日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Excitation-Inhibition Balance, Neural Criticality, and Activities in Neuronal Circuits

MPS-Authors
/persons/resource/persons265904

Liang,  J
Department of Sensory and Sensorimotor Systems, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Liang, J., Yang, Z., & Zhou, C. (2024). Excitation-Inhibition Balance, Neural Criticality, and Activities in Neuronal Circuits. Neuroscientist, Epub ahead. doi:10.1177/10738584231221766.


引用: https://hdl.handle.net/21.11116/0000-000E-55F6-D
要旨
Neural activities in local circuits exhibit complex and multilevel dynamic features. Individual neurons spike irregularly, which is believed to originate from receiving balanced amounts of excitatory and inhibitory inputs, known as the excitation-inhibition balance. The spatial-temporal cascades of clustered neuronal spikes occur in variable sizes and durations, manifested as neural avalanches with scale-free features. These may be explained by the neural criticality hypothesis, which posits that neural systems operate around the transition between distinct dynamic states. Here, we summarize the experimental evidence for and the underlying theory of excitation-inhibition balance and neural criticality. Furthermore, we review recent studies of excitatory-inhibitory networks with synaptic kinetics as a simple solution to reconcile these two apparently distinct theories in a single circuit model. This provides a more unified understanding of multilevel neural activities in local circuits, from spontaneous to stimulus-response dynamics.