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1 Introduction

It is widely believed that the initial conditions of our Universe were established during
the period of inflation. Over the past two decades, significant progress has been made in
understanding how to calculate the statistics of these initial perturbations. These calculations
rely on in-in perturbation theory. The use of perturbation theory appears to be particularly
justified, as experiments have placed strict constraints on non-Gaussianity, i.e. departure from
a free theory. This demonstrates that fluctuations during inflation are very weakly coupled.
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While typical fluctuations are indeed weakly coupled, it turns out that perturbation theory
is not appropriate to describe large, unlikely fluctuations: non-linearities become sizeable
when looking at large perturbations. To investigate such improbable perturbations, one can
turn to non-perturbative semiclassical methods [1].

Now, why should we concern ourselves with studying unlikely events that, by definition,
are rarely observed? One reason is conceptual. One is studying the most fundamental object of
cosmology, the wavefunction of the Universe (WFU), which contains the complete information
about the initial conditions. The possibility of studying it in a regime where perturbation
theory fails is of the utmost importance, even if it were not relevant experimentally. The
tail of the probability distribution also carries phenomenological significance: for instance
the probability of generating a primordial black hole depends on the probability distribution
far away from its typical values. Moreover, there are other inquiries where comprehensive
knowledge of the WFU proves relevant, such as in the physics of eternal inflation, which may be
sensitive to the tail of the probability distribution [2–4]. Additionally, one might be interested
in the probability of non-perturbative transitions to other vacua. We will also see that going
beyond perturbation theory will also give new insights for the study of typical fluctuations.

In reference [1] it was shown that the WFU in the semiclassical limit can be expressed as

Ψ[ζ̄(x)] ∼ eiS[ζcl]/ℏ. (1.1)

The WFU is a functional of the scalar perturbation ζ̄(x) at late times. (In this paper we do
not consider tensor perturbations and we focus on single-field models of inflation, so that ζ
is the only variable.) The action on the right-hand side of the equation above is evaluated
on-shell, i.e. on the classical trajectory ζcl that satisfies the boundary condition ζcl = ζ̄(x) at
late times and the Bunch-Davies condition at early times. The semiclassical approximation
is valid when the action is large compared with ℏ, and this occurs when the configuration
ζ̄(x) is large, compared with a typical fluctuation. In this limit, loop corrections can be
neglected and the functional integral that gives the WFU reduces to a single semiclassical
configuration. Notice that we are keeping the full non-linear action and not expanding in
perturbation theory: the semiclassical expression (1.1) resums all non-linearities that are
enhanced by the large ζ̄. This method is general, but one still needs to solve a non-linear
partial differential equation (PDE) with prescribed boundary conditions and evaluate the
action on this classical solution. The solution of the PDE must be found numerically in
general and this makes the process somewhat cumbersome and obscures the physics. (Other
studies that emphasize the whole probability distribution of ζ, beyond the usual expansion
in correlation functions, include [5–9].)

In this paper we apply the method outlined above to a particular model of single-field
inflation, where one has small and rapid oscillations of the inflaton potential superimposed to a
standard slow-roll scenario. This model, sometimes dubbed resonant non-Gaussianity [10–14],
can be motivated by UV completions with monodromy [15]. The amplitude of the oscillations
will be taken to be a small parameter b̃. We will calculate the WFU non-perturbatively in
ζ̄, but at first order in b̃. The important simplification is that at first order in b̃ one does
not need to solve any PDE: it is enough to plug the solution in the absence of oscillations in
the O(b̃) action. Another reason why it is interesting to study the non-perturbative WFU in
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this class of models is related to the frequency of oscillations, which is usually taken to be
mush faster than Hubble, ω ∼ αH, α≫ 1. The rapidity of the oscillations in the potential
tells us that perturbation theory, which is based on expanding the potential in Taylor series
around a given point, will break down soon: one cannot hope to study in perturbation theory
a fluctuation that jumps from one minimum of the modulation to another. Indeed we will
see that one needs the full non-perturbative WFU for α2|ζ̄| ≳ 1. Eventually, notice that
our approach takes into account all interactions, including here resonant interactions inside
the Hubble radius. This has to be contrasted with stochastic inflation, which only resums
nonlinearities outside the Hubble radius, without taking into account non-Gaussianities at
horizon crossing (see e.g. [16–19] and references therein).

In section 2 we derive a particularly useful form of the effective field theory (EFT) of
inflation [20] in the decoupling limit, when gravity perturbations can be neglected. This form,
eq. (2.7), retains all non-linearities, it is valid for a generic potential and it has the advantage
of making explicit the conservation of ζ in the long wavelength limit. (In appendix A we verify
that this form of the action is equivalent to others used in the literature, and in appendix B
we discuss corrections coming from the mixing with gravity.) In section 3 we focus on the
case of periodic features in the potential and we derive a closed-form expression for the
WFU at first order in b̃, eq. (3.21). We also discuss the regime of validity of this formula,
studying loop corrections (see also appendices C and D). It turns out that loop corrections
are subdominant, in this particular model, even for typical fluctuations. The evaluation
of the WFU still requires an integral over space and time. We do this both numerically
and using a saddle-point approximation, valid in the regime α ≫ 1. These two methods
are compared both in the case of a monochromatic profile for ζ̄, section 4, and for a more
general spherically symmetric configuration, section 5. (Some details about the numerical
analysis are deferred to appendix E.)

The results show many new qualitative features that are absent in perturbation theory.
First, the WFU has a large asymmetry between peaks and troughs of ζ̄(x): the effect of the
oscillations in the potential is parametrically larger for peaks. Second, the modifications are
not uniformly of order b̃: for α2ζ̄ ≳ 1 one has very large effects, asymptotically going as eπα/2

for ζ̄ ≳ 1. Third, the WFU exhibits oscillatory features as ζ̄ varies with frequency α. All
these features may be understood in a quantum mechanical toy model (see section 6), with a
periodic perturbations of the Hamiltonian. The periodic modulation at high frequency induces
transitions to excited states and these dominate completely the tail of the wavefunction
compared to the ground state wavefunction.

The study of the full WFU just began and many open questions remain as we discuss
in the Conclusions, section 7.

2 Decoupling limit of the EFT of Inflation

It is useful in many cases to study inflation in the limit ϵ→ 0, keeping the power spectrum and
the other slow-roll parameters fixed. Since the power spectrum Pζ ∼ H2/(M2

Plϵ) is fixed, this
limit corresponds to inflation taking place at low energy, H → 0, or equivalently this is the
limit in which gravity decouples, MPl → ∞. Data are progressively pushing towards this limit:
the observation of a non-zero tilt together with the upper bounds on tensor modes imply a
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certain hierarchy ϵ≪ |η|. There are various simplifications in this limit. First, the background
geometry becomes exactly de Sitter. Second, perturbations can be studied in the decoupling
limit, i.e. without evaluating the perturbations of the geometry. Technically this means that
the metric remains unperturbed and one does not need to solve the constraint equations for
the lapse function N and the shift vectors N i. These variables are indeed ϵ suppressed: in
the limit MPl → ∞ one expects that the metric becomes non-dynamical. The solutions of the
constraints thus give terms in the action suppressed compared with the action of the inflaton.
The ϵ→ 0 limit of slow-roll inflation is discussed in detail in [21], while the decoupling limit
is justified for typical fluctuations in the case of oscillatory features in [13]. In appendix B,
we derive its regime of validity in a non-perturbative manner, as required for our analysis.

In this section we derive the action for the scalar perturbations π in the decoupling limit,
using the EFT of Inflation [20]. Throughout the paper, the background metric is assumed to
be the flat Friedmann-Robertson-Walker (FRW) metric: ds2 = − dt2 + a(t)2 dx2, where a(t)
denotes the scale factor. The EFT action for a scalar field with a minimal kinetic term is [20]

S =
∫

d4x
√
−g
[
M2

Pl
2 R−M2

Pl(3H(t)2 + Ḣ(t)) +M2
PlḢ(t)g00

]
, (2.1)

where R is the 4d Ricci scalar, g00 is the (00)-component of gµν and MPl is the Planck mass.
We define the Hubble parameter as H(t) ≡ ȧ/a, where the dot is a time derivative. The action
above is formulated in the unitary gauge, having all the degrees of freedom inside the metric.
The presence of the scalar degree of freedom can be made manifest by performing a space-time
dependent time diffeomorphism and promoting the gauge parameter to a field −π(t,x). This
is nothing but the usual Stueckelberg trick: t→ t+ π(t,x), so that g00 then transforms as

g00 → (1 + π̇)2g00 + 2(1 + π̇)∂iπg0i + gij∂iπ∂jπ ≃ −1− 2π̇ + (∂µπ)2. (2.2)

In the last step we took the decoupling limit and neglected metric perturbations; notice that
this can only be done after reintroducing π. Therefore, the action (2.1) becomes

S =
∫

d4x
√
−g
[
M2

Pl
2 R−M2

Pl(3H(t+ π)2 + 2Ḣ(t+ π)) +M2
PlḢ(t+ π)(−2π̇ + (∂µπ)2)

]
.

(2.3)

The Einstein-Hilbert term, as expected, does not contain the field π because it is invariant
under 4d diffeomorphisms: since we are interested in the action for π we can disregard this
term from now on and write the action as

S =
∫

d4x a3M2
Pl

[
− 3H(t+ π)2 − 2(1 + π̇)Ḣ(t+ π) + Ḣ(t+ π)(∂µπ)2

]
. (2.4)

At linear order in π the action above vanishes after performing an integration by parts: this
is a consequence of the background equations of motion.

Let us now show that in the decoupling limit ϵ→ 0, the field π must be time-independent
outside the horizon. Indeed, when all modes are well outside the horizon, the relation
between π and ζ reads [13]

ζ(t,x) =
∫ t+T (t,x)

t
H(t′) dt′ , with π(t+ T (t,x),x) + T (t,x) = 0, (2.5)
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where the implicit equation defining T is found by working out the time-diffeomorphism
mapping the π to the ζ-gauge.1 In the decoupling limit, one can consider the Hubble rate
constant, H = H⋆, hence ζ = H⋆T . From the time-independence of ζ outside the horizon, one
deduces that T is also constant. Inspecting the relationship between T and π in (2.5), one finds
that this is realized only with π constant, and hence with ζ = −H⋆π. It is also instructive to
go beyond the decoupling limit, in which case eq. (2.5) gives ζ = −Hπ+Hππ̇+Ḣπ2/2+O(π3)
up to quadratic order. This makes it manifest that the time-dependence of H implies a
time-dependence of π.

Although we are working in the decoupling limit, the time-independence of π is not
manifest in the action (2.4): polynomial terms in π naively induce an evolution outside the
horizon. One can rewrite the action in a more transparent form. We rewrite the second
term on the r.h.s. as −2 d[H(t+ π)]/dt and we integrate it by parts: up to terms that do
not depend on π the action (2.4) becomes

S =
∫

d4x a(t)3M2
Pl

[
− 3(H(t+ π)−H(t))2 + Ḣ(t+ π)(∂µπ)2

]
. (2.6)

The first term, (H(t + π) −H(t))2, scales as ∼ ϵ2 since it involves variations of H during
inflation. This is subdominant compared to the second term, Ḣ(t+ π)(∂µπ)2, which scales
as ∼ ϵ.2 Actually, one is not allowed to retain the first term: as we discussed, solving the
constraint equations for the lapse function and the shift vector would give extra terms in the
action that scale as ϵ2, i.e. of the same order as the first term, see appendix B. Therefore
in the decoupling limit the action takes the simplified form:

S =
∫

d4x a(t)3M2
PlḢ(t+ π)(∂µπ)2, (2.7)

where in a(t), one should consider for consistency a de Sitter evolution a(t) ∝ eH⋆t. Since
the only term in the action contains two derivatives, one can see explicitly that π = const
is a solution of the complete non-linear equation of motion. This action describes, in the
limit ϵ → 0, a model of inflation with a minimal kinetic term and a generic potential that
may include oscillations or features as we are going to discuss momentarily. One can add
extra terms in the EFT, like (g00 + 1)n or extrinsic curvature terms. All these terms contain
at least two derivatives on π and therefore do not affect the argument for the conservation
of π outside the horizon.

It is noteworthy that the action (2.7) is not formulated perturbatively: the nonlinearities
that it contains are expressed in a resummed manner, which is crucial when dealing with
non-perturbative phenomena and rare large fluctuations. Eventually, our action can be
used for any single-clock model of inflation, provided one is not interested in O(ϵ2) terms.
If one is agnostic about the underlying dynamics driving inflation, the dynamics of π can

1The spatial diffeomorphism that is required beyond linear order in π becomes negligible when all modes
are well outside the horizon, see [13] for an explicit proof in the context of resonant models.

2More precisely, (H(t+ π) −H(t))2 = (
∫ t+π

t
Ḣ(t′) dt′)2 ≤ Ḣ2

maxπ
2 ≤ ϵ2

maxH
4
iniπ

2, where we used that H is
decreasing in the last step, shows that the first term is indeed negligible, inside the horizon, compared to the
second one of order ϵH2(∂µπ)2. The impact outside the Hubble radius is discussed in appendix B.
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then be obtained simply by parametrizing the time evolution of the Hubble rate during
inflation, from which one deduces

π̈ +
[
3H⋆ +

Ḧ(t+ π)
Ḣ(t+ π)

]
π̇ − ∂2

i π

a2 = − Ḧ(t+ π)
2Ḣ(t+ π)

[
π̇2 − (∂iπ)2

a2

]
. (2.8)

Remarkably, this compact expression is the full non-linear equation of motion, encapsulating
all non-linearities, in any model of inflation involving a canonical single scalar field, in the
decoupling limit.

The classical solutions of this equation, with suitable boundary conditions, can be used,
following [1], to analyse the WFU in the large ζ limit. The corresponding PDE, however,
can only be solved numerically. In this paper we concentrate on the case in which one has
a feature, localised or periodic, superimposed to a smooth slow-roll potential. In this case
one has another expansion parameter, the amplitude of the feature, and in this case we
will be able to get analytic results. For concreteness we focus on periodic features, i.e. the
case of resonant non-Gaussianity.

3 Wavefunction of the universe for resonant features

3.1 Resonant features

In the following, we will compute the WFU when the time-dependence of the Hubble rate
is assumed to verify

Ḣ(t) = Ḣ⋆

[
1− b̃ cos(ωt+ δ)

]
, (3.1)

where all parameters Ḣ⋆, b̃, ω, δ are constant, and when treating the oscillatory part as a pertur-
bation, i.e. at first order in the parameter b̃. As we stressed, our method is readily applicable
beyond these assumptions, but this simple form will enable us to derive analytical results.

While the form (3.1) is a perfectly legitimate starting point from an EFT point of view, in
this section we explain that it is indeed a good approximation to the dynamics of the Hubble
rate in motivated models, and discuss its regime of validity in this context. Explicitly, let us
consider models of inflation driven by a scalar field with canonical kinetic term and potential

V (ϕ) = Vsr(ϕ) + Λ4 cos (ϕ/f) , (3.2)

where Vsr(ϕ) is a generic slow-roll potential, f is the analogue of the axion decay constant
and Λ is the scale that controls the amplitude of the oscillations of the potential. The
specific model with Vsr(ϕ) = µ3ϕ has been studied in detail in [11] but we keep Vsr generic as
in [12, 22]. We could also allow Λ to depend on the scalar field in a slow-roll manner and
results would equally hold, but we consider Λ constant for simplicity.

The full equations governing the background dynamics are the standard ones:

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0, (3.3)

3H2M2
Pl =

ϕ̇2

2 + V (ϕ), (3.4)
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implying −2M2
PlḢ = ϕ̇2. At zeroth order in the oscillatory component, Vsr is driving a stan-

dard phase of slow-roll inflation, whose corresponding quantities ϕ0(t), H0(t) we denote with
an index 0. Up to first order in the oscillatory component (the precise expansion parameter will
be made explicit below), the time derivative of the Hubble rate reads −2M2

PlḢ = ϕ̇2
0 +2ϕ̇0ϕ̇1,

where quantities at first order are denoted with an index 1, and one has

ϕ̈1 + 3H0ϕ̇1 + 3H1ϕ̇0 + V ′′
sr(ϕ0)ϕ1 = Λ4

f
sin(ϕ0/f) . (3.5)

We are interested in the regime where the frequency of variation of the oscillatory component
ϕ̇0/f is large compared to the Hubble scale, i.e. where α ≡ |ϕ̇0|/(H0f) ≫ 1, a regime in
which non-Gaussianities are resonantly enhanced [10, 12, 22]. In this regime, the left-hand
side is dominated by the two-derivative term, with the approximate solution

ϕ1 = −Λ4f

ϕ̇2
0

sin(ϕ0/f) . (3.6)

Note that all quantities like H0, ϕ0 and α have a mild, slow-roll, time dependence with the usual
successive Hubble slow-roll parameters ϵ0 = −Ḣ0/H

2
0 = ϕ̇2

0/(2H2
0M

2
Pl), η0 = ϵ̇0/(H0ϵ0), . . .

much smaller than unity. Hence one can check that (3.6) is indeed an approximate solution
to (3.5): as the sine term varies much more rapidly than ϕ̇0, ϕ̇1 scales like αH0ϕ1, and hence
it is immediate that the friction term 3H0ϕ̇1 and the mass term V ′′

sr(ϕ0)ϕ1 are negligible
compared to ϕ̈1. Let us show that 3H1ϕ̇0 is also negligible. For this, note that (3.4) expanded
at first order gives

6H0H1M
2
Pl = ϕ̇0ϕ̇1 + V ′

sr(ϕ0)ϕ1 + Λ4 cos(ϕ0/f) . (3.7)

The first and the last term on the right-hand side of (3.7) contribute to H1ϕ̇0/ϕ̈1 as ϵ0/α≪ 1,
and the second one is even further suppressed by 1/α.

