (t0 + Nε), t0 + Nε)‖ ≤ ρ

2
. Indeed, assume

‖∇x P(xπ (t0+Nε), t0+Nε)‖ >
ρ

2
for all N ∈ N∪{0}.

Then iterating Step 3 and inequality (56), we conclude
that, for any N ∈ N,

P(xπ (t0 + Nε), t0 + Nε)

≤ P(x0, t0) − εγ̃

N−1∑

k=0

‖∇x P(xπ (t0 + kε), t0 + kε)‖2

≤ P(x0, t0) − Nεγ̃ ρ2

4
,

and

P(xπ (t0 + Nε), t0 + Nε) − m P

≤ P(x0, t0) − m P − Nεγ̃ ρ2

4
. (59)

Obviously, the right-hand side of the latter inequality

becomes strictly negative for N >
[4(P(x0, t0) − m P )

εγ̃ ρ2

]
,

while the left-hand side remains nonnegative. The
obtained contradiction proves, that after the time T =
Nε, N ∈ N ∪ {0}, the πε-solution xπ (t) of system (1)
enters the set L∇ P,ρ/2

t0+T
The next goal is to ensure that the πε-solution xπ (t)

of system (1) remains in the family of sets L∇ P,ρ
t

for t ∈ [t0 + T, t0 + T + ε]. Because ofAssumption 4,
xπ (t) ∈ D̃t for t ∈ [t0 + T, t0 + T + ε]. Applying
Assumption (3.3) with {D̃t }t≥0 given by (31), we get

‖∇x P(xπ (t), t)‖
≤ ‖∇x P(xπ (t0 + T ), t0 + T )‖ + ‖∇x P(xπ (t), t)

− ∇x P(xπ (t0 + T ), t0 + T )‖
≤ ρ

2
+ L2Px‖xπ (t) − xπ (t0 + T )‖

+ L2Pt‖t − T ‖.

(60)

Since the obtained estimate holds for all t ∈ [t0 +
T, t0 + T + ε], we apply estimate (41):

‖∇x P(xπ (t), t)‖ ≤ρ

2
+ L2Px

√
εγ MFρ

2
eL f x εcu M f

+ L2Ptε.

(61)

Let us take ε3(γ ) as the smallest positive root of the
equation

L2Px

√
εγ MFρ

2
eL f x εcu M f + L2Ptε = ρ

2
. (62)

Then for any γ ≥ γ̄ (ρ) and ε ∈ (
0,min{ε0(γ ), . . . ,

ε3(γ )}],
‖∇x P(xπ (t), t)‖ ≤ ρ for all t ∈ [t0

+T, t0 + T + ε]. (63)

Step 5. This step summarizes all the obtained results
and completes the proof of this lemma.

From Steps 3 and 4, there exists an N ∈ N ∪ {0}
such that ‖∇x P(xπ (t0 + jε), t0 + jε)‖ ≥ ρ

2
for j =

0, 1, . . . , N −1, and ‖∇x P(xπ (t0+T ), t0+T )‖ ≤ ρ

2
.

Thus,

P(xπ (t0 + T ), t0 + T )

≤ P(xπ (t0 + (N − 1)ε), t0 + (N − 1)ε)

≤ ... ≤ P(x0, t0). (64)

and ‖∇x P(xπ (t), t)‖ ≤ ρ for all t ∈ [t0+T, t0+T +ε].
Consequently, xπ (t) is well defined in D̃t for all t ∈
[t0, t0 + T + ε], and
P(xπ (t), t) ≤ sup

ξ∈L∇ P,ρ
t

P(ξ, t)
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for t ∈ [t0 + T, t0 + T + ε]. (65)

Next, consider two possible scenarios:

S1) ‖∇x P(xπ (t0 + T + ε), t0 + T + ε)‖ ≤ ρ

2
.

Then similarly to Step 4 we have that ‖∇x

P(xπ (t), t)‖ ≤ ρ for t ∈ [t0 + T + ε, t0 + T + 2ε],
which implies that xπ (t) is well defined in D̃t for all
t ∈ [t0, t0 + T + 2ε] and
P(xπ (t), t) ≤ sup

ξ∈L∇ P,ρ
t

P(ξ, t)

for t ∈ [t0 + T, t0 + T + 2ε]. (66)

S2)
ρ

2
< ‖∇x P(xπ (t0 + T + ε), t0 + T + ε)‖ ≤ ρ.

