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The field of optical rogue waves is a rapidly expanding topic with a focus on explaining their
emergence. To complement this research, instead of providing a microscopic model that generates
extreme events, we concentrate on a general quantitative description of the observed behavior. We
explore two complementary top-down approaches to estimating the exponent describing the power-
law decaying distribution of optical rogue waves observed in supercontinuum generated in a single-
mode fiber in the normal-dispersion regime by applying a highly fluctuating pump. The two distinct
approaches provide consistent results, outperforming the standard Hill estimator. Further analysis of
the distributions reveals the breakdown of power-law behavior due to pump depletion and detector
saturation. Either of our methods is adaptable to analyze extreme-intensity events from arbitrary
experimental data.

Once only featured in sailors’—mostly disbelieved—stories, rogue waves
were firstmeasured only relatively recently: in 1995 at an oil rig in theNorth
Sea1. The concept, namely ocean waves that seem to appear out of nowhere
and whose size far exceeds what is considered typical, has been observed or
predicted in multiple fields where the wave analogy is applicable:
Bose–Einstein condensates2,3, plasmas4–6, atmospheric rogue waves7,
superfluids8. Optical rogue waves were first reported in 20079. The focus of
theoretical research has been on providing generatingmechanisms for such
extreme behavior10–12.

Although with different points of emphasis, extreme and hard-to-
predict behavior has been reported and studied considerably longer in other
areas of research (see, for example,Pareto’s seminalworkon thedistribution
of wealth from 189613). Further examples include incomes13,14, insurance
claims15,16, number of citations of scientific publications17–19, earthquake
intensities20–22, avalanche sizes23, solarflares24, degreedistributionsof various
social and biological networks25–27, and many more. Unsurprisingly, the
mathematical background of extreme behavior has been most extensively
studied with the motivation of mitigating financial risks28–32. This broader
area of research is referred to as extreme value theory, and heavy-tailed
distributions as well as their estimation play an important role in it.

A rogue wave is, by definition33, an unpredictably appearing wave with
an amplitude at least twice as large than the significantwave height, with the
tail of the amplitude probability density function (PDF) decaying slower

than a Gaussian. While multiple sets of criteria exist33 for using the term
rogue wave, a systematic way of estimating and comparing how extreme
rogue waves are is needed. The simplest estimators for heavy tails34–36 build
on the hypothesis that the distribution of interest is such that there exists a
sharp, finite threshold beyondwhich the PDF decays exactly at a power-law
rate. This is, of course, in most situations not true, and the basic estimators’
bias can be reduced by taking into account higher-order behavior37.

In comparison with more traditional uses of extreme value theory,
non-linear optics38,39 has clear advantages in controllability, reproducibility,
and statistical significance of the generated optical extreme events. Optical
experiments producing light with heavy-tailed intensity distributions allow
high repetition rates and, therefore, large samples to study unstable non-
linear phenomena and their sources40–43. However, obtaining the correct
statistics of rogue-wave events is, even so, a non-trivial problem44,45.

The aimof the experimentunder consideration46was toproducehighly
fluctuating intensities. The authors achieved this in the normal-dispersion
regime with a fiber that had a relatively low non-linear refractive index,
where such rogue events (without cascading12) were not expected. The
reason for the observed level of fluctuations is mainly the super-Poissonian
pumping that was applied to the single-mode fiber, which further enhanced
intensity fluctuations through nonlinear frequency conversion.

What the literature is lacking is a focus on the essential quantitative
description of the measured intensities. Since the size of rogue events can
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exceed the median by orders of magnitude, their detection is difficult. Any
physical measurement device has its limits; this is also the case for optical
detectors: the detector response becomes non-linear and saturates with the
increase of light power47. For example, for commonly used biased photo-
diodes, the detector response cannot be larger than the reverse bias voltage;
the further increase of input light power leads to the same output. Therefore,
detector saturationwill almost inevitably spoil the statistics of very energetic
rogue events.

Furthermore, the efficiency of an optical non-linear process strongly
depends on the intensity of its pump. This is also the case for the experiment
under consideration46, where the amount of produced photons and the
efficiency of the process depend exponentially on the pump intensity. Thus,
the efficiency of supercontinuum generation usually increases with the
increase of pump power. However, as soon as the amount of converted
pump energy becomes significant (tens of percent), the remaining pump
cannot feed the process efficiently anymore; it is already depleted. In this
case, increasing input pump power does not increase the output
intensity48,49.