Now, using the solution (3.6), one finds the expression for Ḣ up to first order:

Ḣ = −ϵ0H2
0

[
1− 2Λ4

ϕ̇2
0

cos(ϕ0/f)
]
. (3.8)

That is, in addition to the slow-roll dependence Ḣ0 = −ϵ0H2
0 at zeroth order, Ḣ acquires

a rapidly varying oscillatory component. This is similar to the form (3.1) on which we
will concentrate. It corresponds to the approximation in which the slow-varying quantities,
both ϵ0H

2
0 and the relative size of the oscillations 2Λ4/ϕ̇2

0, are considered as constant. More
precisely, if one expands (3.8) around a pivot time t⋆, then on time scales ∆t = t− t⋆ smaller
than the scales of variation of the slow-roll part, i.e. for H0∆t ≪ (1/ϵ0(t⋆), 1/η0(t⋆)) and
other combinations of inverse of slow-roll parameters at higher-order, one can consider all
quantities as constant except for ϕ0/f in the cosine term, which can be approximated by
(ϕ0(t⋆) + ϕ̇0(t⋆)(t − t⋆))/f . One then obtains the form (3.1) with

Ḣ⋆ = Ḣ0(t⋆) , ω = |ϕ̇0(t⋆)|/f ,
b̃ = 2Λ4/ϕ̇2

0(t⋆) , δ = sign(ϕ̇0(t⋆))ϕ0(t⋆)/f − ωt⋆ ,
(3.9)
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and we chose ω > 0.3 Note that another parameter b = Λ4

fV ′
sr(ϕ0(t⋆)) is used in references [11,

12, 22]. It is simply related to our parameter b̃ ≃ 6|b|/α(t⋆) upon using the slow-roll equations.
We prefer to use b̃ since, as pointed out in [13], b does not have to be ≪ 1. Instead, b̃ < 1 is
a necessary requirement to satisfy the null energy condition, i.e. to ensure that Ḣ in (3.1)
is always negative.

To summarize, the simple form (3.1) for Ḣ(t) on which we will concentrate is a good
local approximation of the dynamics, in models of the type (3.2) when b̃≪ 1. As this is only
a local approximation in time, it means that one cannot consider arbitrarily large values of π
in (2.7) to study the WFU for rare large values of ζ = −Hπ. As we work in the decoupling
limit in which ϵ0 ≪ η0, one finds that one should restrict to values of |ζ| ≪ 1/η0.4 However,
we stress that this is not a theoretical limitation of our method, which is valid for arbitrarily
large values of |ζ| once the expansion history H(t) is known: it simply illustrates that the
extreme tail of the WFU is sensitive to the whole inflationary history.5

3.2 Wavefunction of the universe

In this section we are going to express the wavefunction of the curvature perturbation ζ up
to first order in b̃ in the semiclassical limit, i.e. neglecting loops (we will discuss below the
range of validity of this approximation) in models with resonant features described by the
expansion history (3.1). We will pay attention to put it in a manifestly finite form so that it
can be computed in the subsequent sections using both numerical and analytical methods.

Before delving into the analysis, it is useful to compare our action (2.7) to the one used
in the literature to study resonant features. The “derivative” form of the action we are using
is in fact equivalent to the one that was used to calculate the n-point functions of ζ in these
models (see eq. (24) of [13] or eq. (4.1) of [22]), up to integrations by parts. We explicitly
show this in appendix A. The advantage of using our action is that the conservation of π
is manifest, i.e. the equation of motion admits a constant solution. On the other hand, in
the form of the action used in the literature, the conservation of π is not manifest because
the action contains non-linear self-interactions πn. This “polynomial” form has also the
disadvantage that boundary terms must be kept in order to compute correlation functions,
see appendix A for more details.

3From the approximate time-dependence of the scalar field we have derived, (ϕ(t) − ϕ0(t⋆)) sign(ϕ̇0(t⋆)) ≃
ωf(t− t⋆) − 1

2 b̃f sin(ωt+ δ), one obtains the link between the Goldstone boson π and the fluctuation of the
scalar field φ(t) = ϕ(t+ π) − ϕ(t), namely ±φ/f = ωπ − 1

2 b̃[sin(ω(t+ π) + δ) − sin(ωt+ δ)]. With ζ = −H⋆π

outside the horizon in the decoupling limit that we consider, this gives the fully nonlinear relationship between
φ and the observed curvature perturbation ζ. The probability density function of ζ can then be deduced from
the one of φ: P(ζ) = P(φ(ζ))αf [1 − 1

2 b̃ cos(ωt+ δ − αζ)]. However, this is of little practical use. Considering
that φ soon after Hubble crossing is Gaussian, as one would do in stochastic inflation in slow-roll models,
would lead to completely wrong results. Instead, our approach takes into account the resonant interactions
inside the Hubble radius (actually all interactions), directly at the level of the Goldstone boson, which enables
us to derive P(ζ) straight away.

4More generally, one should also require |ζ| ≪
[
n!Ḣ0H

n
0

(
dn+1H0

dtn+1

)−1
]1/n

(n ≥ 1).
5For completeness, we show in appendix B that neglecting the mixing with gravity requires |ζ| ≪ 1/

√
ϵα3.
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Specifying eq. (2.7) to the time dependence (3.1), our action of interest reads

S =
∫

d4x a(t)3M2
PlḢ⋆

[
1− b̃ cos(ωt+ ωπ + δ)

]
(∂µπ)2, (3.10)

where remember that one should write a(t) ∝ eH⋆t for consistency. Let us now proceed
with the calculation of the WFU. Starting from the action (3.10) one can write down the
classical non-linear equation of motion of π, eq. (2.8), and solve such a differential equation
with boundary conditions at η → −∞ and η → 0, where η is the conformal time such that
a(η) = −1/(H⋆η). Then, one can compute the WFU in the semiclassical limit, which is
essentially the exponential of the on-shell action [1]. This procedure is quite involved since
it requires solving a non-linear partial differential equation for π. Since we are interested
in computing the WFU at linear order in b̃, we will not need to perform this complicated
task. Indeed, it is sufficient to calculate the action (3.10) on the “free” solution of π —the
one with b̃ = 0. This comes from the fact that

S[π = π0 + b̃π1] = S[π0] + b̃

∫
d4xπ1

(
δL
δπ

) ∣∣∣∣
π=π0,b̃=0

+O(b̃2), (3.11)

where we explicitly factored out b̃ in the expansion π = π0+ b̃π1+ . . . and where, by definition,
π0 satisfies the free equation of motion, i.e. (δL/δπ)

∣∣
π=π0,b̃=0 = 0. As we see, the equality

S[π = π0 + b̃π1] = S[π0] +O(b̃2) is a generic fact that can be used in any model with a small
expansion parameter, and is not tied to the specific form (3.10).6

Let us now define ζ ≡ −H⋆π0. The on-shell action as a function of the late-time value
ζ̄(x) of the curvature perturbation becomes

S[ζ̄] =
∫

dη d3x
1

2η2Pζ

[
1− b̃ cos

(
α (log(η/η⋆) + ζ)− δ̃

) ][
ζ ′2 − (∂iζ)2

]
, (3.13)

where we have defined Pζ ≡ H4
⋆/(2M2

Pl|Ḣ⋆|), δ̃ ≡ δ + ωt⋆ is simply sign(ϕ̇0(t⋆))ϕ0(t⋆)/f
when (3.1) comes from the scalar field model (3.2), and α ≡ ω/H⋆ (this naturally coincides
with the previously defined α in the scalar field model, simply evaluated at t⋆). Note one
thing: ζ inside the integrand does not coincide with the curvature perturbation at all times,
but it is simply a rescaled version of the free π0. However, as we have seen in section 2,

6For the sake of completeness, let us verify it in this case. The action (3.10) up to first order in b̃ reads

S[π0 + bπ1] ≃S0[π0] − 2b̃
∫

dη d3x
M2

PlḢ⋆

H2
⋆η2

[
π′

0π
′
1 − ∂iπ0∂iπ1

]
+ b̃

∫
dη d3x

M2
PlḢ⋆

H2
⋆η2

[
π′2

0 − (∂iπ0)2
]

cos(ωt+ ωπ0 + δ), (3.12)

where a prime denotes a derivative with respect to the conformal time η, the first term is defined by
S0[π0] ≡ −

∫
dη d3x

M2
PlḢ⋆

H2
⋆η2

[
π′2

0 −(∂iπ0)2], and π0 verifies the linear equation of motion π′′
0 −(2/η)π′

0−∂2
i π0 = 0.

Performing an integration by parts in the second term on the r.h.s. of (3.12) thus gives rise to the equation of
motion of π0 (plus boundary terms, which vanish since we are imposing π1 = 0 at early and late times). Thus,
the terms that contain π1 vanish using the free equation of motion of π0, and only the first and last term
remain, whose sum is nothing else than the full action, evaluated on the free solution π0. Hence, the on-shell
action at first order in b̃ can indeed be evaluated by using the free solution π0.
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−H⋆π does agree with the curvature perturbation at late times, and we also impose that π1
vanishes at the end of inflation, so that ζ ≡ −H⋆π0 approaches the curvature perturbation
field ζ̄. Hence, eq. (3.13) gives the on-shell action as a function of the late-time ζ̄(x).

Late-time divergences and Euclidean action: let us study the divergences of the
action (3.13) at late times, in order to express its physical part in a manifestly finite form.
Note that ζ(η,x) is defined as the unique solution of the partial differential equation ζ ′′ −
(2/η)ζ ′ − ∂2

i ζ = 0 that asymptotes to the configuration ζ̄(x) at the end of inflation, and with
suitable behaviour at past infinity. Its Fourier transform ζ(η,k) =

∫
d3x ζ(η,x)e−ik·x reads

ζ(η,k) = ζ̄(k) (1− ikη)eikη

(1− ikηf)eikηf
, (3.14)

where ζ̄(k) denotes the Fourier transform of the late-time configuration, k = |k|, ηf is an
arbitrary late-time regulator (which will be sent to 0). We have selected only the eikη solution
corresponding to the usual Bunch-Davies vacuum. It corresponds to deforming the contour
of the time integration η → η(1− iϵ) in (3.13). Notice that ζ∗(η,k) ̸= ζ(η,−k), where the
star denotes complex conjugation: ζ(η,x) is not real, i.e. it does not correspond to any
physical configuration of the field, but it simply gives a configuration that dominates the
path integral in the semiclassical limit.

Let us take ηf = 0 and consider the limit η → 0

ζ(η,k) ≃ ζ̄(k)
[
1 + 1

2k
2η2 + i

3k
3η3 +O(η4)

]
. (3.15)

Then, using the inverse Fourier transform ζ(η,x) =
∫ d3k

(2π)3 ζ(η,k)eik·x, we arrive at

ζ(η,x) ≃
[
ζ̄(x)− 1

2η
2∇2ζ̄(x) + i

3η
3∇3ζ̄(x) +O(η4)

]
, (3.16)

where we defined the inverse Fourier transform of k3ζ̄(k) as the non-local operator ∇3ζ̄(x).
From the expression above, the only term in the free action that diverges at late time is
(∂iζ̄)2/η2. This divergent term, as pointed out in [23] (see also [1]), is real and thus it gives
a pure phase in the WFU that depends on the late-time regulator ηf . This phase does not
contribute to the modulus squared of the WFU and so it does not matter if we are interested
in observables related to ζ. (The phase of the WFU is relevant if one is interested in the
momentum conjugate to ζ, which however decays exponentially at late times.) Since it is
irrelevant for late-time observables, in order to deal with finite quantities, we can subtract
this divergence from the action.

Apart from the free term, in (3.13) there is a divergent contribution at order b̃ as well.
Using (3.16) one obtains

cos
(
α (log(η/η⋆) + ζ)− δ̃

)
= cos

(
α
(
log(η/η⋆) + ζ̄

)
− δ̃

)
+ 1

2αη
2 sin

(
α
(
log(η/η⋆) + ζ̄

)
− δ̃

)
∇2ζ̄ + . . . (3.17)

The second term on the right-hand side gives a finite contribution in the action since the η2

factor cancels the same factor at the denominator of eq. (3.13). The divergent term in the
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action is thus cos
(
α
(
log(η/η⋆) + ζ̄

)
− δ̃

)
(∂iζ̄)2/η2. This again contributes to a pure phase

in the WFU that can be dropped. Therefore, the finite action at first order in b̃ is

∆S = ∆S0 + b̃∆S1. (3.18)

Here we define

∆S0 ≡
∫

dη d3x
1

2η2Pζ

[
ζ ′2 − (∂iζ)2 + (∂iζ̄)2], (3.19)

and

∆S1 ≡ −
∫

dη d3x
1

2η2Pζ

{[
ζ ′2 − (∂iζ)2] cos (α (log(η/η⋆) + ζ)− δ̃

)
+ (∂iζ̄)2 cos

(
α
(
log(η/η⋆) + ζ̄

)
− δ̃

)}
, (3.20)

where, as above, the subscripts 0 and 1 refer to the actions at zeroth and first order in b̃

respectively. ∆S0 gives the Gaussian wavefunction, while ∆S1 gives all the deviations from
Gaussianity of the probability distribution of ζ̄.

It is convenient to rotate to Euclidean time, where ζ is real and exponentially decaying
at early times, instead of oscillating. Since the action (3.18) is analytic everywhere in the
upper-left quadrant of the complex η plane, and the integrand decays sufficiently fast at
infinity, one can indeed perform a rotation to Euclidean space: η → −iτ where τ denotes
the Euclidean time. Notice that it was necessary to make the integrals in (3.19)–(3.20)
convergent at η → 0 before doing the rotation.7 We write the exponent of the WFU as
i∆S1 = −∆SE,1, where we define ∆SE,1 as the Euclidean action. After the analytical
continuation to Euclidean time, (3.20) leads to

∆SE,1[ζ̄] =
∫ 0

−∞
dτ
∫

d3x
1

2τ2Pζ

{[
ζ ′2 + (∂iζ)2] cos (α (log(τ/η⋆) + ζ)− δ̃ − iαπ/2

)
− (∂iζ̄)2 cos

(
α
(
log(τ/η⋆) + ζ̄

)
− δ̃ − iαπ/2

)}
,

(3.21)

where a prime now refers to a derivative with respect to τ , and explicitly the real variable
ζ(τ,x) =

∫ d3k
(2π)3 ζ̄(k)eik·x(1− kτ)ekτ . Note that ζ(τ,x) is real, but in the action one has an

imaginary constant inside the cosine as a consequence of the Euclidean rotation. Therefore
∆SE,1 is complex. In the rest of the paper we will evaluate the action (3.21) using analytical
and numerical methods.

To understand the behaviour of the WFU, it is useful to fix a certain “shape” for ζ̄(x),
say a spherically symmetric Gaussian, and study the WFU as a function of the overall size: in

7Some more details about the rotation. ζ is an analytic function of η and also the logarithm is analytic in
the quadrant of interest, except at the origin. Since also the cosine is analytic, one has only to worry about the
arc at infinity and the origin. Regarding the arc at infinity, notice that the imaginary part of the logarithm is
bounded in the quadrant of interest: this makes the modulus of the cosine bounded and the convergence is
guaranteed by the 1/η2 term (notice that ζ, but not ζ̄, is exponentially decaying at infinity). Regarding the
origin: one can neglect the integration along the infinitesimal quarter of the circle close to the origin since the
modulus of the integrand is bounded.
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this way one has a function of a single variable that we can call ζ̄ with an abuse of notation.
One expects that the result for small ζ̄ is the one of perturbation theory, while things get
non-perturbative for large ζ̄. It is interesting to notice that the WFU as a function of this
single variable ζ̄ has no singularity in the whole complex ζ̄ plane. This is evident from the
explicit expression eq. (3.21), since the cosine is an entire function. This means that the
series in ζ̄, which is the perturbation-theory series, has infinite radius of convergence. The
non-perturbative results we are going to present are the sum of the perturbative series.

Our results can be applied to the general case of bounded features in H(t). In situations
where Ḣ(t) = Ḣ0 + b̃Ḣ1(t), with the feature assumed to be controlled by the small parameter
b̃, most of the steps of the previous section still hold, so that we can write down the leading
correction to the on-shell action. If we define the dimensionless function h(t) ≡ Ḣ1(t)/Ḣ0,
then the correction to the action is

∆S1[ζ̄] =
∫

dη d3x
1

2η2Pζ

{[
ζ ′2 − (∂iζ)2]h (t− ζ/H0) + (∂iζ̄)2h

(
t− ζ̄/H0

)}
, (3.22)

where t must be understood as function of the conformal time η, we subtracted the divergent
contribution at late times, assuming that h is bounded in this limit, and we replaced π

with ζ as before. Formula (3.22) represents one of the main results of our paper. It can
be used to compute the WFU in models with a small feature in H(t), at first order in the
amplitude of the feature, but non-perturbatively in ζ̄. Note that the rotation to Euclidean
time τ can however be more subtle and needs to be studied case-by-case: the function h

could feature singularities in the complex plane.

3.3 Regime of validity and relationship with perturbation theory

Let us study the regime of validity of the semiclassical result of eq. (3.21). In the methodology
employed in [1], the semiclassical approximation proves reliable for the tails of Ψ, specifically
when |ζ̄| ≫ P

1/2
ζ . On the tails, tree-level diagrams are enhanced relative to loops: at a given

order in perturbation theory, tree-level diagrams are enhanced compared to loops by the
amplitude |ζ̄| of the external legs. This conclusion remains true in the presence of features.
However, in this case loops are negligible compared with tree-diagrams even for typical values
of ζ̄, as we will show momentarily. Unless specified, the whole discussion is a first order in b̃.

Scaling of tree-level diagrams: let us study the scaling of the tree-level Witten diagrams.
These correspond to the expansion in powers of ζ of the on-shell action of eq. (3.13). We
first determine the scaling of the vertex and then the α dependence of the time integral.
To obtain the scaling of the vertex, we need to Taylor-expand the action in powers of ζ.
The vertex with n powers of ζ is obtained by expanding the cosine function at order n− 2,
see eq. (D.2): this gives αn−2. The time integral involves an oscillating function of η that
goes as either cos(α log(−η)) or sin(α log(−η)), depending on whether n is even or odd. At
order n the structure of the integral is

1
n!

∫ 0

−∞

dη
η2 cos(α log(−η)) eiktη

n∏
i=1

(1− ikiη) ∼
α≫1

kt
n2n

√
ααn−2 , (3.23)
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ζ̄ζ̄

α
1
2 b̃ ζ̄2/Pζ

+

ζ̄ζ̄ ζ̄

α
1
2 b̃ ζ̄2 (α2ζ̄)/Pζ

+

ζ̄ζ̄ ζ̄ζ̄

α
1
2 b̃ ζ̄2 (α2ζ̄)2/Pζ

+ … +
. . .

ζ̄ζ̄ . . .ζ̄

α
1
2 b̃ ζ̄2 (α2ζ̄)n−2/Pζ

ζ̄ζ̄

α
1
2 b̃ ζ̄2 (α2Pζ)/Pζ

+

ζ̄ζ̄ ζ̄

α
1
2 b̃ ζ̄2 (α2ζ̄) (α2Pζ)/Pζ

+

ζ̄ζ̄ ζ̄ζ̄

α
1
2 b̃ ζ̄2 (α2ζ̄)2(α2Pζ)/Pζ

+ … +
. . .