Repeating Steps 3–4, we conclude that there exists
an integer N2 ≥ N + 2 such that ‖∇x P(xπ (t0 +
jε), t0 + jε)‖ >

ρ

2
for j = N + 1, . . . , N2 − 1, and

‖∇x P(xπ (t0 + N2ε), t0 + N2ε)‖ ≤ ρ

2
. Besides,

P(xπ (t0 + N2ε), t0 + N2ε)

≤ P(xπ (t0 + (N2 − 1)ε), t0 + (N2 − 1)ε) ≤ ...

≤ P(xπ (t0 + T + ε), t0 + T + ε)

≤ sup
ξ∈L∇ P,ρ

T +ε

P(ξ, T + ε).

(67)

Obviously,

P(xπ (t0 + N2ε), t0 + N2ε)

≤ P∗(ρ, λ) = sup
t≥t0+T

sup
ξ∈L∇ P,ρ

t

P(ξ, t). (68)

To estimate the values of P(xπ (t), t) for t ∈ [t0 +
T + ε, t0 + N2ε], denote the integer part of t − t0

ε
as

[ t − t0
ε

]
and observe that 0 ≤ t − t0 −

[ t − t0
ε

]
ε ≤ ε.

Then by Assumption (3.1)–(3.2) and estimate (41),

P(xπ (t), t)

≤ P
(

xπ

(
t0 +

[ t − t0
ε

]
ε
)
, t0 +

[ t − t0
ε

]
ε
)

+
∣∣∣P(xπ (t), t) − P

(
xπ

(
t0 +

[ t − t0
ε

]
ε
)
, t0

+
[ t − t0

ε

]
ε
)∣∣∣

≤ P∗(ρ, λ) + L Px

∥∥∥xπ (t) − xπ

(
t0

+
[ t − t0

ε

]
ε
)∥∥∥ + L Ptε

≤ P∗(ρ, λ) + L Px
√

L Pxεγ MF eL f x εcu M f

+ L Ptε.

(69)

From (72), for any γ ≥ γ̄ (ρ) and ε ∈ (
0,min{ε0(γ ),

ε1(γ ), ε2(γ )}],
P(xπ (t), t) ≤ P∗(ρ, λ) + λ for t ∈ [t0 + T

+ε, t0 + N2ε]. (70)

Iterating S1)–S2), we obtain that xπ (t) is well
defined in D̃t for all t ≥ t0 and xπ (t) ∈ {x : P(x, t) ≤
P∗(ρ, λ) + λ} for t ≥ T + ε. As λ and ρ are assumed
arbitrary, the proof of Lemma 1 is completed. ��

Appendix C: Proof of Theorem 2

The first two steps and the beginning of the third step
of the proof are similar to the proof of Lemma 1. We
summarize the main differences and results as follows:

– For any ρ > 0 such that LP,m P+ρ
t ⊂ D, t ≥ 0, we

define the sets (31) as

D̃t = LP,P(x0,t0)+m P+ρ
t ⊂ D. (71)

– ε1(γ ) is the smallest positive root of the equation
√

εγ MF eL f x εcu M f L3/2
Px + εL Pt = ρ

4
. (72)

Similar to the outcome of Step 1, for any γ > 0
and ε ∈ (

0,min{ε0(γ ), ε1(γ )}], we have
P(xπ (t), t) ≤ P(x0, t0) + ρ

4
for all t ∈ [t0, t0 + ε]. (73)

– For all γ > 0 and ε ∈ (0, ε̃(γ ) = min{ε̄0(γ ),

ε1(γ )}], the πε-solution xπ (t) of system (1) with
the initial data xπ (t0) = x0 and the controls uk =
uε

k(a(x, t), t) defined by (6) satisfies the property

P(xπ (t0 + ε), t0 + ε)

≤ P(x0, t0) − ε
(
γ ‖∇x P(x0, t0)‖2

(
1 − √

εγ cp1
)

−‖∇x P(x0, t0)‖cp2 − L Pt

)
.