The focus of the current work is to tackle the rich phenomenology of
optical rogue waves from a non-conventional angle. Instead of con-
centrating on their origin, our study provides a quantitative description of
themeasured intensities of optical rogue waves. To this aim, we explore two
approaches to adapting the general statistics toolkit for tail estimation
(proposed by Rácz and et al.50) to the special case of rogue waves resulting
from supercontinuum generation, using data collected during experiments
similar to those reported byManceau and colleagues46. In this reference, an
infinite-mean power-law distribution for supercontinuum generation was
observed for the first time. However, a detailed statistical analysis of such
phenomena requires complementary approaches. Furthermore, we also
describe the breakdown of the ideal behavior due to pump depletion and
detector saturation.

Results
The primary focus of this paper is on estimating the exponent related to
the power-law decay of the distribution of measured intensities in the
experiment46 whose schematics are shown in Fig. 1. Highly fluctuating
super-Poissonian light was used to pump a single-mode fiber in the
normal-dispersion regime (see under Experiment in Methods). As a
result of these large fluctuations in the pumping light, the observed
intensity fluctuations at the other end of the fiber were also quite large in
comparison to coherent pumping. In effect, fluctuations in the incoming
light were drastically enhanced due to the non-linear effects present in
the fiber. Depending on the the orientation of the barium borate (BBO)
crystals, the experiment used either non-degenerate parametric down-
conversion (PDC) producing light with thermal intensity statistics
(exponentially distributed) or degenerate PDC producing bright
squeezed vacuum (gamma-distributed intensities).

The current experiment exhibits a spectral broadening in the
normal-dispersion regime51 (for further details, check under Experiment
in Methods); we refer to this aspect as supercontinuum generation.
While this produces less of a broadening effect than in the anomalous-
dispersion case, since, to our knowledge, there is no consensus in the
literature on exactly what level of broadening constitutes super-
continuum, we will go on using this term throughout the article. Fur-
thermore, rather than spectral broadening, we focus on the amplification
effect, which we attribute primarily to four-wave mixing (see Rogue
wave generation in Methods). For more details regarding the experi-
ment, see the first two subsections under Methods and the experimental
study46.

Wewill discuss the results for both types of pumping and compare two
different approaches to estimating the tail exponent:
• First, a generalization of the Hill estimator34 introduced in Rácz et al.50,

whichdirectly estimates the exponentonly (Direct estimationof the tail
exponent);

• Second, fitting a multi-parameter model to the observations (see Tail
exponent estimation as part of a model fit), where one of the
parameters corresponds to the exponent of interest.

We will also explore the validity of the two approaches and quantitatively
describe the intensity distribution where it is affected by both pump
depletion and detector saturation (see Supplementary Note 2).

Preliminaries
This section provides a brief summary of terminology and basic quantities;
for further details, see Methods and Supplementary Note 3. The results are
mainly presented in terms of exceedance probabilities (or complementary
cumulative distribution function, or tail function). For a real-valued random
variable X, the exceedance probability function (EPF) is defined as the
probability that the value of the variable exceeds a pre-defined threshold x:

FðxÞ :¼ P X>xð Þ; ð1Þ

withP �ð Þ denoting the probability of an event. From a finite sample, one can
obtain the empirical exceedance probability (EEPF) for any limit x simply as
the fraction of observations that exceed x. Empirical exceedance prob-
abilities have multiple advantages over histograms: there is no binning
involved; it is smoother; tail behavior is visually more apparent.

The Pareto (or power-law) distribution is the archetype of heavy-tailed
distributions and can be given with the PDF f ðxÞ ¼ x�1

0 x=x0
� ��α�1

, for
x0, α > 0, and x ≥ x0. The constant α is referred to as the tail exponent, and as
a measure of tail heaviness, it can be generalized to a broader class of
distributions referred to as Pareto-type, or regularly varying distributions.
For such distributions, the exceedance probability plot is asymptotically a
straight line on adoubly logarithmic scale.AsFig. 2 (yellow lines) shows, our
data do not quite behave like this: power-law behavior has an upper limit,
which is why alternative approaches are needed to estimate the exponent.

Thermal pumping
Non-degenerate parametric down-conversion produces light with thermal
intensity statistics; that is, in a continuous approximation, the distributionof
pumping intensities is exponential.