ζ̄ζ̄ . . .ζ̄

α
1
2 b̃ ζ̄2 (α2ζ̄)n−2(α2Pζ)/Pζ

Figure 1. Witten diagrams contributing to first order in b̃, with corresponding scalings with α, ζ̄
and Pζ , including the effect of the resonance. Top: tree-level diagrams. The first diagram on the left
corresponds to the correction to the power spectrum. The second is the contribution from the cubic
part of the action and so on. Bottom: one-loop diagrams at first order in b̃. At any given order in ζ̄,
one-loop diagrams are suppressed by α2Pζ .

with kt ≡
∑n
i=1 ki, and where we considered all ki to be comparable. The integral is estimated

in saddle-point approximation with the saddle at −ktηs ∼ α (8). (The estimate is the same
for n odd, when cosine is replaced by sine.) Including the scaling of the vertex discussed
above, the tree-level Witten diagrams go as

√
αα2(n−2). The Gaussian action is of order ζ̄2:

compared to this the nth term in the action contains an additional ζ̄n−2. Putting all together
the scaling of the tree-level Witten diagram is b̃

√
α ζ̄2(α2ζ̄)n−2/Pζ as shown in the first line

of figure 1. This estimate just reproduces what obtained from the explicit calculations of the
n-point correlation functions [22]. From this estimate, the expansion in powers of ζ̄ needs
to be resummed when α2|ζ̄| ≳ 1: in this case the expansion in powers does not make any
sense and one has to rely on the full non-perturbative result.

It is quite straightforward to analyse the structure of tree-level diagrams at higher order
in b̃. Tree level diagrams will give for the WFU

Ψ ∼ e
− 1

Pζ
[ζ̄2+b̃∆SE,1(ζ̄,α)+b̃2∆SE,2(ζ̄,α)+O(b̃3)]

. (3.24)

(For tree diagrams, each new vertex gives 1/Pζ from the normalization of the action, which is
compensated by an extra propagator ∝ Pζ .) Since we are expanding in b̃, the ∆SE,1(ζ̄, α)
term must be small compared with the Gaussian part. However notice that this condition
is compatible with b̃∆SE,1(ζ̄, α) ≳ 1: in this case one cannot expand the term ∆S1 in the
exponential.

Scaling of loop diagrams: let us now discuss loop diagrams at O(b̃), see figure 1. First,
we need to make a distinction between loops at the level of the WFU and of correlators. Once
the WFU is obtained at one loop, in order to obtain correlation functions one still needs
to perform an integration over ζ̄(x) (i.e. apply the Born rule). This average over late-time
field configurations gives extra contributions, which we dub “boundary” loops. Of course

8The saddle point ηs moves to later and later times when increasing n, since kt scales with n if all the
external momenta are of the same order. We will come back to this point in the next sections, when evaluating
the time integral in the WFU using a saddle-point approximation at large α and ζ̄.
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the final result must coincide with the direct evaluation of the correlator using the in-in
calculation. We verify this in appendix C for the simple case of λϕ4 in de Sitter for the
equal-time two-point function at one loop. The effect of the boundary loop combines with
the WFU loop in such a way to give the loop of the in-in propagator.

Let us focus, for the time being, on the WFU and estimate the size of loop corrections
in the resonant scenario. In appendix D we show that one-loop diagrams are suppressed
by α2Pζ compared to tree-level contributions with the same number of external legs, see
figure 1.9 Let us now try to understand the suppression of the one-loop graphs. First notice
that, because of the loop, the vertex has two more ζ’s than in the tree-level diagram with
the same number of external legs. (For instance, the one-loop graph with two external legs,
contains the four-point vertex of eq. (D.1).). This gives two extra powers of α times Pζ .
There are no extra powers of α from the loop: the bulk-to-bulk propagator is zero at late
times, which physically says loop particles are not resonantly produced.10 Indeed, the integral
over the physical momentum kp of the bulk-to-bulk propagator that describes the loop does
not depend on η (in the limit ηf → 0, see eq. (D.6)), so that the integration over η remains
the same as at tree level, eq. (3.23). We conclude that one-loop diagrams at order b̃ scale
as the tree-level diagrams with an additional factor α2Pζ (the exception is the one-point
correlation function, which has no tree-level analogue). It is straightforward to see that with
ℓ loops at first order in b̃ one gets a factor (α2Pζ)ℓ. Loops are thus small if α2Pζ ≪ 1. As
we will discuss below, the validity of the EFT will give a bound which is more stringent
than this, so that loops are automatically tiny.

We saw above that the expansion parameter of the tree-level diagrams is α2ζ̄. This
implies that even for typical fluctuations, ζ̄ ∼ P

1/2
ζ , tree-level diagrams, which are suppressed

by powers of α2P
1/2
ζ , are more important than loop corrections, which are suppressed by

powers of α2Pζ . This is at variance with the general case of [1], where loop diagrams can
be neglected compared to the tree-level ones only for unlikely fluctuations, on the tail of
the probability distribution.

What happens at the level of correlators? In this case the effect of loops, at first order in
b̃, vanishes exactly (see the related discussion in [24]). This is reminiscent of what happens
for loops of massless particles in S-matrix calculations, when the loop does not depend
on the external momenta. Indeed one can check that the in-in loops vanish exactly in
dimensional regularization. This does not happen for the Witten loops in the WFU as
discussed in appendix D: one remains with physical logarithms that cannot be removed by
counterterms. The difference between the in-in and wavefunction calculation is particularly
evident in Minkowski, as explained in [24]. For the in-in case the loop reduces to evaluating
the in-in propagator at coincident points: this gives a divergent constant which can be
reabsorbed by local counter-terms. For the WFU calculation the propagator has a different
boundary condition: it vanishes on the late-time boundary. Therefore, its contribution cannot
be a space-time constant as the boundary conditions break translational invariance. In

9There also exists a one-loop diagram with one external leg. This tadpole contribution is a spacetime
constant whose effect is to redefine the background solution.

10In terms of the canonical scalar ϕ of (3.2), fluctuations inside the loop have a size δϕ ∼ H, while external
particles have δϕ ∼ αH, since they are produced well inside the horizon when their frequency is ∼ αH.
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momentum space this corresponds to a momentum inflow inside the loop, and ultimately
leads to log contributions that cannot be removed by counter-terms. (We thank Enrico
Pajer for enlightening discussions about this.)

In conclusion, loops in the WFU at order b̃ are suppressed by α2Pζ ≪ 1, while they
are exactly zero at the level of correlation functions.

Regime of validity of the EFT: we saw above that loop corrections are small if α2Pζ ≪ 1
and that the tree-level action needs to be resummed if α2ζ̄ ≳ 1. One may wonder whether it
is possible to be in a regime in which one needs resummation even for typical fluctuations
α2P

1/2
ζ ≳ 1 (notice that this is compatible with small loop corrections). In this regime one

would not be allowed to describe the non-Gaussian corrections to the typical fluctuations in
terms of bispectrum, trispectrum and so on: all the n-point functions should be considered
at once.

Using the definitions of α and Pζ , the condition for requiring resummation for typical
fluctuations can be written in terms of ω and f (see section 3.1) and is equivalent to
ω/(4πf) ≳ 1. (Here, we are also taking into account the factors of π originating from the
momentum integrals in the correlators, see [13].) One would naively think that the unitarity
cutoff of the theory is Λcutoff ∼ 4πf , so that the regime ω/(4πf) ≳ 1 lies beyond the regime
of validity of the EFT. However, the conclusion is too quick: for b̃ = 0 the theory is free, so
there must be some b̃ dependence in the calculation of the unitarity cut-off. This calculation
has been done recently in [25] and the result is

Λcutoff = 4πf log1/2
(
f4

Λ4

)
∼ 4πf log1/2

(
1

b̃Pζα4

)
∼ 4πf log1/2

(
b̃−1

)
. (3.25)

In the same reference [25] an explicit UV completion with new states entering at a scale
parametrically larger than 4πf is studied. It is therefore possible to have a situation where the
resummation of the tree-level diagrams is necessary for typical fluctuations: this contrasts the
usual expectation that deviations from Gaussianity should be encoded only in the three- and
four-point functions. We defer a detailed study of this interesting case to a future publication.

4 Single Fourier mode analysis

The WFU as a function of the boundary value ζ̄(x) is given by ∆SE,1, eq. (3.21). To answer
a specific physical question, one should integrate over the configurations of ζ̄(x) with a weight
given by their probability, i.e. the modulus squared of the WFU. In order to understand how
the WFU behaves for large fluctuations, when non-linearities become relevant, one can fix a
configuration of ζ̄(x) up to the overall amplitude and study the WFU as a function of this
amplitude. In this way one can study a function of a single variable, instead of a functional
of the whole ζ̄(x). In this section we take ζ̄ to be a single Fourier mode and postpone to
section 5 the study of more general configurations. This Single Fourier Mode approximation
(SFM) is similar to the ordinary-differential equation analysis done in section 4.3 of [1].

In section 4.1 we explain that for α≫ 1 the integral over τ is amenable of the saddle-point
approximation. In section 4.2 we study the regime when non-linearities become important
α2|ζ̄| ≳ 1, while in section 4.3 we focus on the extreme tail of the distribution |ζ̄| ≫ 1, when
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the saddle-point analysis can be completed analytically. All analytical results are checked
numerically in both sections 4.2 and 4.3.

4.1 Saddle-point approximation

Let us consider the spherically symmetric profile for ζ at late times given by ζ̄(r) =
ζ̄ sin(kr)/(kr), where ζ̄ is the amplitude at late times and k = |k| is a fixed momentum scale.
This profile, in momentum space, has support only for momenta equal to k, hence it can be
considered as a single Fourier mode. Due to this property, its free time evolution is given by

ζ(τ, r) =
[
ζ̄ sin(kr)

kr

]
(1− kτ)ekτ . (4.1)

Notice that the mode function above is not the same as the one used in section 4.3 of [1] because
of the radial dependence of the amplitude. At late times, when kτ → 0, one can see that the
mode function exhibits a different behaviours between positive and negative values of ζ̄ (in
the absence of the denominator kr a change of sign in ζ̄ can be compensated by a radial shift).

With the reason above, we consider the function (4.1) as a radial single Fourier mode
in position space, and refer to it as the SFM simplification. Notice that the profile we are
considering is in real space, so that ζ remains dimensionless.

The fact that in eq. (4.1) the amplitude depends on r makes our computation of the
action (3.21) more complicated and less illuminating since the radial dependence cannot
be separated from the time dependence, e.g. the cosine function contains both τ and r

dependences. However, since our main focus here is to capture the main features of the WFU
of the full radial profile case (section 5) as a function of ζ̄, we are going to neglect the radial
dependence of the profile (4.1), i.e. ζ(τ, r) ≃ ζ̄(1− kτ )ekτ , throughout this section. Therefore,
we do not need to perform the integral over r to obtain the on-shell action and we are able
to capture the main behaviour of the WFU encoded in the amplitude ζ̄.

Let us now proceed with the SFM simplification, using the mode function ζ(τ, r) ≃
ζ̄(1 − kτ)ekτ . We define the variable X(τ) as

X(τ) ≡ ζ ′2 + k2ζ2 = ζ̄2k2 [1− 2kτ(1− kτ)] e2kτ , (4.2)

so that X̄ ≡ X(0) = k2ζ̄2. Using (4.1) and (4.2), the action (3.21) then becomes

∆SE,1 = 4π
Pζk3

∫ 0

−∞
dτ 1

2τ2

{
X(τ) cos

(
α log (τ/η⋆)− δ̃ − iαπ/2 + αζ

)
− X̄ cos

(
α log (τ/η⋆)− δ̃ − iαπ/2 + αζ̄

)}
,

(4.3)

where we have replaced (∂iζ)2 with k2ζ2 and the spatial-volume integral with 4πk−3. Then,
we rewrite the action above in an exponential form, which is convenient for one to use the
saddle-point approximation. We thus obtain

∆SE,1=
π

Pζ

∑
σ=±1

∫ 0

−∞
dτ e

σαπ/2

τ2

{
X(τ) exp (iσα log (−τ) + iσαζ)

− X̄ exp
(
iσα log (−τ) + iσαζ̄

)}
e−iσ(δ̃+α log(−kη⋆)), (4.4)
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where we have changed variable to τ → kτ and re-defined X → X/k2, so that τ and X(τ) that
appear now in the integral are dimensionless. Naively, one expects that the integral above is
dominated by the contributions with σ = 1, compared to the ones with σ = −1. This is only
the case for ζ̄ > 0. However, we will find that in the case where ζ̄ < 0 the two contributions
are of the same order, so that one needs to take into account the terms with σ = −1 as well.

Let us pause to comment on the dependence on the momentum scale k of the late-time
profile. If we rescale k → k/λ, then the free solution in real space goes to ζ(x, τ) → ζ(λx, λτ ).
One can then rescale the coordinates τ and x to τ ′ = λτ , x′ = λx in eq. (3.21). In doing so,
the only change in the action is due to the explicit τ dependence inside the cosine. Hence, a
change in k is degenerate with a change in η⋆. This is explicit in eq. (4.4), since k appears
only in the very last term, in the combination kη⋆. The action is periodic in α log(−η⋆) (the
original scale-invariance of de Sitter is broken by the oscillations to a discrete subgroup) and
therefore the result will be periodic in α log k. This is all we can say in terms of symmetries.
Notice, however, that when one of the two terms σ = ±1 dominates in eq. (4.4), then the k
(or η⋆) dependence reduces to a sinusoidal modulation of the (real part of the) action.

We can write (4.4) in a more a compact form as

∆SE,1 = π

Pζ

∑
σ=±1

eiσψeσ
απ
2 Iσ, (4.5)

where ψ ≡ −δ̃ − α log(−kη⋆) and the integral Iσ is defined by

Iσ ≡
∫ 0

−∞
dτ
(
eΦσ − eΨσ

)
, (4.6)

with the exponents Φσ and Ψσ being

Φσ ≡ −(2− iσα) log(−τ) + log (X(τ)) + iσαζ,

Ψσ ≡ −(2− iσα) log(−τ) + log
(
X̄
)
+ iσαζ̄.

(4.7)

The form (4.6) is particularly useful for an asymptotic expansion when α is much larger than
unity. It should be noted that the integral Iσ depends on both α and the late-time value
ζ̄. Below, we are going to evaluate the integral (4.6) using the saddle-point approximation,
which is valid for α ≫ 1.

Saddle-point equation: here we are going to find the relevant saddle points for the
evaluation of the integral (4.6). Before proceeding, we need to be careful in applying the
saddle-point approximation. Indeed, eq. (4.6) contains two exponential terms, each of which
diverges at late times. Notice that the first exponential term, eΦσ , contains the relevant
physical information about the dynamics of ζ, whereas the second term, eΨσ , has the only
purpose of making the integral finite. Additionally, one cannot evaluate the two integrals
in saddle point separately, as the second term has no saddle point solutions (solutions of
∂τΨσ = 0) since it only depends on log(−τ). This would suggest that a proper treatment
to find the saddle point when both terms contribute equally to the integral is required.
However, we will argue now that the contribution from eΨσ can be neglected and one can
just focus on the saddle point of eΦσ .
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The argument is the following. Suppose the saddle point of Φσ is away from the origin
τ = 0. This means that the integral will be accumulating its value around this saddle. On
the other hand, the contribution of Ψσ will not grow around this specific point, as there is no
saddle for Ψσ, but only at later times, where however there will be a cancellation with Φσ as
to make the integral finite. This suggests that indeed Ψσ can be neglected.11

We thus disregard the contribution of Ψσ: we will see later that this is indeed in agreement
with the numerical analysis. Let us proceed with the saddle-point analysis for the term Φσ.
The saddle-point equation for Φσ is given by

∂τΦσ = −2− iσα

τ
+ X ′(τ)
X(τ) + iσαζ ′ = 0. (4.8)

Generally, the solutions of the above equation lie in the complex plane. Here we want to
look for the solutions with Re τ < 0, so that the wavemode (4.1) decays at large |τ |.12

Unfortunately, eq. (4.8) does not admit a closed-form solution; therefore, one needs to either
solve the equation numerically or perform some additional expansion, e.g. |ζ̄| ≫ 1, such that
an analytic solution can be found. Indeed, as we will show below, in the limit |ζ̄| ≫ 1 we
find an analytical late-time saddle point.

Let us comment on the possibility of having a saddle point at late times (k|τ | ≪ 1).
The motivation comes from the perturbative calculation. In order to compute the connected
n-point correlation functions ⟨πn⟩ in the perturbative regime, one encounters the integral
of the product of the mode functions over the conformal time η. (See appendix A.2 for
a computation of ⟨π3⟩.) Such an integral can be done analytically and the result is given
in terms of incomplete Gamma functions. However, in the large α limit, one can use the
saddle-point approximation to evaluate the integral over η. Indeed, it was explicitly shown
in [22] that the saddle-point is located at ktη = −α, where kt is the total external momentum.
For small n, this saddle is at early times. However, this is not the case when the number of
external legs is much larger than unity and becomes comparable with α. Indeed, if all the n
external momenta are of the same order, then kt ∼ nk and the saddle point schematically
becomes kη ∼ −α/n. This observation therefore motivates us to look for a late-time saddle
point of the integral (4.6) at least for sufficiently large ζ̄.13

4.2 α2|ζ̄| ≳ 1: intermediate saddle point

Let us recall the scaling of the tree-level action at first order in b̃. From figure 1 and the
discussion below eq. (3.23), we concluded that when α2ζ̄ ∼ 1 all the tree-level n-point functions
are equally important and need to be resummed. We will distinguish this case from the
far-tail of the distribution, |ζ̄| ≫ 1. The solution to eq. (4.8) cannot be found analytically in
the regime where α2ζ̄ ∼ 1. We then solve eq. (4.8) numerically in two cases: ζ̄ > 0 and ζ̄ < 0.

11A similar situation happens when computing a single WFU coefficient at tree level. Although the integrands
diverge at late times, with the divergence being just a phase, in the saddle-point estimate the divergent piece
is lost.

12More properly, we require that the path of integration can be smoothly deformed from the initial domain
to meet the saddle point. In this sense, we can allow for saddles with Re τ > 0 as long as the overall integral
remains convergent.