Now we come to the main part of the proof. Using the
above estimate, Assumption (3.2) and property (11),
we obtain
P(xπ (t0 + ε), t0 + ε) − m P

≤ (P(x0, t0) − m P )
(
1 − εγμ(P(x0, t0)

− m P )ν−1(1 − √
εγ cp1

)) + εcp3,

(74)

where cp3 = L Px cp2 + L Pt , ν ≥ 1. For an arbitrary
ρ > 0, γ ∗ > 0, let

γ̄ (ρ) = γ ∗ + 22νcp3

ρνμ
, ε2(γ ) = (γ − γ̄ (ρ))2

γ 3c2p1
. (75)
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Then, for any γ > γ̄ (ρ), ε ∈ (
0,min{ε̃(γ ), ε2(γ )}),

the following properties hold:

i)

P(xπ (t0 + ε), t0 + ε) − m P

≤ (P(x0, t0) − m P )

×
(
1 − εγ̄ μ(P(x0, t0) − m P )ν−1

)
+ εcp3.

ii) If P(x0, t0) − m P ≥ ρ
4 > 0, then

P(xπ (t0 + ε), t0 + ε) − m P

< (P(x0, t0) − m P )
(
1 − εγ ∗μ(P(x0, t0)

− m P )ν−1)

< P(x0, t0) − m P .

This means that x(ε) ∈ LP,P(x0,t0)
t , t ≥ 0, and

by (73), xπ (t) ∈ D̃t for all t ∈ [t0, t0 + ε].
iii) If P(x0, t0) − m P <

ρ
4 , then (73) immediately

implies xπ (t) ∈ D̃t for all t ∈ [t0, t0 + ε], and
P(xπ (t0+ε), t0+ε)−m P ≤ ρ

2 . Considering again
the two cases P(xπ (t0 + ε), t0 + ε) − m P ≥ ρ

4
and P(xπ (t0 + ε), t0 + ε) − m P < π

4 , we see that
xπ (t) ∈ D̃t for all t ∈ [t0, t0 + 2ε].

Repeating ii) and iii), we conclude that xπ (t) ∈ D̃t ⊂
D for all t ≥ 0.

It remains to estimate the decay rate of the function
P(xπ (t), t) as t → +∞.

I) If ν = 1, then, for all j ∈ N,

P(xπ (t0 + jε), t0 + jε) − m P

≤ (P(xπ (t0 + ( j − 1)ε), t0 + ( j − 1)ε − m P )

× (1 − εγ σμ) + εcp3

≤ (P(x0, t0) − m P ) (1 − εγ̄ μ) j

+ εcp3

j−1∑

i=0

(1 − εγ̄ μ)i .

(76)

Using the property

1 − εγ̄ μ ≤ e−εγ̄ μ (77)

and calculating

j−1∑

i=0

(1 − εγ̄ μ)i = 1 − (1 − εγ̄ μ) j

εγ̄ μ
<

1

εγ̄ μ
, (78)

we obtain

P(xπ (t0 + jε), t0 + jε) − m P

≤ (P(x0, t0) − m P )e− jεγ̄ μ + cp3

γ̄ μ
. (79)

Under the above choice of γ̄ , for any γ ≥ γ̄ (ρ) and
ε ∈ (

0,min{ε̃(γ ), ε2(γ )}],
P(xπ (t0 + jε), t0 + jε) − m P

≤ (P(x0, t0) − m P )e− jεγ̄ μ + ρ

2
. (80)

Hence,

P(xπ (t), t) − m P ≤ (P(x0, t0) − m P )e−γ̄ μ(t−t0)

+ρ

2
for each t = t0 + jε, j ∈ N ∪ {0}.

(81)

For an arbitrary t ≥ t0, estimate (73) yields

P(xπ (t), t) − m P

≤ P
(

xπ

([ t − t0
ε

])
,
[ t − t0

ε

])
− m P + ρ

2

≤ (P(x0, t0) − m P )e
−γ̄ μ

[
t−t0

ε

]
ε + ρ

≤ (P(x0, t0) − m P )e−γ̄ μ(t−t0−ε) + ρ for all t ≥ t0.

