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1. Microscopic theory of HHG in solids 

The mechanism of high-order harmonic generation (HHG) in solids is different from that in atoms and 

molecules. Since there exists a continuum of states in each electronic energy band of a solid, two types of 

transitions can play an important role in HHG in solids: those of the first type are transitions within a band 

(intraband transitions), and those of the second type are transitions between different bands (interband 

transitions). In this section, we identify the contributions of intraband and interband transitions in HHG in 

solids on the basis of a simple independent-particle model. Here, the dynamics are described by the time-

dependent Schrödinger equation of a Bloch orbital for a single electron: 

 

𝑖ℏ
𝜕

𝜕𝑡
𝑢𝑏𝒌(𝒓, 𝑡) = [

1

2
(𝒑 + ℏ𝒌 + 𝑒𝑨(𝑡))

2
+ 𝑣(𝒓)] 𝑢𝑏𝒌(𝒓, 𝑡), (1) 

 

where 𝑏 is the band index, 𝒌 is the Bloch wavevector, 𝑢𝑏𝒌(𝒓, 𝑡) is the time-dependent Bloch orbital, 𝑣(𝒓) 

is the one-body potential, and A(t) is a spatially uniform vector potential that is related to the external 

electric field 𝑬(𝑡) according to 𝑨(𝑡) = − ∫ 𝑑𝑡′𝑡
𝑬(𝑡′). The one-body potential 𝑣(𝒓) and the Bloch orbital 

𝑢𝑏𝒌(𝒓, 𝑡) are periodic functions with respect to the lattice vector. To simplify the notation, we define the 

one-body Hamiltonian as 
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ℎ𝒌+𝑒𝑨(𝑡)/ℏ = [
1

2
(𝒑 + ℏ𝒌 + 𝑒𝑨(𝑡))

2
+ 𝑣(𝒓)] . (2) 

 

The eigenstates of the Hamiltonian are described by 

 

ℎ𝒌𝑢𝑏𝒌
𝑆 (𝒓) = 𝜖𝑏𝒌𝑢𝑏𝒌

𝑆 (𝒓), (3) 

 

where 𝑢𝑏𝒌
𝑆 (𝒓) are the eigenstates, and 𝜖𝑏𝒌 are the eigenvalues. To analyze HHG in solids, we solve Eq. (1) 

with the initial condition 𝑢𝑏𝒌(𝒓, 0) = 𝑢𝑏𝒌
𝑆 (𝒓). Furthermore, the induced electric current density, 𝑱(𝑡), can 

be evaluated with 

 

𝑱(𝑡) =
1

(2𝜋)3
∑ ∫ 𝑑𝒌

BZ𝑣

∫ 𝑑𝒓𝑢𝑏𝒌
∗ (𝒓, 𝑡)𝑱̂𝒌(𝑡)𝑢𝑏𝒌(𝒓, 𝑡)

Ω

, (4) 

 

where BZ indicates integration over the first Brillouin zone (with respect to the wavevector), and Ω is the 

volume of the Brillouin zone in real space. The current operator, 𝐽𝒌(𝑡), is defined as 

 

𝑱̂𝒌(𝑡) = −
𝑒

𝑚ℏ

𝜕

𝜕𝒌
ℎ𝒌+𝑒𝑨(𝑡)/ℏ. (5) 

 

The power spectrum of the emitted harmonics can then be evaluated by taking the Fourier transform of 

the current density: 

 

𝐼HHG(𝜔) ∼ | 𝜔 ∫ 𝑑𝑡
∞

−∞

𝑒𝑖𝜔𝑡𝑱(𝑡)|

2

. (6) 

 

Using this microscopic theory of HHG in solids, we can introduce intraband and interband transitions 

based on the instantaneous eigenstates. Firstly, let us consider the following expansion of the single-particle 

orbital in terms of Houston states1,2: 

 

𝑢𝑣𝒌(𝒓, 𝑡) = ∑ 𝑐𝑣𝑏𝒌(𝑡) exp [−
𝑖

ℏ
∫ 𝑑𝑡′

𝑡

0

𝜖𝑏,𝒌+𝑒𝑨(𝑡′)/ℏ] exp[𝑖𝜙𝑏𝑣,𝒌(𝑡)]𝑢𝑏,𝒌+𝑒𝑨(𝑡)/ℏ
𝑆 (𝒓)

𝑏

. (7) 

 

Here, 𝑐𝑣𝑏𝒌(𝑡) are the expansion coefficients, and  𝜙𝑏𝑣,𝒌(𝑡) is the geometric phase. By substituting Eq. 