13Although it is not clear how the limits of large n and large ζ̄ are related, it is reasonable to expect that
the saddle points for large ζ̄ case follow the one of large n limit.
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Figure 2. Location of the solutions of the saddle-point equation (4.8) in the complex-τ plane when
varying ζ̄. The arrows in the curves point to the direction of increasing |ζ̄|. The light-red line represents
the branch cut of Φσ due to the log(−τ) term. The zeros of X(τ), located at τ = e±iπ/4/

√
2, are

indicated by the two red crosses. Top Left: saddles for ζ̄ > 0 and α < 4π. The perturbative saddle
(a) starts at τs = −iασ/2 when ζ̄ = 0 and moves towards late times (the origin). The branch (b)
instead moves from infinity towards the origin, becoming the complex-conjugate of (a). Top Right:
saddles for ζ̄ > 0 and 4π < α < 8π. The perturbative saddle (a) moves to infinity whilst the branch
(b) moves towards the origin, dominating the action at large ζ̄. The branches (c) and (d) are instead
irrelevant. Bottom centre: saddles for ζ̄ < 0 and α < 4π. The perturbative branch (a) moves
towards infinity whilst the branch (b) moves towards late times and becomes dominant. The branch
(c) is irrelevant. In its evolution it merges with one of the zeros of X(τ) before moving to the origin.

At fixed α and ζ̄ the saddle-point equation has always multiple solutions in the τ complex
plane.14 However, only some are relevant: when we deform the contour of integration, we
only reach a sub-set of all the saddles. Moreover, depending on the value of α, we can have
different saddles being relevant. In particular, we find discrete values of α, at approximatively
α = 4πN with N = 1, 2, . . ., at which the behaviour of the saddles changes.

Notice that when ζ̄ = 0 we have a unique saddle, located at τs = −iασ/2. This saddle
corresponds with the perturbative saddle point used to evaluate the correction to the power
spectrum (this comes from the fact that we are setting ζ̄ = 0 inside the cosine term in the
action). We therefore interpret this saddle as the perturbative one. We can then analyse
how the relevant saddles evolve as |ζ̄| increases.

14We can intuitively see how these branches arise by inspecting the saddle-point equation (4.8) at large τ .
In this limit, the equation is solved by the Lambert-W function, which is known to have infinite branches
labelled by a positive integer.
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First, we start with the case ζ̄ > 0. When α < 4π (but larger than 1 so that we can
apply the saddle-point approximation), the perturbative saddle point evolves towards late
times. Moreover, we notice the presence of an additional saddle which starts from ∞ when
ζ̄ = 0 and that at large ζ̄ moves to the origin (its imaginary part is equal and opposite to
the one of the (a) branch). The evolution of the saddles is shown in the top-left panel of
figure 2. Additionally, one finds more solutions at larger values of |τ |, both with positive and
negative imaginary parts (again, these are related to the Lambert-W function). In this case,
we find that only the evolved perturbative saddle is relevant in the integral.

The situation becomes more intricate when we move to larger α’s. For instance, in the
approximate window 4π < α < 8π, we notice that the perturbative saddle does not move
to the origin anymore but instead moves towards kτs → −2πi − ∞. Instead, a different
saddle point becomes relevant and moves towards the origin. This is the branch (b) in the
top-right panel of figure 2. Notice that again, this branch at late times has a “conjugate”
saddle, the branch (c). The figure also shows an additional branch (d), that is however
not relevant. For larger values of α we find that this periodic behaviour continues. For
example, when 8π < α < 12π we still have a perturbative branch moving to infinity and
a branch moving to the origin, with an additional branch in between. For larger αs the
number of branches in between increases.

Finally, we can briefly mention what happens when ζ̄ < 0 in the case α < 4π. As opposed
to the positive-ζ̄ case, even for these values of α the perturbative saddle moves to infinity.
Also, an additional branch moves towards late times as |ζ̄| increases (together with its complex-
conjugate, as before). This is the branch (b) in the bottom panel of figure 2. Notice that in
this case the branch (b) approaches the origin from a different angle of the complex plane
compared to the previous cases. We will see this more in detail when evaluating this late-times
saddle analytically later on. For larger values of α we find a similar pattern as in the positive
case, with new branches interposing between the perturbative and the late-times branches.

Despite the complex structure of the saddles, we will show by direct comparison with
the numerical integration that for small α2|ζ̄| the integral is well approximated by the
perturbative saddle. On the other hand, for α2|ζ̄| ≫ 1 the branch that is moving towards
late times dominates.

Once the relevant saddle-point solutions τs are identified numerically, we can evaluate
the action (4.4) on saddle. Specifically, the integral Iσ of eq. (4.6) is evaluated as (here
we neglect Ψσ)

Iσ ≃
√

2π
−∂2

τ Φσ
eΦσ

∣∣∣
τs

. (4.9)

Finally, we can evaluate the action (4.5) using the integral we found above. Note that if we
have more than one relevant saddle, we also need to sum over them.

Apart from the saddle-point approximation presented above, we now compute the
action (4.3) numerically. First, we limit the range of integration up to kτf = −10−6 (the
lower limit kτi is chosen large enough in modulus so to reach numerical convergence). Then,
we use the free solution of ζ(τ) given by eq. (4.1) and plug it back into the action (4.3).
We fix α = 6, 7, 8 and 9, and we compute the integral over τ numerically, varying the
values of ζ̄ from −1 to 1.
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Figure 3. Action with the SFM simplification as a function of ζ̄ in the regime of α2ζ̄ ≳ 1 for different
values of α. Solid lines are obtained by numerically integrating eq. (4.3). Dashed lines are obtained
using the saddle-point approximation, solving numerically eq. (4.8) for the perturbative branch. Left:
case of negative ζ̄. Right: case of positive ζ̄.

The results for the cases with α = 6, 7, 8 and 9 are shown in figure 3 (both the full
numerical integration of eq. (4.3) and the saddle-point approximation). The range of ζ̄ is
chosen to highlight the region where α2ζ̄ ∼ 1: here perturbation theory stops being reliable.
To obtain the saddle-point approximation in this range for ζ̄ we only included the branch (a)
of figure 2 (the perturbative branch) for both signs of ζ̄, while other branches are found to be
subdominant here. As one expects, when α2|ζ̄| ≪ 1 the saddle point is similar to the one of
perturbation theory and the action ∆SE,1 is dominated by the quadratic term (the correction
at order b̃ to the power-spectrum). In fact, this can be explicitly seen in figure 4 where the
action ∆SE,1 is symmetric around the vertical axis for α2|ζ̄| ≪ 1. For consistency, in the
regime where α2|ζ̄| ≪ 1 we check that summing the perturbative tree-level diagrams at O(b̃)
(see eq. (4.16) of [22]) reproduces our results in figure 4.15 As |ζ̄| increases, the action becomes
asymmetric due to the presence of odd contributions in ζ̄, starting from cubic terms. As we
approach the non-perturbative regime, the asymmetry is magnified as it can be noted from the
different scales in the two plots of figure 3. It is, in fact, interesting to point out that even in
the regime where α2|ζ̄| ≳ 1 our results in figure 3 match with the summation of perturbative
results, which indicates the fact that our non-perturbative WFU resums the perturbative
tree-level graphs at first order in b̃, as discussed below eq. (3.21). Additionally, we find that the
exponential growth for ζ̄ > 0 in figure 3 can also be realized in the summation of perturbative
series, see section 4.4 for more detailed discussions. Finally, as a check, we confirm that
the full numerical integration and the saddle-point approximation are in remarkably good
agreement even for these moderate values of α. We did not choose larger values of α since the
numerical integration becomes more challenging, while the qualitative features are unaffected.

15It should be noted that the comparison of the two results in the perturbative regime was carried out using
the SFM simplification, otherwise one needs to perform the integrals over all momenta or fix the late-time
profile ζ̄(x) as we will study in detail in section 5.
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Figure 4. Action with the SFM simplification as a function of ζ̄ in the regime of small α2ζ̄. In this
limit we recover the perturbation-theory expansion: the curves are well approximated by a polynomial
in ζ̄.

4.3 |ζ̄| ≫ 1: late-time saddle point

Given the observation above, let us focus on the saddle point at late times. We will confirm
that the contributions from the early-time saddle point are subdominant. Expanding ζ

and X(τ) for τ ≪ 1 gives

ζ ≃ ζ̄

(
1− τ2

2 − τ3

3 +O(τ4)
)
,

X(τ) ≃ ζ̄2
(
1 + 4

3τ
3 +O(τ4)

)
.

(4.10)

The leading behaviour of the saddle point can be captured by keeping the terms up to first
order in τ in eq. (4.8). We obtain

∂τΦσ ≃ −2− iσα

τ
− iσαζ̄τ = 0. (4.11)

Note that the term X ′(τ)/X(τ) starts at second order in τ ; therefore, it is negligible compared
to the ones we kept. The solution τs to eq. (4.11) is given by

τ2
s ≃ 1

ζ̄

(
1 + 2iσ

α

)
, (4.12)

where the second term in the parenthesis is assumed to be small, since we are taking α

large (it is anyway useful to keep it). Let us assume, for the moment, that the subleading
term is negligible, so that τ2

s ≃ 1/ζ̄. For ζ̄ > 0 we have τs ≃ −ζ̄−1/2, while the second
root has Re τ > 0. The positive root will not be encountered as we deform the contour
of integration (it corresponds to the “conjugate” branch showed in green in figure 2). On
the other hand, for ζ̄ < 0 both solutions are close to the imaginary axis. We find that,
depending on σ, the relevant saddle is approximatively τs ≃ −iσ|ζ̄|−1/2. This is a striking
result, which indicates that when ζ̄ < 0 the saddle point moves from Euclidean to Lorentzian
time. This finding is consistent with the discussion of the previous subsection and with
the numerical saddles of figure 2. We will come back to this point later in section 4.3.2.
Let us now evaluate the integral (4.6).

– 22 –



J
H
E
P
0
3
(
2
0
2
4
)
0
1
0

4.3.1 ζ̄ > 0 case

From eq. (4.6), we compute the exponent Φσ on the saddle point (4.12). Recall that we are
neglecting the contribution from Ψσ. Since we are dealing with a late-time saddle point, then
the relevant terms in the exponent Φσ are just ∼ αζ and α log(−τ), while the rest can be
evaluated at late times, e.g. X(τ) ∼ X̄. Therefore, in this case we obtain

eΦσ |τs ≃ e ζ̄3
(
1 + 2iσ

α

)iσα/2−1
e−iασ/2eiσα(ζ̄−log

√
ζ̄). (4.13)

where we have kept the terms in Φσ up to O(τ2). We see that the presence of the amplitude
ζ̄ affects both the overall scaling (∼ ζ̄3) and the oscillating behaviour through a phase
∼ σα(ζ̄− log

√
ζ̄). This non-trivial dependence on ζ̄ can be checked against the full numerical

integral.
Apart from the exponent, we also need to evaluate the prefactor, which contains the

second derivative of Φσ with respect to τ , evaluated at the saddle point. Straightforwardly,
taking an additional derivative on eq. (4.11) with respect to τ and evaluating such an
expression on the saddle point (4.12) we find

∂2
τΦσ|τs ≃ −2iσαζ̄. (4.14)

Note that this result holds for both ζ̄ > 0 and ζ̄ < 0.
Using (4.13) and (4.14) we therefore obtain

Iσ ≃
√

2π
−∂2

τΦσ
eΦσ

∣∣∣
τs

=

√
πζ̄5

α

(
1 + 2iσ

α

)iσα/2−1
e1−iασ/2−iπσ/4eiσα(ζ̄−log

√
ζ̄). (4.15)

From the result above we see that the two signs for σ do not affect the overall magnitude
of Iσ. On the other hand, looking at eq. (4.5) we then see that the dominant contribution
corresponds to σ = 1, which is due to the exponential factor ∼ eπα/2, for large α. Therefore,
the dominant contribution (σ = 1) to the action ∆SE,1 is given by

∆SE,1 ≃ π

Pζ

√
πζ̄5

α
eπα/2eiα(ζ̄−log

√
ζ̄)eiψ̃, (ζ̄ > 0), (4.16)

where we have defined ψ̃ ≡ ψ − α/2− π/4. Note that to obtain (4.16) we approximated the
parenthesis in eq. (4.15) with e−1. Moreover, it should be noted that in principle, there are
terms proportional to additional inverse powers of α which are generated by subleading terms
in the saddle-point expansion, so we cannot trust them at this level.

Before moving to the negative ζ̄ case, let us point out that one can obtain a better
approximation for ∆SE,1 at intermediate values of α and |ζ̄|, by solving the saddle-point
equation (4.8) numerically. This requires choosing the relevant saddle for the integral, as
discussed previously. For large ζ̄ we find that this saddle is approximately the late-times one,
eq. (4.12). We checked that by doing so, the saddle-point approximation matches the full
numerical result with a good precision, even at moderate values for α and |ζ̄|.
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4.3.2 ζ̄ < 0 case

This case is parametrically different from the previous case. As we already obtained, the
late-times saddle in this case is imaginary, see eq. (4.12). Among the two saddles (obtained
when taking the square root in eq. (4.12)), we identify the relevant one to be16

τs =
−iσ√
|ζ̄|

(
1 + 2iσ

α

)1/2
. (4.17)

There are two cases one needs to consider, depending on σ = ±1. When σ = 1, the
saddle point (4.17) corresponds to a Lorentzian saddle point: τs ∼ −i/

√
|ζ̄| for large α.

Therefore, in this case the exponential factor eπα/2 in eq. (4.5) gets cancelled. Essentially,
this cancellation occurs because one rotates back to the Lorentzian time. Instead, when
σ = −1 we have τs ∼ i/

√
|ζ̄| for large α. This saddle point is still imaginary, but it now lies

on the positive imaginary axis of the complex τ -plane. In this case we obtain an additional
contribution proportional to e−πα/2 to the action. Therefore, the contribution from σ = −1
is negligible for large α. Repeating the same steps as in the ζ̄ > 0 case and using the
saddle point (4.17), we obtain

∆SE,1 ≃ − π

Pζ

√
π|ζ̄|5
α

eiα(ζ̄−log
√

|ζ̄|)eiφ̃, (ζ̄ < 0), (4.18)

where we defined φ̃ ≡ ψ − α/2 + π/4. The main difference between eqs. (4.16) and (4.18) is
the factor eπα/2, which enhances the positive case. As already mentioned in the ζ̄ > 0 case,
one can improve the matching between the results of the saddle-point approximation and
the numerical method, by solving the saddle-point equation numerically.

In order to explicitly see the behaviour of the results (4.16) and (4.18), we compute
the action (4.3) numerically in the limit |ζ̄| ≫ 1. Following the same procedure described
in section 4.2, in figure 5 we show the real part of ∆SE,1 as a function of ζ̄ for α = 5, 6,
7 respectively. Such numerical results are obtained in the range ζ̄ ∈ [−15, 15]. Note that
it is straightforward to verify that the imaginary part of ∆SE,1 behaves in the same way
as the real part. In the plot we have multiplied the action by Pζ and we have set δ̃ = 0
and kη⋆ = −1, giving ψ = 0. Let us comment on the features of our numerical results and
their similarities to the saddle-point results (4.16) and (4.18) below. We leave the actual
comparison between the results of these two methods to section 5.2.

As we already mentioned in the saddle-point calculation, the most striking feature of
these results is the stark asymmetry between positive and negative ζ̄. Positive values of ζ̄
lead to larger contributions to the action, exponentially enhanced by α. On the other hand,
for negative ζ̄ the action simply scales as b̃|ζ̄|5/2/

√
α: larger α reduces the value of the action.

We note however that ∆SE,1 is oscillatory, hence the enhancement might not directly lead
to large asymmetries when computing specific observables.

Another crucial feature is the presence of oscillations in ζ̄. As we were expecting from
the saddle calculation, these oscillations have indeed frequency α. In addition to this main

16To check this, we performed a Thimble decomposition of the original contour of integration (see e.g. [26, 27]
for more details on this procedure). Moreover, this choice of saddles is in agreement with the numerical results.
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Figure 5. Numerical results for the SFM action, eq. (4.3), for different values of α. Here we are using
δ̃ = 0 and kη⋆ = −1. Note the difference between the sizes of the action for positive and negative
values of ζ̄.

frequency, there is also a modulation ∼ eiα log
√
ζ̄ , see eqs. (4.16) and (4.18). Although it is

difficult to notice by eye, we checked that this feature leads to a better agreement between
numerical and analytical results.

We will see in the next section that these main features also apply beyond the SFM
simplification, for different late-time profiles for ζ̄.

4.4 Comments on the results

In this subsection we comment on the properties of the WFU we computed using the SFM
approximation in sections 4.2 and 4.3.

As already explained in the previous section, the asymmetry of the WFU between
positive and negative values of ζ̄ is manifest in the regime α2|ζ̄| ≫ 1. More explicitly, for
positive ζ̄, eq. (4.16) contains the exponential factor eπα/2, unlike the WFU for negative ζ̄,
eq. (4.18). We notice that the combination b̃ eπα/2 can exceed unity, unless the parameter
b̃ is chosen to be catastrophically small. One expects that perturbation theory in b̃ breaks
down when the O(b̃) action becomes of order of the Gaussian one; see also the discussion
below eq. (3.24). In order to be more quantitative one should look at the action at O(b̃2),
which requires to evaluate the solution at O(b̃).

Another interesting point to stress is the onset of the asymmetry, which starts to appear
in the intermediate regime, α2|ζ̄| ∼ 1. Here, there is an approximate exponential growth on
the positive-ζ̄ side (see right panel of figure 3), while on the negative side the results remain
small. One way to understand this phenomenon is that, for ζ̄ > 0, the saddle point moves
away from the imaginary axis (see the top-left panel of figure 2), so that the factor eπα/2 tends
to dominate the integral Iσ. One can give a very rough estimate of the growth of the action
considering the exponent of the WFU as an infinite sum over tree-level Witten diagrams (or
equivalently over wavefunction coefficients, which are related to correlators). The terms of
order n in the series scale as (α2ζ̄)n/(n!)2, where we have used eq. (3.23) and we have kept
only terms that contain the power n. Given this result, we naively expect that by maximizing
such a series over n we obtain nmax ∼ αζ̄1/2, which yields b̃ eαζ̄1/2 on the positive-ζ̄ side. Note
that we assume no cancellations among different terms in the series. Notice that for α2|ζ̄| ≫ 1,
the action is dominated by contributions around nmax, with negligible contributions from the
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two- and three-point functions. On the negative side instead, we expect large cancellations
among the terms of the series so to keep the overall sum small (similarly to what happens in
alternating series, such as the cosine function, as opposed to the series for a real exponential).

We will expand on these considerations in an analogue quantum mechanical model in
section 6, where a similar behaviour of the wavefunction can be realized and the series
coefficients can be investigated directly.

5 Spherical profile analysis

In the previous section we analysed the WFU using a single Fourier mode. Here we are going
to analyse the WFU assuming that the late-time profile ζ̄(x), and therefore the whole solution
ζ(τ,x) is spherically symmetric, i.e. function of the single variable r. We also assume that the
profile ζ̄(r) is localised in space, as motivated for instance by primordial black hole formation,
with an extremum at the center of coordinates r = 0. We denote this extremum value as
ζ̄ ≡ ζ̄(r = 0). The choice of spherical symmetry is motivated by simplicity and also by the
expectation that non-spherical profile are less likely: this is indeed the case in the Gaussian
case. As in section 4.1, we will use the saddle-point approximation to evaluate the action
∆SE,1. Then, we will numerically compute the same action and compare the two approaches.