(82)

II) If ν > 1, then, for all j ∈ N,

P(xπ (t0 + jε), t0 + jε) − m P

≤ (P(xπ (t0 + ( j − 1)ε), t0 + ( j − 1)ε) − m P )

×
(
1 − εγ̄ μ(P(xπ (t0 + ( j − 1)ε), t0

+ ( j − 1)ε) − m P )ν−1
)

+ εcp3.

(83)

Let us show that there exists an N ≥ 0 such that
P(xπ (t0 + jε), t0 + jε) − m P ≤ ρ

2
.

Assume the contrary: P(xπ (t0 + jε), t0 + jε) −
m P >

ρ
2 for all j ∈ N ∪ {0}. Then

P(xπ (t0 + jε), t0 + jε) − m P

≤ (P(xπ (t0 + ( j − 1)ε), t0 + ( j − 1)ε) − m P )

×
(
1 − εμ

(
γ̄ − 2νcp3

ρνμ

)
(P(xπ (t0 + ( j − 1)ε),

t0 + ( j − 1)ε) − m P)ν−1
)

= (P(xπ (t0 + ( j − 1)ε), t0 + ( j − 1)ε) − m P )

×
(
1 − εμγ ∗(P(xπ (t0

+ ( j − 1)ε), t0 + ( j − 1)ε) − m P )ν−1
)

(84)

To obtain decay rate estimates, we exploit the property
of a strictly convex function and its tangent line: for
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any θ ∈ R, k > 0, 1 − θ ≤ (1 + kθ)− 1
k . Thus,

1 − εμγ ∗(P(xπ (t0 + ( j − 1)ε), t0

+ ( j − 1)ε) − m P )ν−1

≤ (
1 + εμγ ∗(ν − 1)(P(xπ (t0 + ( j − 1)ε), t0

+ ( j − 1)ε) − m P )ν−1) 1
1−ν

(85)

and

P(xπ (t0 + jε), t0 + jε) − m P

≤ (P(xπ (t0 + ( j − 1)ε), t0 + ( j − 1)ε) − m P )

≤ (
(P(xπ (t0 + ( j − 1)ε), t0 + ( j − 1)ε)

− m P )1−ν + εμγ ∗(ν − 1)
) 1
1−ν

≤ (
(P(x0, t0) − m P )1−ν + jεμγ ∗(ν − 1)

) 1
1−ν

for all j ∈ N ∪ {0}.

(86)

Then, for j ≥ T = 1

εμγ ∗(ν − 1)

((ρ

2

)1−ν −
(P(x0, t0) − m P )1−ν

)
, we get

P(xπ (t0 + jε), t0 + jε) − m P ≤ ρ

2
, (87)

which gives contradiction. Thus, there exists an N ∈
N ∪ {0} such that

P(xπ (t0 + jε), t0 + jε) − m P

≤ (
(P(x0, t0) − m P )1−ν + jεμγ ∗(ν − 1)

) 1
1−ν

for all j = 0, 1, . . . , N ,

(88)

and

P(xπ (t0 + Nε), t0 + Nε) − m P ≤ ρ

2
. (89)

For an arbitrary t ∈ [t0, t0 + Nε], we again exploit
the property

P(xπ (t), t)

≤ P
(

xπ

([ t − t0
ε

])
,
[ t − t0

ε

])
+ ρ

2

≤ (
(P(x0, t0) − m P )1−ν +

[ t − t0
ε

]
εμγ ∗(ν

− 1)
) 1
1−ν + ρ

2
≤ (

(P(x0, t0) − m P )1−ν + μγ ∗(ν − 1)(t − t0

− ε)
) 1
1−ν + ρ

2
.

(90)

Similarly to the derivation of (73), we can show that,
for any ε ∈ (

0,min{ε0(γ ), ε1(γ )}],
P(xπ (t), t) − m P

≤ P(xπ (t0 + Nε), t0 + Nε) − m P

+ρ

2
≤ ρ for all t ∈ [t0 + Nε, t0 + (N + 1)ε].

