Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spin-valley entangled quantum Hall states in graphene

MPG-Autoren
/persons/resource/persons258115

Stefanidis,  Nikolaos
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2309.07217.pdf
(Preprint), 9MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Stefanidis, N., & Villadiego, I. S. (2023). Spin-valley entangled quantum Hall states in graphene. Physical Review B, 108(23): 235137. doi:10.1103/PhysRevB.108.235137.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-1C6F-7
Zusammenfassung
We investigate interaction-driven integer quantum Hall states realized in Landau levels of monolayer graphene when two out of its four nearly degenerate spin-valley flavors are filled. By employing a model that accounts for interactions beyond pure delta-functions as well as Zeeman and substrate-induced valley potentials, we demonstrate the existence of a delicate competition of several phases with spontaneous generation of spin-valley entangle-ment, akin to the spontaneous appearance of spin-orbit coupling driven by interactions. We encounter a particular phase that we term the entangled-Kekule-antiferromagnet (E-KD-AF) which only becomes spin-valley entangled under the simultaneous presence of Zeeman and substrate potentials, because it gains energy by simultaneously canting in the spin and valley spaces, by combining features of a canted antiferromagnet and a canted Kekule state. We quantify the degree of spin-valley entanglement of the many competing phases by computing their bipartite concurrence.