(7) into Eq. (1), we obtain the following equation of motion: 

 

𝑖ℏ
𝑑

𝑑𝑡
𝑐𝑣𝑏𝒌(𝑡) = ∑ 𝑒

𝑖(Δ𝜙
𝑏𝑏′𝒌
𝐷 (𝑡)+Δ𝜙

𝑏𝑏′𝒌
𝐺 (𝑡))

𝑏′≠𝑏

𝑬(𝑡) ⋅ 𝒅̃𝑏𝑏′𝒌(𝑡)𝑐𝑏′𝑣𝒌(𝑡), (8) 

 

where Δ𝜙𝑏𝑏′𝒌
𝐷 (𝑡), Δ𝜙𝑏𝑏′𝒌

𝐺 (𝑡), and 𝒅̃𝑏𝑏′𝒌(𝑡) are defined as 

 

Δ𝜙𝑏𝑏′𝒌
𝐷 (𝑡) = ∫ 𝑑𝑡′

𝑡

0

[𝜖𝑏,𝒌+𝑒𝑨(𝑡′)/ℏ − 𝜖𝑏′,𝒌+𝑒𝑨(𝑡′)/ℏ], (9) 

Δ𝜙𝑏𝑏′𝒌
𝐺 (𝑡) = − (𝜙𝑏𝑣,𝒌(𝑡) − 𝜙𝑏′𝑣,𝒌(𝑡)) , (10) 

𝒅̃𝑏𝑏′𝒌(𝑡) =
𝑖

ℏ
∫ 𝑑𝒓

Ω

𝑢𝑏,𝒌+𝑒𝑨(𝑡)/ℏ
𝑆,∗ 𝜕

𝜕𝒌
𝑢𝑏′,𝒌+𝑒𝑨(𝑡)/ℏ

𝑆 . (11) 
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Here, Δ𝜙𝑏𝑏′𝒌
𝐷 (𝑡) is the difference between the dynamical phase factors of different bands, Δ𝜙𝑏𝑏′𝒌

𝐺 (𝑡) is the 

difference between the geometric phases, and 𝒅̃𝑏𝑏′𝒌(𝑡) is the dipole matrix element. The geometric phase 

is defined as 

 

𝜙𝑏𝑣,𝒌(𝑡) = −
𝑖

ℏ
∫ 𝑑𝒓

Ω

𝑢𝑏,𝒌+𝑒𝑨(𝑡)/ℏ
𝑆,∗ 𝜕

𝜕𝒌
𝑢𝑏 ,𝒌+𝑒𝑨(𝑡)/ℏ

𝑆

= ∫ 𝑑𝑨
𝐶(𝑨(𝑡))

 𝑨𝑏
𝐵(𝒌 + 𝑒𝑨/ℏ), (12)

 

 

where the contour 𝐶 is determined by the time-dependent vector potential 𝑨(𝑡), and 𝑨𝑏
𝐵(𝒌) is the Berry 

connection. 

Secondly, let us consider the adiabatic limit, i.e., the time evolution of the electronic system from 𝑡 = 0 

to 𝑡 = 𝑇 [governed by Eq. (8)] under a slowly varying vector potential. By integrating Eq. (8), we obtain 

 

𝑐𝑏𝑣,𝒌(𝑇) − 𝑐𝑏𝑣,𝒌(0) = −
𝑖

ℏ
∫ 𝑑𝑡

𝑇

0

∑ 𝑒
𝑖(Δ𝜙

𝑏𝑏′𝒌
𝐷 (𝑡)+Δ𝜙

𝑏𝑏′𝒌
𝐺 (𝑡))

𝑏′≠𝑏

𝑬(𝑡) ⋅ 𝒅̃𝑏𝑏′𝒌(𝑡)𝑐𝑏′𝑣𝒌(𝑡). (13) 

 