(91)
Then two cases are possible:

• if P(xπ (t0+ (N +1)ε), t0+ (N +1)ε)−m P ≤ ρ

2
,

then P(xπ (t), t) − m P ≤ ρ for all t ∈ [t0 + (N
+ 1)ε, t0 + (N + 2)ε];

• if
ρ

2
< P(xπ (t0+(N +1)ε), t0+(N +1)ε)−m P ≤

ρ, then

P(xπ (t), t) − m P

≤ (
(P(xπ (t0 + (N + 1)ε), t0 + (N + 1)ε)

− m P )1−ν + μγ ∗(ν − 1)(t − t0 − ε)
) 1
1−ν

≤ (
ρ1−ν +μγ ∗(ν − 1)(t −t0−ε)

) 1
1−ν

≤ ρ, for all t ∈ [t0 + (N + 1)ε, t0 + (N + 2)ε].
(92)

The iteration of the above two cases yields

P(xπ (t), t) − m P ≤ ρ for all t ≥ t0 + Nε, (93)

which completes the proof of Theorem 2. ��

Appendix D: Proof of Theorem 3

For an arbitrary x0 ∈ D, define LP,P(x0) = {x ∈ R
n :

P(x) ≤ P(x0)}. From the condition 3.1),

LP,P(x0)

⊆ {x ∈ R
n : ‖x − x∗‖ ≤ w−1

11 (P(x0))} ⊂ D. (94)

Let D̃ be an arbitrary convex compact set such that

{x ∈ R
n : ‖x − x∗‖ ≤ w−1

11 (P(x0))} ⊂ D̃ ⊆ D. (95)

All the assumptions of Theorem 1 are satisfied, so that
we immediately have the following properties: for any
γ > 0 there exists an ε̄ : R>0 → R>0 such that, for
all t0 ≥ 0, x0 ∈ D̃, t0 ≥ 0 and ε ∈ (0, ε̃(γ )], the
πε-solution xπ (t) of system (9) with the initial data
xπ (t0) = x0 and the controls uk = uε

k(a(x, t), t) given
by (6)–(8) are well defined in D̃ for all t ≥ t0, and

lim
t→∞(P(xπ (t)) − m P ) = 0. (96)

As ‖xπ (t) − x∗‖ ≤ w−1
11

(
P(xπ (t)) − m P

)
, this also

implies

lim
t→∞ ‖xπ (t) − x∗‖ = 0. (97)

Thus, the point x∗ is attractive for system (9).
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Let us prove that x∗ is stable.Assume thatγ and ε̄(γ )

are fixed, γ ε̄(γ ) ≤ 1. For an arbitrary t ≥ t0, denote

the integer part of t−t0
ε

as N =
[

t−t0
ε

]
. From (41),

‖xπ (t) − x0‖
≤ √

εγ MF‖∇ P(xπ (t0 + Nε))‖eL f x εcu M f

≤ √
MF‖∇ P(xπ (t0 + Nε))‖eL f x ε̄cu M f .

(98)

Using the triangle inequality and condition 3.2), we get

‖xπ (t) − x∗‖ ≤ ‖xπ (t0 + Nε) − x∗‖
+
√

MFw2
(‖xπ (t0 + Nε) − x∗‖)eL f x ε̄cu M f . (99)

Furthermore, from the proofs of Lemma 1 and Theo-
rem 2 it follows that

P(xπ (t0 + Nε) ≤ P(x0), (100)

i.e.,

‖xπ (t0 + Nε) − x∗‖ ≤ w−1
11

(
P(x0) − m P

)

≤ w−1
11

(
w12(‖x0 − x∗‖)). (101)

Combining (99) and (101) we conclude that, given an
arbitrary ε > 0, one can choose a δ > 0 satisfying

w−1
11

(
w12(δ)

) +
√

MFw2
(
w−1
11

(
w12(δ)

))
eL f x ε̄cu M f

≤ ε, (102)

so that

‖xπ (t) − x∗‖ ≤ ε for any t ≥ t0, x0 ∈ Bδ(x∗). (103)

��
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