5.1 Saddle-point approximation

Here we are going to approximate the action (3.21) using the saddle-point calculation for large
α and large |ζ̄|. In fact, the main obstacle in performing analytic and numerical estimates of
the action is that we do not have an explicit analytic form for ζ(τ, r) for a generic late-time
profile.17 However, thanks to the intuition gained in section 4.1, we expect the final result
to be dominated by a late-time saddle where we will be able to write down approximate
expressions for ζ(τ, r) when |τ | ≪ 1.

Following the same procedure as done in section 4.1, we rescale the spacetime coordinates
with the typical spatial momentum k0 of the late-time profile ζ̄(r). From the action (3.21)
we obtain

∆SE,1 = π

Pζ

∑
σ=±1

∫ 0

−∞

dτ
τ2

∫ ∞

0
dr r2 eσαπ/2

{
X(τ, r) exp (iσα log (−τ) + iσαζ(τ, r))

− X̄(r) exp
(
iσα log (−τ) + iσαζ̄(r)

)}
e−iσ(δ̃+α log(−k0η⋆)),

where we have defined X(τ, r) ≡ (∂τζ(τ, r))2 + (∂rζ(τ, r))2 and X̄(r) ≡ X(0, r) = (∂r ζ̄)2. As
in eq. (4.5), we write down the action above in a more compact form:

∆SE,1 = π

Pζ

∑
σ=±1

eiσψeσ
απ
2 Iσ, (5.1)

where ψ ≡ −δ̃ − α log(−k0η⋆) and the integral Iσ is defined by

Iσ ≡
∫ 0

−∞
dτ
∫ ∞

0
dr
(
eΦσ − eΨσ

)
, (5.2)

17For a Gaussian profile, ζ(τ, r) can be written in terms of exponential integrals but manipulations of such
expressions are cumbersome.
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with the exponents Φσ and Ψσ being

Φσ ≡ −(2− iσα) log(−τ) + 2 log(r) + log (X(τ, r)) + iσαζ(τ, r),

Ψσ ≡ −(2− iσα) log(−τ) + 2 log(r) + log
(
X̄(r)

)
+ iσαζ̄(r).

(5.3)

As in section 4, the term with Ψσ can be neglected in the saddle-point expansion. This
is due to the fact that Ψσ gives non-negligible contributions only at τ → 0 in which the
cancellation between Φσ and Ψσ happens. Therefore, around the saddle point the integral (5.2)
is dominated by the expansion of Φσ. In what follows, we will focus on the Φσ term. Note
that, as we are going to show, the saddle point over the integral in r is close to the peak
of the late-time profile.

We now look for the saddle both in τ and in r: the saddle-point equations are

∂τΦσ = −2− iσα

τ
+ X ′(τ, r)
X(τ, r) + iσαζ ′(τ, r) = 0,

∂rΦσ = 2
r
+ ∂rX(τ, r)

X(τ, r) + iσα ∂rζ(τ, r) = 0.
(5.4)

This system of equations can be solved numerically for a generic late-time profile ζ̄(r) with
amplitude ζ̄. However, for large |ζ̄| we can find an analytic solution, corresponding to a
late-time location of the saddle point. For simplicity, we concentrate on this in what follows,
although there would be no obstacle to study the intermediate regime α2ζ̄ ≳ 1 with a numerical
solution to the saddle-point equations, as we did in section 4.1 for a single Fourier mode.

Late-time saddle: we assume the profile to be such that ∂r ζ̄(r)|r=0 = 0 and ∂2
r ζ̄(r)|r=0 ̸=

0, i.e. the origin can be either a maximum or a minimum. Then, using the late-time
expansion (3.16), in Euclidean time, we obtain

ζ(τ, r) ≃ ζ̄ +
(
r2

6 + τ2

2

)
∇2ζ̄

∣∣∣∣
r=0

+ . . . , (5.5)

where we have used the fact that around r = 0 the late-time profile ζ̄(r) can be expanded as

ζ̄(r) = ζ̄ + 1
6r

2∇2ζ̄

∣∣∣∣
r=0

+ . . . . (5.6)

Note that for a spherically symmetric profile we have ∇2ζ̄ = 3∂2
r ζ̄.18 For later convenience,

we will drop the evaluation symbol, |r=0, and denote as ∇2ζ̄ the Laplacian of ζ̄(r) computed
at r = 0.

Let us now determine the saddle point for the integrals over τ and r. Using the
expansion (5.5) in (5.4) the saddle point of the τ -integral is

τ2
s ≃ 1

−∇2ζ̄

(
1 + 2iσ

α

)
, (5.7)

and the saddle point of the r-integral is

r2
s ≃

−6iσ
α(−∇2ζ̄)

, (5.8)

18For a profile with ∇2ζ̄|r=0 = 0, one should go to next order in the expansion.
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where we have self-consistently assumed that |rs| ≪ |τs| ≪ 1 and we have neglected the term
∂rX(τ, r)/X(τ, r) in eq. (5.4), which we can check in retrospect to be consistent with the
assumption α2ζ̄ ≫ 1. The saddle-point location (5.7) reduces to the one of the previous
section, eq. (4.12), when ζ̄(r) is treated as a single Fourier mode. Below, we are going to
evaluate the action ∆SE,1 on the saddle point (5.7)–(5.8) in the two cases −∇2ζ̄ > 0 and
−∇2ζ̄ < 0, corresponding respectively to a local maximum and a local minimum of the profile.

5.1.1 Local maximum

Here we are interested in the case −∇2ζ̄ > 0. Let us compute the exponent Φσ evaluated on
the saddle point (5.7)–(5.8). There are four contributions in eq. (5.3) giving

−(2− iσα) log(−τs) ≃ −1 +
(
1− iσα

2

)
log(|∇2ζ̄|), 2 log(rs) = log

[ −6iσ
α|∇2ζ̄|

]
,

log(X(τs, rs)) ≃ log(|∇2ζ̄|), iσζ(τs, rs) ≃ iσαζ̄ − iσα

2 ,

(5.9)

where we have taken the limit α ≫ 1 and we have used

(∂τζ)2∣∣
τs,rs

≃
(
1 + 2iσ

α

)
|∇2ζ̄|, (∂rζ)2|τs,rs ≃ 2iσ

3α |∇2ζ̄|. (5.10)

Combining all the pieces we get

eΦσ |τs,rs ≃ −6iσ
eα

|∇2ζ̄| eiσα(ζ̄−log(
√

|∇2ζ̄|))e−iσα/2. (5.11)

Moreover, in order to evaluate the integral (5.2), it is necessary to compute the Hessian
matrix of Φσ evaluated at the saddle point. We find

∂2
τΦσ

∣∣
τs,rs

≃ 2iσα∇2ζ̄, ∂2
rΦσ

∣∣
τs,rs

≃ 2
3 iσα∇

2ζ̄, (5.12)

while the off-diagonal term is negligible at this order. Note that the expression (5.12) is valid
for both −∇2ζ̄ > 0 and −∇2ζ̄ < 0. Therefore, using eqs. (5.11) and (5.12), the integral (5.2)
can be approximated as

Iσ ≃ 2π√
det (−∂µ∂νΦσ)

∣∣
τs,rs

eΦσ
∣∣
τs,rs

(5.13)

≃ −6πσ
√
3

α2e
eiσα(ζ̄−log(

√
|∇2ζ̄|))e−iσα/2, (5.14)

where we have kept the leading order for large α and ζ̄. We note that the factor ∇2ζ̄ in
the determinant of the Hessian matrix cancels with the one in (5.11). Looking at eq. (5.1),
we see that the action is dominated by the terms with σ = 1, since there is no parametric
difference at the level of Iσ, similarly to the case of the SFM analysis. We therefore obtain
the action at first order in b̃,

∆SE,1 ≃ −6π2

Pζ

√
3

α2e
eπα/2eiσα(ζ̄−log(

√
|∇2ζ̄|))eiχ, (local maximum), (5.15)

– 28 –



J
H
E
P
0
3
(
2
0
2
4
)
0
1
0

where χ ≡ ψ − α/2. Let us comment on the features of the result above. First, we have
a different overall scaling with ∇2ζ̄, compared with eq. (4.16). This is simply due to the
fact that in this analysis we are dealing with the two dimensional integral, instead of one
dimensional integral as in the SFM simplification. Thus, it leads to the fact that ∆SE,1 above
does not grow as ζ̄ increases. Apart from this, we also have a different scaling in α, compared
with eq. (4.16). Moreover, it is useful to point out that our result (5.15) cannot be obtained by
simple rescaling of ζ, as in [1] where the on-shell action is simply proportional to an arbitrary
function of the expansion parameter. Essentially, this is due to the resonant effect, resulting in
a non-trivial dependence of α in the action ∆SE,1, e.g. the enhancement factor eπα/2. Finally,
we see that the action (5.15) behaves as an oscillating function in both ζ̄ and log(

√
|∇2ζ̄|),

with frequency α, which cannot be captured by any order in perturbation theory.

5.1.2 Local minimum

Here we are interested in the −∇2ζ̄ < 0 case, which is similar to the SFM simplication with
ζ̄ < 0. As explained in section 4.3.2, the role of τs changes depending on the sign of ∇2ζ̄.
We find that in this case the relevant saddle point of the τ -integral is

τs =
−iσ√
∇2ζ̄

(
1 + 2iσ

α

)1/2
. (5.16)

We see that for σ = 1 this saddle point lies on the negative imaginary axis in the limit
α ≫ 1. This implies that the factor eπα/2 in (5.1) will disappear (essentially one rotates
back to the Lorentzian time). On the other hand, for σ = −1 the saddle point then lies
on positive imaginary axis, which gives another factor e−πα/2 to the action. Therefore, the
dominant piece in ∆SE,1 in this case is given by the term with σ = 1. Following the same
procedure as before, we obtain

∆SE,1 ≃ 6π2

Pζ

√
3

α2e
eiσα(ζ̄−log(

√
|∇2ζ̄|))eiχ, (local minimum). (5.17)

It is important to point out that there is no issue of selecting the right saddle point of the
r-integral because at leading order the dependence on this variable is only through r2. The
action above indicates that the overall scalings in α and ζ̄ are different from the one of the
single-mode simplification, eq. (4.18). We also see that the result (5.17) is similar to (5.15) in
the sense that they share the same oscillatory behaviour as a function of ζ̄ − log(

√
|∇2ζ̄|), a

behaviour of the WFU that cannot be captured by perturbative computations. Moreover,
the fact that this result (5.17) does not contain the enhancement factor eπα/2 implies that
the amplitude of the WFU is much smaller for a local minimum than for a local maximum,
resulting in an interesting asymmetry between the two situations.

In the next subsection we will compute the action ∆SE,1 numerically and compare it
to the analytic results, eqs. (5.15) and (5.17).

5.2 Numerical results

In this section we evaluate the WFU using the numerical integration of eq. (5.1). For
concreteness, we focus on a Gaussian profile at late times:

ζ̄(r) = ζ̄ e−(k0r)2
, (5.18)
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Figure 6. Numerical results for the real part of the on-shell action with Gaussian profile (5.18) for
different values of α as a function of ζ̄ (positive). We use δ̃ = 0 and k0η⋆ = −2. The numerical
integration is performed using the FFT method. For each curve the shaded area represents the
estimated numerical error, obtained by comparing the results from the FFT and the PDE methods
(see appendix E for details).
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Figure 7. Comparison between the numerical integration (orange) of the action and the numerical
saddle-point approximation for the integral (black dashed) as a function of ζ̄ for α = 6. The other
parameters are fixed as in figure 6. The saddle-point curve obtained from a late-time expansion is
truncated at small ζ̄, where the expansion stops being reliable. The shaded orange area represents the
difference between the results obtained from the FFT and the PDE methods.

where k0 is a given momentum scale and ζ̄ denotes the peak value of this Gaussian profile.
Note that, for this profile we have ∇2ζ̄ = −6k2

0 ζ̄ at r = 0. Therefore, we have ∇2ζ̄ < 0
for positive ζ̄, while ∇2ζ̄ > 0 for negative ζ̄. We refer the reader to appendix E where we
explain in detail our numerical method used to compute the action (5.1) with the late-time
configuration (5.18). Below, we report our numerical results and compare them with the
results obtained from the saddle-point approximation in section 5.1.

The results for ∆SE,1 are obtained by combining ∆S1,early (eq. (E.7)) and ∆S1,late
(eq. (E.5)) with the numerical integral performed in the interval {τmin, rmin} to {τmax, rmax},
as explained in appendix E. Following the analytical result in saddle point obtained in
section 5.1, we discuss separately the cases ζ̄ < 0 and ζ̄ > 0 (corresponding to ∇2ζ̄ > 0 and
∇2ζ̄ < 0, respectively). In particular, we focus on evaluating the real part of the resonant
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Figure 8. The real part of the on-shell action with Gaussian profile for α = 4 as a function of ζ̄
(negative). We compare the numerical integration (blue) with the numerical saddle-point approximation
(black dashed). The numerical curve is obtained using the analytic formula for ζ(τ, r), eq. (E.1). The
difference at larger |ζ̄| is expected to be mainly due to numerical errors. We use δ̃ = 0 and k0η⋆ = −2.

action ∆SE,1 as a function of ζ̄ for several values of α (it is straightforward to verify that the
imaginary part of ∆SE,1 qualitatively behaves in the same way as the real part). To have
a better control on the numerical errors, we focus on moderate values of α and ζ̄: larger
values require higher spatial resolution in the integration.

Figure 6 shows our numerical results for ζ̄ > 0 (∇2ζ̄ < 0) for several values of α, with
k0η⋆ = −2 and δ̃. In the plot, the blue, orange and green lines correspond to α = 4, 5 and 6
respectively. We can see that the real part of the action exhibits oscillatory features with
frequency α. Moreover, for ζ̄ > 0 the amplitude of the action grows exponentially with α. To
assess the convergence of our numerical implementations, we compare the results obtained
using the FFT and the PDE methods with similar resolutions (see appendix E for details).
The difference between the two methods gives an estimate of the numerical error, which is
represented by the shaded area around the numerical curves in figure 6. We find that the
results from the two methods coincide with small numerical errors. Furthermore, we also
compare the numerical integration with the saddle-point approximation in figure 7. Actually,
it is important to note that the comparison is carried out with the numerical solution of the
saddle-point equations (5.4).19 This is due to the fact that the analytic formula (5.15) is not
expected to be very accurate since we are dealing with moderate values for ζ̄. In figure 7 we see
that the agreement improves as ζ̄ increases, where the saddle-point approximation is expected
to become more accurate. The same behaviour is expected to happen for higher values of α’s.

Let us move to the case where ζ̄ < 0 (∇2ζ̄ > 0). In this case the numerical integration
becomes considerably more challenging. The reason can be explained as follows. As already
discussed in section 5.1.2, the resonant action is not exponentially enhanced in α since the
saddle point τs becomes Lorentzian. Then, the fact that the integrand in (3.21) contains

19To obtain this numerical solution, we include very high-order terms in the late-time expansion (3.16) and
use the analytic solutions eqs. (5.7) and (5.8) as initial guesses. The action is then obtained by evaluating
eq. (5.13) on the numerical saddle point. For ζ̄ ∼ O(10) the approximate analytic solution (5.15) differs from
the numerically-evaluated saddle by ∼ 30 %. We checked that the difference decreases for higher ζ̄. This is in
agreement with the expectation that corrections to eq. (5.15) scale as ∼ 1/|ζ̄|1/2.
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exponentially large factors, eπα/2, implies that there should be cancellations of such a large
numerical value in the integration. Therefore, to resolve these cancellations and obtain
numerically convergent results, we then need an accuracy of order ∼ e−πα/2.20 Given the
complication in this case, we only perform the numerical integration using the analytic
expression (E.1) of ζ(τ, r). In figure 8 we plot the numerical result (blue solid line) with
α = 4, k0η⋆ = −2 and δ̃ = 0, and the numerical saddle-point approximation (black dashed
line). The two results agree and illustrate the fact that the resonant action oscillates as a
function of ζ̄ with frequency α. Finally, we confirm the asymmetric property of the WFU,
i.e. the amplitude of ∆SE,1 for negative ζ̄ is much smaller than the one for positive ζ̄, see
the different vertical axes of figures 7 and 8.

6 Quantum mechanics example

In this section we will study a simple quantum-mechanical model that shares many features
with the inflationary scenario we have been discussing. This will help in understanding the
asymmetry between negative and positive values of ζ̄ and the size of the effect of oscillations.

Let us consider a quantum harmonic oscillator perturbed by a small time-dependent
interaction. The Hamiltonian is taken to be

H = H0 + b̃ E0W (t) cos(α log(−t/t0) + αx/ℓ)

= H0 + b̃∆H(t), H0 ≡ p2

2m + mω2

2 x2. (6.1)

Here b̃ is our small expansion parameter, W (t) is a window function that turns off the
interaction at early times (t → −∞) and late times (t → 0): the time t here plays the
role of conformal time in the inflationary case. For convenience we take W (t) = −ωt eε·ωt

with ε > 0 and small. This toy model is chosen to mimic some characteristic features of
our inflationary setup, of action (3.10). The window function turns off the effect of the
forcing at late times, effectively replacing the Hubble friction, while at early times one has an
analogue of the usual iϵ prescription. Note that with this choice, resonance effects between
the forcing term and the nth energy eigenstate of the harmonic oscillator happen around
the time ωt ≃ −α/n. The coefficient ℓ is a classical length scale (i.e. it is finite as ℏ → 0).
As in the inflationary case, we want to be in a regime where quantum fluctuations of x
(which are of order d ≡

√
ℏ/(mω)) do not jump to other minima of the cosine: thus we need

αd/ℓ ≪ 1. Finally, E0 is a classical energy scale.
Let us assume to be in the vacuum |0⟩ of H0 at early times t → −∞ and seek the

evolved wavefunction when the interaction drops to zero at t = 0. At linear order in b̃ the
wavefunction, at all orders in ℏ, can be obtained using time-dependent perturbation theory.
Indeed, if we write |Ψ(t = 0)⟩ = e−iE0T/ℏ |0⟩ +

∑
n cne

−iEnT/ℏ |n⟩ with n = 0, 1, . . . (and T

being the total time of the evolution) then the coefficients cn are given by

cn = − ib̃
ℏ

∫ 0

−∞
dt ⟨n|∆H(t)|0⟩ e−i(E0−En)t/ℏei(En−E0)T/ℏ. (6.2)

20Performing the numerical integration along the Lorentzian contour does not improve the situation: the
exponential in α is removed but ζ(η, r) is now complex, leading to exponential terms of order ∼ eαζ̄ .
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Notice that the final exponential phase factor, containing T , cancels at the level of the
wavefunction. Therefore, we are going to drop T in all the expressions. To compute the
matrix element we split the cosine into a sum of exponentials. Then, we notice that the
operator D(A) = e±iαx/ℓ is nothing but the boost operator and that when applied to the
vacuum it generates a coherent state |A⟩, with A ≡ ±iαd/(

√
2ℓ). Therefore, ⟨n|D(A)|0⟩ =

Ane−|A|2/2/
√
n!. Using this relation, it is then straightforward to obtain the cn as

cn = − ib̃

2
√
2nn!