As long as there are no degeneracies of the instantaneous eigenstates of the Hamiltonian, the right-hand 

side of Eq. (13) is equal to zero. Hence, the expansion coefficients 𝑐𝑏𝑣,𝒌(𝑡) are constant. This implies that 

the basis functions used in the expansion in Eq. (7) are the solutions to the time-dependent Schrödinger 

equation in the adiabatic limit. For later convenience, we define the adiabatic solution as 

 

𝑢𝑏𝒌
𝐴𝐷(𝒓, 𝑡) = exp [−

𝑖

ℏ
∫ 𝑑𝑡′

𝑡

0

𝜖𝑏,𝒌+𝑒𝑨(𝑡′)/ℏ] exp[𝑖𝜙𝑏𝑣,𝒌(𝑡)]𝑢𝑏,𝒌+𝑒𝑨(𝑡)/ℏ
𝑆 (𝒓) . (14) 

 

Under the adiabatic condition, the time-dependent Bloch states are described by static Bloch states with 

a Bloch wavevector shift (𝒌 → 𝒌 + 𝑒𝑨(𝑡)/ℏ) and the dynamical- and geometric-phase factors. The time 

evolution described by Eq. (14) is a transition within the same band, i.e., an intraband transition. On the 

other hand, we need to consider transitions among different adiabatic solutions via Eq. (8) to describe the 

general dynamics. These are the interband transitions. 

Finally, we rewrite the time-dependent Bloch state and the corresponding equation of motion as follows: 

 

𝑢𝑣𝒌(𝒓, 𝑡) = ∑ 𝑐𝑏𝑣,𝒌(𝑡)

𝑏

exp [−
𝑖

ℏ
∫ 𝑑𝑡′𝜖𝑏,𝒌+𝑒𝑨(𝑡′)/ℏ

𝑡

0

] exp [𝑖 ∫ 𝑑𝑨 ⋅ 𝑨𝑏
𝐵(𝒌 + 𝑒𝑨/ℏ)

𝐶(𝑨(𝑡))

] 𝑢𝑏,𝒌+𝑒𝑨(𝑡)/ℏ
𝑆 (𝒓), (15) 

𝑖ℏ
𝑑

𝑑𝑡
𝑐𝑏,𝑣𝒌(𝑡) = ∑ exp [−

𝑖

ℏ
∫ 𝑑𝑡′𝜖𝑏′,𝒌+𝑒𝑨(𝑡′)/ℏ − 𝜖𝑏,𝒌+𝑒𝑨(𝑡′)/ℏ

𝑡

0

]

𝑏≠𝑏′

 

× exp [𝑖 ∫ 𝑑𝑨 ⋅ (𝑨𝑏
𝐵(𝒌 + 𝑒𝑨/ℏ) − 𝑨𝑏′

𝐵 (𝒌 + 𝑒𝑨/ℏ))
𝐶(𝑨(𝑡))

] 

× 𝑬(𝑡) ⋅ (
𝑖

ℏ
∫ 𝑑𝒓

Ω

𝑢𝑏,𝒌+𝑒𝑨(𝑡)/ℏ
𝑆,∗ 𝜕

𝜕𝒌
𝑢𝑏′,𝒌+𝑒𝑨(𝑡)/ℏ

𝑆 ) 𝑐𝑏′𝑣𝒌(𝑡). (16) 

 

Although we have 𝑨(𝑡) = − ∫ 𝑑𝑡′𝑬(𝑡′)
𝑡

0
 in physical systems, we shall treat 𝑨(𝑡)  and 𝑬(𝑡)  as 

independent variables for the following mathematical analysis: If 𝑬(𝑡) is set to zero, the right-hand side of 

Eq. (16) becomes zero, and the expansion coefficients become constant. In this case, the dynamics of the 

time-dependent Bloch states in Eq. (15) are only due to the wavevector shift 𝒌 → 𝒌 + 𝑒𝑨(𝑡)/ℏ. Instead, if 

𝑨(𝑡) is set to zero, the wavevector shift has no effect in Eqs. (15) and (16). Accordingly, the intraband 
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transitions can be defined as transitions induced by 𝑨(𝑡), while the interband transitions can be defined as 

transitions induced by 𝑬(𝑡). 
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