Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Starvation resistance in the nematode Pristionchus pacificus requires a conserved supplementary nuclear receptor

MPG-Autoren
/persons/resource/persons271107

Theska,  T       
Department Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons272307

Renahan,  T       
Department Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons271084

Sommer,  RJ       
Department Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Theska, T., Renahan, T., & Sommer, R. (2024). Starvation resistance in the nematode Pristionchus pacificus requires a conserved supplementary nuclear receptor. Zoological Letters, 10(1): 7. doi:10.1186/s40851-024-00227-y.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-9E8F-1
Zusammenfassung
Nuclear hormone receptors (NHRs) are a deeply-conserved superfamily of metazoan transcription factors, which fine-tune the expression of their regulatory target genes in response to a plethora of sensory inputs. In nematodes, NHRs underwent an explosive expansion and many species have hundreds of nhr genes, most of which remain functionally uncharacterized. However, recent studies have reported that two sister receptors, Ppa-NHR-1 and Ppa-NHR-40, are crucial regulators of feeding-structure morphogenesis in the diplogastrid model nematode Pristionchus pacificus. In the present study, we functionally characterize Ppa-NHR-10, the sister paralog of Ppa-NHR-1 and Ppa-NHR-40, aiming to reveal whether it too regulates aspects of feeding-structure development. We used CRISPR/CAS9-mediated mutagenesis to create small frameshift mutations of this nuclear receptor gene and applied a combination of geometric morphometrics and unsupervised clustering to characterize potential mutant phenotypes. However, we found that Ppa-nhr-10 mutants do not show aberrant feeding-structure morphologies. Instead, multiple RNA-seq experiments revealed that many of the target genes of this receptor are involved in lipid catabolic processes. We hypothesized that their mis-regulation could affect the survival of mutant worms during starvation, where lipid catabolism is often essential. Indeed, using novel survival assays, we found that mutant worms show drastically decreased starvation resistance, both as young adults and as dauer larvae. We also characterized genome-wide changes to the transcriptional landscape in P. pacificus when exposed to 24 h of acute starvation, and found that Ppa-NHR-10 partially regulates some of these responses. Taken together, these results demonstrate that Ppa-NHR-10 is broadly required for starvation resistance and regulates different biological processes than its closest paralogs Ppa-NHR-1 and Ppa-NHR-40.