E0
ℏω

e−α
2d2/(4ℓ2) ∑

σ=±1

(
iαdσ

ℓ

)n Γ(2 + iασ)
(ε+ in)2+iασ . (6.3)

(The time integral can also be performed in saddle-point approximation for large α, equiva-
lently, one can expand the Gamma functions in the last expression.) Notice that, for n > 0,
the denominator (ε+ in)2+iασ ≃ (in)2+iασ is exponentially suppressed for σ = 1 compared
to σ = −1. Hence, the dominant contribution comes from σ = 1 and we are going to drop
the other one (this corresponds to a boost of positive momentum α/ℓ). Moreover, one can
verify that the case n = 0 gives an exponentially small contribution in α hence we will focus
only on the terms n > 0 (in this case one also neglects ε). Combining these results with
the α ≫ 1 limit gives the simplified expression

cn ≃
√
2πα3/2b̃

E0
ℏω

1
2
√
2nn!

(iαd/ℓ)n

(in)2+iα e
−πα/2e−α

2d2/(4ℓ2)eiφ (6.4)

= −
√
2πα3/2b̃

E0
ℏω

(iαd/ℓ)n

2
√
2nn!

1
n2+iα e

−α2d2/(4ℓ2)eiφ, (6.5)

where we have defined φ ≡ −α + α logα + π/4.
Before studying the wavefunction at late times, we can gain some intuition for the final

result by analysing the transition probability P0→n ≡ |⟨n|Ψ(t = 0)⟩|2 =|cn|2, assuming n ̸= 0.
We are going to show that P0→n is dominated by transitions to small n’s. The probability is

P0→n ≃ πα3b̃2

2n4n!
E2

0
(ℏω)2

(
α2d2

2ℓ2

)n
e−α

2d2/(2ℓ2). (6.6)

Since αd/ℓ ≪ 1, this expression decreases with increasing n and the maximum is attained
at n = 1. Therefore, the interaction populates states with large n with a tiny probability.
However, as we are going to see momentarily, excited states are very relevant when focussing
on the tail of the distribution. The probability of transition to excited states is small (the
factors of ℏ at the denominator cancel) and this suggests that the perturbative expansion
in b̃ is reliable for this type of question.

We can then look at the wavefunction in position space at t = 0, Ψ(x) ≡ ⟨x|Ψ(t = 0)⟩.
Here we will need the expression for the harmonic oscillator eigenstates:

ψn(x) = ⟨x|n⟩ =
√
d

π1/4
√
2nn!

Hn (x/d) e−x
2/(2d2), (6.7)

where Hn(x/d) are the Hermite polynomials. We are going to study the wavefunction in
the semiclassical limit, ℏ → 0, which is appropriate on the tail of the distribution. In this
limit one must keep the highest degree term in Hn(x/d) (i.e. Hn(x/d) ≃ (2x/d)n) since ℏ
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appears at the denominator here. The factor d−n will then cancel with dn entering eq. (6.3).
Also, the factor e−α2d2/(4ℓ2) contains ℏ in the exponent. This term, in the inflationary case,
would read e−α

2Pζ/4 and α2Pζ being the loop-counting parameter, which can be set to zero
in the semiclassical limit. Using this consideration and the simplified expression for cn in
eq. (6.5) and working at order b̃, we write the correction to the probability distribution as
|Ψ|2 ≃ |Ψ0|2 (1 + 2Re δΨ/Ψ0), where

2Re δΨ(x)
Ψ0(x)

= 2Re
∞∑
n=1

cn
ψn(x)
ψ0(x)

≃ 2
∞∑
n=1

Re cn
(2x/d)n√

2nn!

≃ −
√
2πα3/2b̃

E0
ℏω

∞∑
n=1

(αx/ℓ)n

n2n! cos (φ− α log n+ nπ/2) . (6.8)

The left-hand side of eq. (6.8) is the exact analogue of the correction to the wavefunction
we studied in the inflationary case. It is useful to compare eq. (6.8) with the probability in
eq. (6.6): even though the probability to jump to the state n is low, when we look at the
tails with |x|/d large, high n’s start to dominate (the parameter raised to the power n is
αx/ℓ as opposed to αd/ℓ). Taking into account the 1/n!, one expects values of n around
nmax ∼ αx/ℓ to dominate the sum in eq. (6.8). Their contribution then scales as ∼ exp(αx/ℓ),
making the correction to the wavefunction potentially exponentially large, in analogy with
the inflationary results. This explanation misses possible cancellations among the series
coefficients, which can take either sign. Equation (6.8) can be evaluated numerically, as
shown in figure 9: one can notice that, like in the case of inflation, this correction is highly
asymmetric21, featuring oscillations at frequency α and very large for positive x. In this
quantum mechanical example, the origin of the large asymmetry is more evident. Indeed, the
dominant term in the perturbation ∆H(t), selected by the resonance (σ = 1), corresponds with
a boost with a positive momentum. Therefore, one expects larger effects on the wavefunction
for positive x. Moreover, this operator is responsible for the phase n−iα in the coefficients
cn and in the series (6.8) (see eq. (6.3)). Such a phase then leads to different behaviours
of the series for different signs of x.

Alternatively, instead of starting from the general time-dependent perturbation theory,
one can focus on the semiclassical limit. This can be obtained using the path integral
representation of the wavefunction. Alternatively, we can re-discover the semiclassical
approximation in the following way. In δΨ(x) we keep the coefficients cn of eq. (6.2), without

21The asymmetry of the wavefunction can be analysed by applying the Euler-Maclaurin formula to the
series (6.8). Such a formula allows one to represent the series as an integral over n plus corrections that
depend on the derivatives of the integrand evaluated at the end points of the integration. We check that those
corrections are negligible in our case and therefore the series (6.8) can be represented by the integral over n.
In the large |x| and α limit, the integral can be done using the saddle-point approximation over n. We find
that for x > 0 the dominant saddle point is approximately ns ∼ iαx/ℓ, which gives rise to an exponential
factor eπα/2 in the wavefunction. It is important to note that such an exponential factor is due to the term
α log n in the cosine of eq. (6.8). On the other hand, for x < 0 we observe that the saddle point is close to zero
and is not purely imaginary, so that the exponential factor on this side is smaller. Therefore, the wavefunction
is highly asymmetric between positive and negative x, as shown in figure 9.
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Figure 9. Relative correction to the real part of the wavefunction as a function of x/ℓ for α = 7, 8
and 9 for b̃ = 1. We use units where d2/ℓ2 = 10−4 and ε = 10−2. With these values, the ranges of
x/ℓ in the plot belong to the semiclassical limit. The wavefunction is multiplied by d2/ℓ2. Notice the
similarities with the results in the main text, notably figure 3. Left: case of negative x. Right: case
of positive x.

performing the time integration. We then sum over the states n and use the ℏ → 0 limit of
the Hermite polynomials. Inside this sum, one can notice that the phase e−i(E0−En)t/ℏ = eiωnt

combines with the coordinate x in such a way that the final result, before the time integration,
is a function of xcl(t) = eiωtx: this is indeed the semiclassical solution for the harmonic
oscillator at zeroth order in b̃. As in the inflationary case, at first order in b̃, it is enough to
use the free solution to compute the wavefunction in the semiclassical limit. After performing
this procedure, one finds the following expression for the correction to the wavefunction

δΨ(x)
Ψ0(x)

= − ib̃E0
ℏ

∫ 0

−∞
dtW (t) cos (α log(−t/t0) + αxcl(t)/ℓ) . (6.9)

This is indeed the expression for i∆S/ℏ, with ∆S being the correction to the action, evaluated
on the free classical solution xcl(t). The resulting time integral can be solved in saddle-point
for large α and large x. Similarly to the cases studied in inflation, this will be an oscillatory
function in αx. (In figure 9 there is no appreciable difference between the exact correction,
first line of eq. (6.8), and the semiclassical approximation.)

7 Conclusions and future directions

In this work, we studied the wavefunction of the universe in a simple single-field model with
a resonant feature. We discovered a striking behaviour which is completely unexpected from
perturbation theory: a feature with a tiny amplitude, which results in tiny deviations from
a Gaussian wavefunction for typical fluctuations, have exponentially large effects for rare
events in the tail of the distribution. Moreover the effect is large only for rare peaks of ζ,
while one has a small effects on troughs.

The skeptic may wonder whether our conclusion is an artifact of working at first order in
the amplitude of the feature, but we stress that this is not the case. Going beyond first order
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is necessary to have a quantitative understanding of what is going on in the tail, but this
does not change the fact that one has sizeable deviations from the Gaussian statistics, even
for features with very small amplitudes. In this respect, we stress that, at least conceptually,
there is no obstacle in applying our semi-classical method in the large ζ limit of the WFU
beyond first order in the amplitude, by (numerically) solving the full non-linear equation
of motion (2.8), and evaluating the corresponding on-shell action. We leave this to future
work: with the full WFU at all orders in b̃ one could investigate the impact of the new tail
on eternal inflation and on the rate of formation of primordial black holes.

Besides, given the exponential sensitivity of the tail to tiny features, it is reasonable to
also expect a large sensitivity of the WFU to details of the expansion history H(t), which
would be worthwhile to investigate. We have also pointed out the existence of a particularly
striking regime where a non-perturbative description of the WFU is required even for typical
fluctuations. What are the observational consequences of such a regime, and potential links
with recent developments in particle physics beyond the Standard Model, see e.g. [25, 28, 29],
are interesting questions to which we plan to come back.

Our work can be developed in many directions, which are interesting both observationally
and on purely theoretical grounds. As we have explained, our formalism can be readily
applied to study other types of small features, like localized ones. Moreover, for any type of
feature, the unitary cutoff is pushed to infinity as its amplitude goes to zero and the theory
becomes free. This is suggestive that the regime requiring a non-perturbative description of
typical fluctuations may not be limited to oscillating features. For generic features in the
expansion history, the function h(t) in (3.22) may exhibit singularities in the complex plane
which preclude the rotation to Euclidean time: whether this leads to specific features for the
WFU is worth exploring. The UV completion of the type of models studied in this work
contains additional states: it would be interesting to understand when and how they modify
the predictions for the tail of the wavefunction. Eventually, it would be valuable to relate our
non-perturbative computations of the wavefunction of the universe, which fully characterizes
the state of primordial fluctuations, to the ongoing developments about how to best extract
information from cosmological data, see for example [30] and references therein.
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A Derivative versus polynomial form of the action

In this appendix we explicitly show that our action (2.7) indeed agrees with the action
(24) of [13], and we demonstrate the practical advantage of using our form, even for the
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computation of n-point correlation functions. In doing so, it is important to remember that
temporal boundary terms in the action contribute in general to correlation functions [31–34].
In particular, total (temporal) derivative terms depending on π̇ (by contrast to the ones
involving π only) contribute to correlation functions of π, which are our object of interest.
Hence, we will only keep such boundary terms in the following discussion.

A.1 Action of π in two different forms

Our starting point here is the action (2.7):

S =
∫

d4x a3M2
PlḢ(t+ π)(∂µπ)2. (A.1)

Expanding Ḣ(t + π) as a power series gives

S =M2
Pl

∞∑
n=0

∫
d4x

a3

n!H
(n+1)(t) πn∂µπ∂µπ, (A.2)

where H(n)(t) denotes the nth derivative with respect to time acting on H(t). Here we are
interested in the terms with n ≥ 1. We rewrite the term πn∂µπ as ∂µ(πn+1)/(n + 1), so
that the interacting part of the action above becomes

Sint =M2
Pl

∞∑
n≥1

∫
d4x

a3

(n+ 1)!H
(n+1)(t) ∂µπn+1∂µπ,

= −M2
Pl

∞∑
n≥1

∫
d4x

1
(n+ 1)!∂µ

[
a3H(n+1)(t) ∂µπ

]
πn+1 + Sboundary, (A.3)

where we have performed an integration by parts in the second line, and we kept the relevant
boundary term

Sboundary = −M2
Pl

∞∑
n≥1

∫
d4x ∂t

[
a3

(n+ 1)!H
(n+1)(t)πn+1π̇

]
. (A.4)

We define □π ≡ ∂µ(a3∂µπ)/a3. The action (A.3) then becomes

Sint = −M2
Pl

∞∑
n≥1

∫
d4x

1
(n+ 1)!

[
− a3H(n+2)(t)πn+1π̇ + a3H(n+1)(t)πn+1□π

]
+ Sboundary.

(A.5)

Performing an integration by parts on the first term on the r.h.s. of the action above, we obtain

Sint = −M2
Pl

∞∑
n>2

∫
d4x a3

{ 1
n!

[
3H(t)H(n)(t) +H(n+1)(t)

]
πn + 1

(n− 1)!H
(n−1)(t)πn−1□π

}
+ Sboundary. (A.6)

where we have changed n→ n− 2. Additionally, note that the equation of motion derived
from the quadratic Lagrangian for π reads

δL2
δπ

= −2M2
Pla

3Ḣ(t)□π + 2M2
Pla

3Ḧ(t)π̇ . (A.7)
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Hence, to work out the action at first order in b, one can neglect the last term in (A.7)
when inserted back in (A.6), which gives

Sint =
∞∑
n>2

∫
d4x

{
− a3M2

Pl
n!

[
3H(t)H(n)(t) +H(n+1)(t)

]
πn + fn(π)

δL2
δπ

}
+O(b2)

+ Sboundary, (A.8)

where we have defined

fn(π) ≡
1

2(n− 1)!
H(n−1)(t)
Ḣ(t)

πn−1. (A.9)

We see that the action (A.8) is the same as the action (24) of [13],22 although the authors
here did not write the boundary terms, despite their role in the computation of n-point
functions, as we will see in (A.20). Therefore, our non-perturbative form of the action (2.7)
is equivalent to their action.

Although what ultimately matters, in perturbative computations, are correlation functions
of π, it is interesting to study the structure of the equation of motion of π. In particular, the
fact that the action (A.8) involves self-interactions of π without derivatives acting on it seems
to suggest that a constant π is not a solution to the equation of motion, implying that π is
not conserved on super-horizon scales. However, this is not the case due to the contributions
coming from the term in δL2/δπ to the equation of motion of π: one can verify that at each
order in π the equation of motion derived from (A.8) admits a constant solution. In contrast,
this property is manifestly valid, and non-perturbatively, from our form (2.7).

A.2 Time-independence of the bispectrum

It is instructive to see explicitly the late-time constancy of the 3-point function of π computed
from the form (A.8), and to contrast it with the computation starting from our form (2.7)
of the action. We will see that the constancy of the bispectrum is immediate in the latter
case, whereas in the former, it requires taking into subleading terms in the expansion in
large α as well as cancellations between the contributions from the bulk and the boundary
terms. This provides a non-trivial consistency check of our computations, and showcases
the usefulness of our form of the action.

Polynomial form of the action. There are three types of terms in the Lagrangian (A.8):
the bulk terms that are polynomial in π, the terms proportional to the linear equation of
motion, and boundary terms. When computing correlation functions in perturbation theory,
terms proportional to the linear equation of motion never contribute, as the interaction-
picture fields are by definition free fields obeying that equation. We treat the two other
types of terms in turn.

22One can straightforwardly show that the action (A.8) is also equivalent to the nth-order interacting action
obtained in [22], as shown in [13].
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The contribution to the 3-point function of π at time η from the bulk terms in (A.8), reads

⟨π(k1, η)π(k2, η)π(k3, η))⟩′bulk = 1
(4ϵ⋆M2

Pl)22ϵ⋆H4∏
i k

3
i

×

× Im
[∫ η

−∞(1−iϵ)

dη′

η′4

(
H(4) + 3HH(3)

)
(η′)f(η′)f∗(η)

]
,

(A.10)

with f(η) = eiktη
∏
i(1 − ikiη) and kt =

∑
i ki. The prime means that we drop the factor

(2π)3δ(3)(k1 + k2 + k3). All the integrals here can be done analytically, but in terms of
incomplete Gamma functions which are not very illuminating for our purposes. Instead,
remember that our goal is simply to show that the bispectrum of π goes to a constant at
late times. Hence, we will only keep track of the relevant contributions at the asymptotic
future, which are simply oscillations in η±iα, and we check that they cancel in the final result.
For that purpose, it is sufficient to expand f(η) at late times:

f(η) = 1 + η2

2
∑
i

k2
i +

iη3

3
∑
i

k3
i +O(η4), (A.11)

where we have to go up to third order as one needs

Im
[
f(η′)f∗(η)

]
= 1

3(η
′3 − η3)

∑
i

k3
i + subleading. (A.12)

Here, we use the iϵ prescription that is relevant only in the asymptotic past, so that, for our
purposes, taking the imaginary part in (A.12) effectively applies only to f(η′)f∗(η). As for
the terms denoted as subleading, they do not lead to contributions that survive at late times.
At first order in b, one can consider H constant in the term HH(3), and with

Ḣ(η) = −ϵ⋆H2
⋆

[
1− 6b

α
cos

(
α log (η/η⋆)− δ̃

)]
, (A.13)

one obtains that the terms that survive at late times are

⟨π(k1, η)π(k2, η)π(k3, η))⟩′bulk ⊃ − H⋆b α
2

(4ϵ⋆M2
Pl)2

∑
i k

3
i∏

i k
3
i

×

×
∫ η

−∞(1−iϵ)

dη′

η′4

(
η′3 − η3

) [
sin
(
α log

(
η′/η⋆

)
− δ̃

)
+ 3
α
cos

(
α log

(
η′/η⋆

)
− δ̃

)]
= − 3H⋆b

(4ϵ⋆M2
Pl)2

∑
i k

3
i∏

i k
3
i

× sin
(
α log (η/η⋆)− δ̃

)
. (A.14)

Note that cancellations between the various contributions — the sine and the cosine terms,
as well as the ones with and without η-dependence in the integrand — lead to the amplitude
of the result being independent of α. In particular, it was important to take into account
the cosine term, despite the fact that its contribution to the integrand is subdominant in
the limit of large α.

Let us now consider the boundary term

S
(3)
boundary = −M

2
Pl
2

∫
dt d3x ∂t

(
a3Ḧ(t)π2π̇

)
. (A.15)
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The contribution from any such term can be worked out from first principles using the
commutation relation (see e.g. section 3.3 of [34]). Using that the (linear) conjugate momentum
to π is ∂L2/∂π̇ = −2a3M2

PlḢπ̇, this gives here:

⟨π(k1, η)π(k2, η)π(k3, η))⟩′boundary = −
(
Ḧ

2Ḣ

)
(η) (Pπ(k1, η)Pπ(k2, η) + 2 perms.) ,

(A.16)
where, at first order in b, one can use the standard power spectrum for π, Pπ(k, η) = (1 +
k2η2)/(4ϵ⋆M2

Plk
3). Keeping the terms that survive at late times, this gives

⟨π(k1, η)π(k2, η)π(k3, η))⟩′boundary = 3H⋆b

(4ϵ⋆M2
Pl)2

∑
i k

3
i∏

i k
3
i

× sin
(
α log (η/η⋆)− δ̃

)
, (A.17)

which precisely cancel with (A.14). Therefore, we have explicitly shown that the 3-point
function of π goes to a constant at late times, using the polynomial form of the action
accompanied with the necessary boundary terms.

Derivative form of the action: when using the derivative form of the action (2.7),
the cubic part reads

S(3) =
∫

d4x a3M2
PlḦπ(−π̇2 + (∂iπ)2/a2) , (A.18)

which gives for the time-dependent 3-point function

⟨π(k1, η)π(k2, η)π(k3, η))⟩′ =
1

(4ϵ⋆M2
Pl)2ϵ⋆H2∏

i k
3
i

×

× Im
[∫ η

−∞(1−iϵ)

dη′

η′2
Ḧ(η′)

(
k2 · k3f

∗(η)f(η′) + k2k3f
∗(η)g1(η′)

)]
+ 2 perms.,

(A.19)

with f(η) as above, and g1(η) = eiktη(1 − ik1η)k2k3η
2. Contrary to the polynomial form,

here all the integrals are manifestly convergent, and the late-time constancy of the 3-point
function is immediate.

Let us also compute the bispectrum starting from (A.19). Taking η → 0 and writing the
sine function as a sum of two exponentials, this gives, with β = −δ̃ − α log η⋆:

B(k1, k2, k3) =
3H⋆b

(4ϵ⋆M2
Pl)2∏

i k
3
i

×

× Im

 3∑
n=0

∑
σ=±1

Γ(iσα+ n− 1) an

kiσα+n−1
t

eiσβe−σαπ/2

 , (A.20)

with

a0 = −1
2
∑
i

k2
i , a1 = −1

2kt(
∑
i

k2
i ) ,

a2 = kt
2

(
−
∑
i ̸=j

k2
i kj + k1k2k3

)
, a3 = −k1k2k3

(∑
i

k2
i /2 +

∑
i<j

kikj

)
.

(A.21)
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Simplifying, one finds

B(k1, k2, k3) =
3H⋆b α

3 cosh(απ/2)
(4ϵ⋆M2

Pl)2∏
i k

3
i

Im z, (A.22)

with

z =

∏
i

ki −
i

α

∏
i

ki −
∑
i ̸=j

k2
i kj

−
∑
i k

3
i

α2

Γ(−1− iα)ei(α log kt−β+π/2). (A.23)

In the limit of large α, with cosh(πα/2) → eπα/2/2 and Γ(−1 − iα) →
√
2π e−πα/2α−3/2

ei(α−α logα+3π/4)[1 + 13i/(12α)] taking into account next-to-leading order (NLO) terms, this
reduces to

B(k1, k2, k3) =
3H⋆b α

3/2√2π
2(4ϵ⋆M2

Pl)2∏
i k

2
i

sin(α log kt + φ) + 1
α
cos(α log kt + φ)

∑
i ̸=j

ki
kj

+ 1
12

 ,
(A.24)

with φ = α− α logα+ 5π/4− β, and where we have kept the first subleading term, see [14]
for similar result.

B Beyond the decoupling limit: mixing with gravity

In the main text, we have derived the full nonlinear action (2.7), at all orders in π and
zeroth-order in the decoupling limit. This action scales like O(ϵ). Here, we derive first-order
corrections to this action, i.e. up to O(ϵ2), also keeping the full nonlinear structure in π.
From this, we deduce an upper bound on ζ̄ for the mixing with gravity to be negligible.

We perform the space-time dependent time diffeomorphism t→ t+ π(t,x), starting from
the unitary gauge action (2.1). We use the ADM parametrization of the metric:

ds2 = −N2 dt2 + ĝij( dxi +N i dt)( dxj +N j dt) , (B.1)

we neglect tensor modes, and we choose the spatially flat gauge ĝij = a2δij . One thus
obtains the action

S =
∫

d4xa3M2
Pl

{ 1
2N (E2

ij − E2)−N(3H2(t+ π) + Ḣ(t+ π)).

+ Ḣ(t+ π)
[
−N−1(1 + π̇)2 + 2N−1(1 + π̇)N i∂iπ +N (∂iπ)2 −N−1(N i∂iπ)2

]}
,

where
Eij =

1
2
˙̂gij −N(i;j) = a2Hδij −N(i;j) , N(i;j) =

1
2(Ni;j +Nj;i) , (B.2)

and ; stands for the covariant derivative with respect to the spatial metric ĝij , which in
this gauge is simply an ordinary derivative.

Performing similar manipulations as in the main text, this reads

S =
∫

d4x a(t)3M2
Pl

{
−Ḣ(t+ π)(π̇2 − (∂iπ)2)− 3(H(t+ π)−H(t))2

+ δN
(
3N−1H2(t)− 3H2(t+ π)− 2N−1HN ;i

i

)
+ 1

2N
−1(N2

(i;j) − (N ;i
i )2)

+ Ḣ(t+ π)
(
δN(N−1(1 + π̇)2 − 1 + (∂iπ)2) + 2(1 + π̇)N−1N i∂iπ −N−1(N i∂iπ)2

)}
,
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where contractions are made with the spatial metric ĝij = a2δij , we wrote N = 1 + δN ,
and no approximation has been made so far. Varying the action with respect to δN and
Ni, we obtain, respectively, the lapse constraint:

3(H2(t)−H2(t+ π))− 3H2(t+ π)δN(2 + δN)− 2H(t)∂iNi −
1
2(N

2
(i;j) − (∂iNi)2)

+Ḣ(t+ π)[2π̇ + π̇2 + (N i∂iπ)2 − 2(1 + π̇)N i∂iπ + (∂iπ)2 (1 + δN)2 − δN(2 + δN)] = 0 ,
(B.3)

and shift constraint:

2N−1Ḣ(t+ π)[1 + π̇ −N j∂jπ]∂iπ = ∂j

[1
2N

−1(N ;j
i +N j

;i)− δji (2H(t)δN/N +N ;k
k )
]
.

(B.4)
In order to derive the first correction to the decoupling limit action, we see that it is enough
to work out δN and Ni at first order in ϵ, which we denote with the superscript (1). From
eqs. (B.3)–(B.4), and using the Helmoltz decomposition of the shift, Ni = ∂iψ + Ñi, with
∂iÑi = 0, one obtains the compact expressions

δN (1) = 1
H(t)∂

−2∂iXi and Ñ
(1)
i = 4a2∂−2

(
∂i∂

−2∂jXj −Xi

)
,

with Xi ≡ −Ḣ(t+ π)(1 + π̇)∂iπ ,
(B.5)

and

2H(t)∂
2ψ(1)

a2 = 3
(
H2(t)−H2(t+ π)

)
−6H2(t+π)δN (1)+Ḣ(t+π)[2π̇+ π̇2+(∂iπ)2] , (B.6)

where indices are simply contracted with δij here. One then obtains the final expression
of the action including first-order ϵ corrections:

S=
∫

d4xa(t)3M2
Pl

{
−Ḣ(t+π)(π̇2−(∂iπ)2)−3(H(t+π)−H(t))2−3(H2(t+π)−H2(t))δN (1)

+3H2(t)(δN (1))2+Ḣ(t+π)(2π̇+π̇2+(∂iπ)2)δN (1)+1
2Ñ

(1)
(i;j)Ñ

(1)(i;j)−2XiÑ
(1)i
}
,

(B.7)
where we note that the explicit expression of ψ(1) is actually not needed for this result because
of structural cancellations in the computation.

Let us now use the action (B.7) to identify the regime of validity of the decoupling
limit analysis. For this, in the same spirit as in section 4, we consider a boundary profile
ζ̄ characterized by a typical momentum scale k. This way, the effects of spatial derivatives
simply read ∂i ∼ ki and ∂−2 ∼ k−2. We also use the behaviour of the free mode function (3.14)
to deduce the estimates π ∼ ζ̄/H(1 + kη) and π̇ ∼ ζ̄(kη)2. We thus find Xi ∼ ϵHζ̄(1 +
ζ̄(kη)2)(1 + kη)ki, Ñ (1)

i ∼ a2/k2Xi and in particular

δN (1) ∼ ϵζ̄ [1 + ζ̄(kη)2](1 + kη) . (B.8)

The validity of the decoupling limit necessitates δN (1) ≪ 1. The right-hand side of (B.8)
grows with kη, but keep in mind that the corresponding interactions are shut off deep inside
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the horizon, due to the iϵ prescription projecting onto the interacting vacuum. However, we
should demand that δN (1) ≪ 1 at the resonance, such that |kη| ∼ α. This imposes the bound

|ζ̄| ≪ 1√
ϵα3

. (B.9)

This turns out to be the most stringent bound on ζ̄ when requiring the O(ϵ2) interactions
to be negligible compared to the leading O(ϵ) part of the action. Checking this is straight-
forward, except for the second term in (B.7). The corresponding polynomial interactions
(H(t+π)−H(t))2 ∼ ϵ2H4π2 do not decay outside the Hubble radius, contrary to the leading
two-derivative part of the action. This is simply a manifestation of the fact that π acquires
a mass beyond the decoupling limit. Requiring that these interactions are subdominant at
the late-time saddle point (4.12) gives the bound ϵ|ζ̄| ≪ 1, which is indeed less stringent
than (B.9).

Importantly, let us highlight that the regime α2|ζ̄| ∼ 1, in which full non-perturbative
results are needed and we found qualitative deviations from perturbation theory, always lies
within the regime of validity (B.9) of the decoupling limit analysis. Notice as well that in order
to get the range of validity for ζ̄ of the decoupling limit it is crucial to use our non-perturbative
form of the action; it is not enough to stick to the perturbative analysis discussed in [13].

C Correlators from the WFU at one loop

In this section we are going to investigate how Witten diagrams are related to the correlators
at loop level. In the WFU approach, equal-time correlators are obtained by performing a
path integral over field configurations at that given time. At one-loop level, on top of Witten-
diagram loops (needed to obtain the WFU), there are in principle additional loops originating
from ‘averaging’ tree-level Witten diagrams over boundary (late-times) field configurations.
In turn, this step can lead to additional divergences that are not manifest in the WFU. When
estimating the size of loops, we therefore need to take into account both contributions.

On the other hand, correlators can also be evaluated using different methods that do not
involve the WFU, as for instance the ‘in-in formalism’ [23]. In this case, one does not make
a distinction between WFU and boundary loops. Notice also that the propagators running
inside loops used in the two methods are different: the in-in uses Wightman functions, while
the WFU uses bulk-to-bulk propagators. As it is perhaps expected, on the WFU side we will
obtain that the two sets of loop diagrams combine to yield back the in-in result: the effect
of boundary loops is to change the boundary conditions of the propagator.23

For concreteness, we consider λϕ4 in dS, although our conclusion appears general. The
action is taken to be

S =
∫

d4x a4(η)
[
−1
2(∂µϕ)

2 − λ

4!ϕ
4
]
. (C.1)

We furthermore focus on the equal time two-point function ⟨ϕ(η,x)ϕ(η,y)⟩ at linear order
in λ. At this order, the WFU at time ηf , Ψ[ϕ̄; ηf ], contains a tree-level correction to the

23For a similar discussion on the relation between the in-in and WFU approaches to loop diagrams, see [24].
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four-point coefficient ψ4 and a one-loop correction to the two-point coefficient ψ2. Both are
needed to obtain the one-loop correlator at O(λ).

In the following calculations we will need the bulk-to-bulk and the bulk-to-boundary
propagators for massless fields in dS. First, let us define the wave-modes in k-space that
solve the free equation of motion for ϕ

φ±(k, η) ≡ (1∓ ikη)e±ikη. (C.2)

Then, the bulk-to-bulk propagator is obtained as

G(η, η′;k) = − iH
2

2k3

[
θ(η − η′)φ+(k, η′)φ−(k, η) + θ(η′ − η)φ+(k, η)φ−(k, η′)

− φ̄−
φ̄+

φ+(k, η)φ+(k, η′)
]
, (C.3)

where φ̄±(k) ≡ φ±(k, ηf) and θ is the Heaviside theta function. By construction, the function
G(η, η′;k) vanishes at early times (when η, η′ → −∞(1 − iϵ)) and at late times (when η,
η′ → ηf). Requiring that G satisfies the free equations of motion with a δ(η − η′) source
then fixes the normalization in eq. (C.3) (i.e. we are working with canonically-normalized
fields). Note that this normalization changes if we work with ζ (in this case the factor H2

gets replaced by Pζ). On the other hand, the bulk-to-boundary propagator is

Kk(η) ≡
φ+(k, η)
φ̄+(k)

. (C.4)

This function is obtained as the free solution of the equations of motion satisfying Kk(ηf) = 1
and vanishing for η → −∞(1 − iϵ).

After introducing these quantities, we are ready to evaluate the Witten diagrams contribut-
ing to the WFU. The tree-level contribution is obtained by evaluating the interaction part of
the action times i on the free modes for ϕ (given by eq. (3.14), but for ϕ). Therefore, we obtain

logΨ4[ϕ̄; ηf ] = − iλ4!

∫ ηf

−∞

dη
(Hη)4

∫ 4∏
i=1

[
d3ki
(2π)3 ϕ(η,ki)

]
(2π)3 δ(3)(kt)

= 1
4!

∫ 4∏
i=1

d3ki
(2π)3 (2π)3 δ(3)(kt)ψ4(k1, . . . ,k4; ηf) ϕ̄(k1) . . . ϕ̄(ki), (C.5)

where logΨn[ϕ̄; ηf ] is the correction to the exponent of the WFU with n fields and kt ≡
k1 + k2 + k3 + k4. Thus, written in terms of bulk-to-boundary propagators Kki

(η), the
coefficient ψ4 reads

ψ4(k1,k2,k3,k4; ηf) = −iλ
∫ ηf

−∞

dη
(Hη)4

4∏
i=1

Kki
(η). (C.6)

The one-loop contribution to ψ2 can instead be obtained using the standard Witten
rules (see [35] for a derivation in AdS)

logΨ2[ϕ̄; ηf ] =
λ

4

∫ ηf

−∞

dη
(Hη)4

∫ d3k

(2π)3K
2
k(η) ϕ̄(k)ϕ̄(−k)

∫ d3p

(2π)3G(η, η;p)

≡ 1
2!

∫ d3k

(2π)3 δψ2(k; ηf) ϕ̄(k)ϕ̄(−k), (C.7)
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η

η = ηf

(a)

+

η = ηf

(b)

Figure 10. The two one-loop contributions to ⟨ϕ(ηf ,p)ϕ(ηf ,p
′)⟩. The grey surface represents the

boundary at η = ηf . On the left, (a), we have the one-loop diagram on the bulk, logΨ2, that
contributes directly to the WFU. On the right, (b), we have the boundary diagram where we average
over two boundary fields in logΨ4.

where we used the total momentum-conserving delta function to remove one integral. There-
fore, the correction to ψ2 is given by

δψ2(k; ηf) =
λ

2

∫ ηf

−∞

dη
(Hη)4K

2
k(η)

∫ d3p

(2π)3G(η, η;p). (C.8)

Explicitly, the WFU at order λ can be expanded as follows

Ψ[ϕ̄; ηf ]=N
(
1 + logΨ2[ϕ̄; ηf ] + logΨ4[ϕ̄; ηf ]

)
exp

[
1
2!

∫ d3k

(2π)3ψ2(k; ηf)ϕ̄(k)ϕ̄(−k)
]
, (C.9)

where N−1 ≡
∫
Dϕ̄ |Ψ[ϕ̄; ηf ]|2 is a normalization constant. The two-point correlator in

momentum space is then obtained using the standard Born rule of quantum mechanics:

⟨ϕ(ηf ,p)ϕ(ηf ,p
′)⟩ =

∫
Dϕ̄ϕ̄(p)ϕ̄(p′)

∣∣Ψ[ϕ̄; ηf ]
∣∣2. (C.10)

In performing this path integral at order λ we encounter various types of contributions.
There are, for instance, bubble diagrams, that are however cancelled once the normalization
N is taken into account. In principle, there could be disconnected diagrams, but at this
order they do not appear. Finally, there are two types of connected diagrams. First, from
δψ2, a diagram where the external ϕ̄(p), ϕ̄(p′) connect to the internal ϕ̄(k)ϕ̄(−k). This
can be interpreted as a loop contribution from the bulk (given the origin of δψ2). Second,
from ψ4, we have a loop diagram where two internal ϕ̄(ki)’s are contracted among each
other. Therefore, this corresponds to a boundary loop. These two one-loop diagrams are
represented respectively in figure 10 (a) and (b).

One can straightforwardly check that

Reψ2(k; ηf) = − k3

H2φ̄+(k)φ̄−(k)
. (C.11)

At this point, we are ready to compute the order λ correction in eq. (C.10) (the integral
can be performed, for instance, by first introducing a generating functional and by taking
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its functional derivatives). We obtain

⟨ϕ(ηf ,p)ϕ(ηf ,p
′)⟩′(1) =

1
2 (Reψ2(p; ηf))2

[
Re δψ2(p; ηf)−

1
4

∫ d3k

(2π)3
Reψ4(p,p,k,k; ηf)

Reψ2(k; ηf)

]

= λ

4 (Reψ2(p; ηf))2 Re
∫ ηf

−∞

dη
(Hη)4Kp(η)2

∫ d3k

(2π)3

[
G(η, η;k) + iK2

k(η)
2Reψ2(k; ηf)

]
. (C.12)

In the correlator, the subscript (1) stands for the first correction in λ, while the prime means
we remove (2π)3δ(3)(p+p′). In going to the second line we used eqs. (C.6) and (C.8). Notice
that, although the two contributions of the first line come with different symmetry factors,
when expressed in terms of bulk objects this difference cancels. Indeed, as it is clear from
figure 10, both diagrams have the same combinatorics from a bulk perspective. In the second
line on the r.h.s. of (C.12), the two terms in the square bracket are given by

G(η, η;k) = − iH
2

2k3

[
φ+(k, η)φ−(k, η)−

φ̄−(k)
φ̄+(k)

φ+(k, η)φ+(k, η)
]
, (C.13)

iK2
k(η)

2Reψ2(k; ηf)
= − iH

2

2k3 φ̄+(k)φ̄−(k)
(
φ+(k, η)
φ̄+(k, η)

)2
. (C.14)

By combining these two pieces, the term that imposes the boundary conditions at ηf in
G(η, η,k) (the last in eq. (C.13)) is cancelled by the boundary loop (C.14). Therefore, we
arrive at the overall one-loop contribution to the correlator

⟨ϕ(ηf ,p)ϕ(ηf ,p
′)⟩′(1) =

λH2

8 (Reψ2(p; ηf))2 Im
∫ ηf

−∞

dη
(Hη)4Kp(η)2

∫ d3k

(2π)3
1
k3φ+(k, η)φ−(k, η),

(C.15)
where indeed we recognize the propagator of the in-in relations inside the loop. Notice
also that the WFU loop, δψ2 in eq. (C.8), is convergent in the IR, while the loop for the
correlator (C.15) is divergent [16]. Moreover, given that the loops are typically divergent,
in order to have finite correlators after renormalization we arrive at the conclusion that
the WFU is necessarily a divergent object on itself. The divergences from the additional
path integral in eq. (C.10) will then make the final result UV finite. One can also check
that eq. (C.15) agrees with the in-in computation [36]. The cancellation between bulk and
boundary terms is completely independent on the spacetime, the theory and the evaluation
time ηf , as it is based on the properties of the in-in formalism. Therefore, the conclusion
also applies to the model of resonant non-Gaussianities.

D Estimate of one-loop Witten diagrams at O(b̃)

In this appendix we want to show that the one-loop Witten diagrams with n external legs
at first order in b̃ (see figure 1) scale as

√
α b̃ ζ̄2(α2ζ̄)n−2(α2Pζ)/Pζ . In comparison with

the tree-level diagrams with the same number of external legs, these loop corrections are
suppressed by α2Pζ ≲ 1. Note that this condition is weaker than the one of perturbative
unitarity, α4Pζ ≲ 1, see the discussion around eq. (3.25).

For illustrative purposes, let us focus on the one-loop Witten diagram with two external
legs (second graph in the second line of figure 1). The ingredients for computing such
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a diagram are two bulk-to-boundary propagators, one bulk-to-bulk propagator and the
four-point vertex which is given by the quartic interaction:

L4 = b̃α2ζ2

4η2Pζ

[
ζ ′2 − (∂iζ)2

]
cos

(
α log(η/η⋆)− δ̃

)
. (D.1)

The coupling above can be straightforwardly obtained from expanding the action (3.13)
for small ζ up to quartic order.24

Derivatives in the action can act on internal or external legs. Let us focus first on the
case where the two derivatives act on the two bulk-to-boundary propagators: this is the
leading contribution (highest power of α) as we will verify later. Using the vertex (D.1), the
one-loop coefficient of the WFU with two external legs is given by25

ψ1−loop
2 (k1,k2) ⊃

b̃α2

4Pζ

∫ ηf

−∞

dη
η2 K

′
k1(η)K

′
k2(η) cos(α log(η/η⋆)− δ̃)

∫ d3k

(2π)3G(η, η;k), (D.3)

where the subscript denotes the number of external legs, k1 and k2 are the external momenta,
and k is the internal momentum. Note that in the expression (D.3) we considered two time
derivatives acting on Kk(η). One gets the same scaling in α also for spatial derivatives: this
is straightforward to verify using the saddle-point approximation (α≫ 1) to the η-integral in
the early-time limit.26 Using the formula (C.13) and the fact that K ′

k(η) = ηk2eikη/φ̄+(k),
eq. (D.3) becomes

ψ1−loop
2 (k1,k2) ⊃ − ib̃α

2H2

8
k2

1k
2
2

φ̄+(k1)φ̄+(k2)

∫ ηf

−∞
dη eiktη cos

(
α log(η/η⋆)− δ̃

)
×

×
∫ d3k

(2π)3
1
k3

[
φ+(k, η)φ−(k, η)−

φ̄−(k)
φ̄+(k)

φ+(k, η)φ+(k, η)
]
, (D.4)

where kt ≡ k1 + k2. Setting ηf = 0 (27) we have

ψ1−loop
2 (k1,k2) ⊃ − ib̃α

2H2

8 k2
1k

2
2

∫ 0

−∞
dη eiktη cos

(
α log(η/η⋆)− δ̃

)
×

× 4π
(2π)3

∫ Λa(η)

0

dk
k

[
(1 + k2η2)− (1− ikη)2e2ikη

]
, (D.5)

where Λ is a fixed physical cutoff. Notice that this physical cutoff Λ appears together with the
scale factor at time η, cutting off the integral in comoving momentum k (see a more detailed

24In general, the non-linear self-coupling of ζ’s at first order in b̃ reads

Ln+2 = − b̃αnζn

2η2Pζn!

[
ζ′2 − (∂iζ)2

]{
(−1)n/2 cos

(
α log(η/η⋆) − δ̃

)
, n+ 2 ∈ even

(−1)(n+1)/2 sin
(
α log(η/η⋆) − δ̃

)
, n+ 2 ∈ odd

. (D.2)

25We define the wavefunction coefficients as in eq. (C.9).
26Subleading corrections in the limit |kη| ≫ 1 contain less power of η: on the saddle point of the η integral,

their contributions have fewer power of α compared to the leading contributions.
27Since one gets a non-zero result for ηf = 0, it is safe to neglect subleading terms. As we will discuss, it is

useful to keep ηf ̸= 0 to study the Minkowski limit of the result.
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discussion below eq. (26) of [36]). Then, we change the variable using kp ≡ k/a(η) = −ηHk,
where kp denotes a physical momentum. Thus, the integral above becomes

ψ1−loop
2 (k1,k2) ⊃ − ib̃α

2H2

16π2 k2
1k

2
2

∫ 0

−∞
dη eiktη cos

(
α log(η/η⋆)− δ̃

)
×

×
∫ Λ

0

dkp
kp

[(
1 +

k2
p

H2

)
−
(
1 + ikp

H

)2
e−2ikp/H

]
. (D.6)

We now see that the integral over kp in the second line does not depend on η and in fact it
potentially leads to quadratic and logarithmic divergences. More precisely, we obtain

logΨ1−loop
2 ⊃

√
α b̃ ζ̄2α2k

2
1k

2
2

kt
e−i[α log(X⋆)+δ̃]

[
log

( Λ
H

)
+ Λ2

2H2 + finite terms
]
, (D.7)

where we have used X⋆ = −ktη⋆, and we have evaluated the η integral on the perturbative
saddle point, i.e. ηs = −α/kt. Note that the expression above is an estimate, assuming
that ζ̄(k) ≃ ζ̄ and it is peaked at some momentum. From eq. (D.7), we see that the
quadratic divergence, as expected, can be removed by adding a local counter-term to the
WFU, resulting in, for example, renormalization of the mass term. On the other hand, the
logarithmic divergence of the form log(Λ/H), as argued in [36], cannot be removed by a local
counter-term since for the modes inside the horizon such a divergence becomes non-local,
log((a(t)Λ)/k). With this reasoning, this logarithmic divergence is physical and we can read
off the dependence on α for ψ1−loop

2 .
Alternatively, one could draw the same conclusion using the dimensional regularization

(dim. reg.) to compute ψ1−loop
2 . In dim. reg. one usually performs the k integral in d = 3 + ε

dimensions. We use d to denote the number of spatial dimensions. Additionally, in (d+ 1)-
dimensions the free mode function becomes the Hankel function (−Hη)d/2H

(1)
d/2(−kη). Since

the integral involving the Hankel function is very complicated, one can then use a trick,
proposed in [37], to obtain a simple form of the mode function in d = 3 + ε dimensions.
One considers a massive scalar field in (d+ 1) dimensional de Sitter space, and analytically
continues both the number of spatial dimensions and the mass of the field in such a way
that the index of the Hankel function remains 3/2. By doing so, the mode function in
d = 3 + ε dimensions takes a simple form, (−Hη)ε/2(1 − ikη)eikη. We see that this mode
function is different from the one in d = 3 dimensions by the overall normalization factor
(−Hη)ε/2. Using such a simple form of the mode function it is then straightforward to
perform the integral in k analytically in the limit ηf = 0. At this point, one can see that
there are several terms appearing after the integration: a finite term, a term going as 1/ε
and a term that contains log(H/µ) where µ is a renormalization scale. Note that the finite
term and the term with 1/ε can be altogether removed in some renormalization scheme.
After that, similar to the calculation in (D.7), one can apply the saddle-point approximation
to perform the η integral. Finally, we obtain the same α dependence of ψ1−loop

2 together
with the logarithmic divergence of the form log(H/µ) which, as explained earlier, cannot
be removed by adding local counter-terms.28

28We can convince ourselves that log(H/µ) originates from a non-analytic term in k by performing the
calculation in dim. reg. in the early-times limit |ηf | ≫ 1, where all the modes are inside the horizon and the
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The result (D.7) indicates that this one-loop correction is suppressed compared to the
tree-level one by α2Pζ ≪ 1. This confirms the estimates of section 3.2. In addition, following
the same method we used, it is straightforward to generalise the scaling of logΨ1−loop

2 to
logΨ1−loop

n where n is the number of external legs:

logΨ1−loop
n ∼ b̃

√
α
ζ̄2

Pζ
(α2ζ̄)n−2(α2Pζ). (D.9)

The suppression with respect to tree-level is always α2Pζ ≪ 1.
Let us discuss what happens when derivatives do not act on the external legs: contributions

such as Kk1(η)K ′
k1
(η)G′(η, η;k) and Kk1(η)Kk1(η)G′′(η, η;k) to the one-loop coefficient

ψ1−loop
2 . Following the same procedure as above, one can straightforwardly show that these

contributions are suppressed by α, compared to eq. (D.7). More explicitly, we have

logΨ1−loop
2 (KK ′G′) ∼ b̃

√
α

α

ζ̄2

Pζ
(α2Pζ), logΨ1−loop

2 (KKG′′) ∼ b̃
√
α

α2
ζ̄2

Pζ
(α2Pζ). (D.10)

The reason for this α suppression is the following. In this case, there is at least one time
derivative acting on the bulk-to-bulk propagator, implying that it will generate a factor of
internal momentum k. Then, changing the variables to the physical momentum (kp = −ηHk)
leads to an additional factor of 1/η, so that the integrand in η contains fewer powers of η
compared with the K ′

k1
(η)K ′

k1
(η)G(η, η;k) contribution. Therefore, evaluating the η integral

on the saddle point (ktηs ∼ −α) we find that in comparison with eq. (D.7) these contributions
are suppressed in α as shown in eq. (D.10).

Applying the same technique to the higher-loop corrections, one can deduce that the
ℓ-loop wavefunction coefficient at O(b̃) with n external legs scales as

logΨℓ−Loop
n ∼ b̃

√
α
ζ̄2

Pζ
(α2ζ̄)n−2 (α2Pζ)ℓ. (D.11)

E Numerical methods

In this appendix we explain the numerical methods used to compute the on-shell action in
section 5.2. The first step towards numerically integrating the action is to obtain an accurate
value for the free solution ζ(τ, r) with the late-time boundary condition. We then provide two
methods to obtain such a solution. The first method makes use of the analytical expression
for the Fourier transform ζ(τ, k), i.e. the Euclidean version of eq. (3.14). Then, the real-space

mode functions are approximated by the Minkowski ones (by time-translational invariance in this limit, we can
set the final time tf = 0). The time and momentum integrals in ψ1−loop

2 in this limit take the following form∑
σ

∫ 0

−∞
dte−it(ktp−σω)

∫
ddkp

(2π)d

µδ

kp

[
1−e−2ikpt

]
∝
k2

tp+ω2

4δ + 1
8

[
(k2

tp+ω2) log 4µ2

k2
tp−ω2 +ktpω log ktp−ω

ktp+ω

]
,

(D.8)
where in the first step we expanded the cosine in exponentials (σ = ±1) and in the second step we performed
the summation over σ. The subscript p stands for physical momentum. We first performed the time integral
and then the one over kp. Notice that the boundary term e−2ikpt mixes the t and kp dependences and does
not vanish in dim. reg. . Note the non-analytic dependence of the finite terms in δ.
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solution is obtained by performing an inverse-Fourier transform at each time step, which
is implemented numerically via a fast Fourier transform (FFT). Since our system possesses
spherical symmetry, the solution then only depends on k and the inverse-Fourier transform
simply becomes one dimensional. After that, we plug the real-space solution into the action
and evaluate the integral numerically, although there are some technical points to be careful
about, as we will explain below. The second method, on the other hand, relies on solving the
linear PDE for ζ(τ, r) with prescribed boundary conditions. Then, we can straightforwardly
compute the action on such a numerical solution. This method in fact is similar to what was
implemented in [1] (in this reference the equation for ζ(τ, r) was however non-linear). We
will refer to these two methods as FFT and PDE methods, respectively.

Before entering into the details of the numerical integration, let us comment on the
Gaussian profile at late times, see eq. (5.18). In fact, in this specific case the solution
ζ(τ, r) can be obtained analytically in terms of exponential-integral functions, using the
inverse-Fourier transform of the (Euclidean-rotated) ζ(τ, k) in (3.14), giving

ζ(τ, r)/ζ̄ = (1− 4τ2)ReW (z) + 2τ
r
(τ2 − r2) ImW (z)− 2τ√

π
, (E.1)

where W (z) ≡ e−z
2(1 − i erfi(z)), erfi(z) ≡ −ierf(iz) is the imaginary error function and

z ≡ r + iτ . It should be noted that dealing with the above expression is not always
straightforward. Indeed, an accurate evaluation of eq. (E.1) requires the implementation
of arbitrary-precision numerics (otherwise large numerical errors appear when evaluating
W (z) for complex argument in the regions |τ | ≫ 1, r ≫ 1), resulting in very long evaluation
times. Actually, we employ this analytical expression (E.1) only for negative ζ̄ since high
accuracy/precision is needed, as discussed in section 5.2. However, this procedure of finding
an analytical expression for ζ(τ, r) cannot be generally applied to an arbitrary late-time
configuration.

Here we explain in detail how to perform the numerical integration over τ and r. First,
note that τ ∈ (−∞, 0) and r ∈ (0,+∞). In order to obtain a better accuracy/precision,
we divide our integral (5.1) into three pieces,

∆SE,1 = ∆S1,early +∆S1,grid +∆S1,late, (E.2)

where ∆S1,early is the integration over τ ∈ (−∞, τmin), ∆S1,grid the one over τ ∈ (τmin, τmax),
and ∆S1,late the one over τ ∈ (τmax, 0). The reason for this separation, as we will see below,
is essentially the fact that the integral over τ in both ∆S1,early and ∆S1,late can be performed
analytically, which indeed improves the matching with the saddle-point approximation.
Therefore, we are left with only the numerical integration in r for ∆S1,early and ∆S1,late.
Of course, we still have to do the numerical integrations over τ and r in ∆S1,grid,29 but

29In fact, when performing the numerical integration it is more useful to change coordinates {τ, r} to {t̃, r̃},
defined as

t̃ ≡ − log(−τH), r̃ ≡ log(Hr). (E.3)

Notice that both t̃ and r̃ run from −∞ to +∞. We see that the oscillation of the on-shell action is periodic in
t̃ with frequency α, whereas its frequency increases as a function of τ at late times. Therefore, this suggests
that performing the numerical integral over the variable t̃ is more robust (the sampling can be done on a
uniform grid), compared to the integral over τ .
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this is less subtle since both τmin and τmin are finite. Below, we provide a detailed analysis
of both ∆S1,early and ∆S1,late.

Let us analyse the late-time contribution ∆S1,late. In this regime, expanding the solution
ζ(τ, r) for small |τ |, see eq. (3.16), gives rise to the late-time limit action up to the leading
contributions,

∆S1,late ≃
2π
Pζ

∫ +∞

0
dr r2

∫ 0

τmax
dτ
[ (

∇2ζ̄(r) + ∂r ζ̄(r) ∂r∇2ζ̄(r)
)
cos q(τ, r)

− α

2∇
2ζ̄(r) (∂r ζ̄(r))2 sin q(τ, r)

]
, (E.4)

where we have used the fact that the late-time profile is spherically symmetric and we have
defined q(τ, r) ≡ α

(
log(τ/η⋆) + ζ̄(r)− iπ/2

)
− δ̃. It is important to note that the limit

τ → 0− is regular by construction. Performing the integral over τ in (E.4) analytically,
we therefore obtain

∆S1,late ≃− 2πτmin
(1+α2)Pζ

∫ +∞

0
dr r2

[(
∇2ζ̄(r)+∂r ζ̄(r)∂r∇2ζ̄(r)

)
(cosqmax(r)+αsinqmax(r))

−α

2∇
2ζ̄(r)(∂r ζ̄(r))2(sinqmax(r)−αcosqmax(r))

]
, (E.5)

where qmax/min(r) ≡ q(τmax/min, r). Notice that in the formula shown above we have kept
the terms up to O(τmax). Actually, in our numerical implementation we include up to order
O(τ12

max) and when choosing τmax we check that additional corrections are negligible. The
integration over r in (E.5) is then performed numerically.

Finally, let us consider the early-time contribution ∆S1,early. Following the same procedure
as for the late-time limit action, we expand the solution ζ(τ, r) for large |τ | to obtain

∆S1,early ≃ −2π
Pζ

∫ +∞

0
dr r2(∂r ζ̄(r))2

∫ τmin

−∞

dτ
τ2 cos(q(τ, r)). (E.6)

Notice that in the expression above the fact that ζ(τ, r) quickly decays for large |τ | implies
that the dominant contribution in the action at early times comes from the counter term in
eq. (3.21). Evaluating the integral over τ analytically, we thus obtain

∆S1,early = 2π
τmin(1 + α2)Pζ

∫ +∞

0
dr r2(∂r ζ̄(r))2 (cos qmin(r)− α sin qmin(r)) . (E.7)

As before, we are left with the radial integration which can be done numerically. Notice
that this contribution decays very slowly at early times, as ∼ 1/τmin. This suggests that
including ∆S1,early allows us to choose moderately large values for τmin, without considering
an extremely large grid.
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