First, we investigate the properties of the exceedance probability
function for intensities observed in supercontinuum generation experi-
ments using a thermal source as apump (Fig. 2a). Experimental results show
that under the investigated circumstances, the single-mode fiber produces
exponential amplification, which can be explained in terms of four-wave
mixing (see Rogue wave generation and the experimental work46). Since the
intensity distribution of the pumping light decays exponentially, after
exponential amplification, the resulting intensity distribution should decay
at a power-law rate. Visually, the empirical exceedance probability function
(at least for the largest values) should be linear on a log-log scale. However,
the dependence of the EEPF from experimental data (yellow) seems linear
only in the middle section. For low values (below m), this is due to the
different types of noises, while for high values (aboveM), pump depletion
affects the distribution in a significant way. It is worth noting that even
though we have quite large sample sizes (~105), power-law behavior man-
ifests itself only for the top fewpercent of observations, so the informative or
effective sample size is considerably smaller (~103).

The standard Hill estimator (3) in a realistic experiment is not the best
choiceof estimationmethod (red line) since the distribution clearly does not
decay at a power-law rate for the largest values, which introduces a sig-
nificant bias. A better direct estimation can be achieved after discarding the
largest observations affected by saturation or pump depletion (that is,
estimating the value of the tail exponent from the middle section only) by
using the generalized Hill estimator from (4) (light blue line). Finally, we
have also used themodeling approach (see Tail exponent estimation as part
of a model fit), consisting of constructing a detailedmulti-parametermodel
of the process and estimating its parameters simultaneously, including the
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one that determines the value of the tail exponent (dark blue line). We can
approximate the real process very accurately alreadywith this simplemodel.

Bright squeezed vacuum
If oneuses bright squeezedvacuum(BSV) as apump insteadof thermal light
to generate the supercontinuum, the situation remains quite similar
(Fig. 2b), but there are also a few significant differences. The difficulty comes
from the fact that even though the asymptotic behavior is similar to the
thermal case, the convergence to the asymptotics is slower. The Hill esti-
mator (red line) is, as expected, biased as it includes the large, saturated
values as well. But if we use the generalized Hill estimator (light blue line)
with a properly chosen interval, we can obtain a reasonable estimate even in
this case.Note,however, that for this specificmeasurement, the rangewithin
which power-law decay is a reasonable assumption is quite short, about 1%,
of the data. The issue is that by using either version of theHill estimator, one
essentially estimates a gamma distribution with an exponential, which
workswell only asymptotically.However, the largest values are distorted as a
result of pump depletion and detector saturation.

This is why the modeling approach can potentially provide more
information. The fitted distribution (dark blue line) is not as close to the
actual data as for a thermal source. This has a technical reason: in the
thermal pumping version of the experiment, fluctuations in the mean
intensity of the laser were accounted for by post-selecting the output
intensity conditional on the value of the laser intensity. No such post-
selection was done in the BSV case, and the model described in Tail
exponent estimation as part of a model fit does not take into account
fluctuations in the mean incoming intensity. Nevertheless, despite the
inaccuracy close to the noise floor, the model sufficiently captures the
stretching of the distribution’s tail, which we are ultimately interested in.

Method comparison
Let us highlight the sensitivities of the different methods to choosing the
limit(s) of the application interval. Firstly, looking at the direct estimation
methods (Fig. 3a) using different lower limits, it becomesmore evident why
the value of the Hill estimator is rather incidental. For an ideal, strictly
power-law distributed sample, the expectancy of the Hill estimator is con-
stant, with its standard deviation decreasing as the number of points taken
into account increases. For distributions that are only asymptotically power-
law, there is an ideal tail length corresponding to a trade-off between
minimizing bias and standard deviation.

A simple approach to estimating this ideal value is looking for a plateau
in the Hill plot52, where the estimator’s value is stable. Unfortunately, in our
case, the Hill estimator (yellow line in Fig. 3a) presents a clear trend
throughout the plotted interval as a function ofmdue to the bias introduced
by the fact that the largest observations are clearly not Pareto-distributed.As
a consequence, tail length estimatorsproduce somewhat randomvalues (red
points in Fig. 2).

In contrast, throwing out the top observations reallymakes a difference
compared to the standard Hill estimator: the generalized Hill estimator
(blue line in Fig. 3a) is much less sensitive to the choice of the lower bound,
that is, it produces relatively stable estimates in a wide range of values form.
Note that compared to the traditional Hill estimator, the upper limitM is an
extra parameter to choose, which makes this method somewhat more
complicated. But in practice, the estimator is also relatively stable in regard
of choosing that parameter too, so it is not necessary to have a very accurate
estimate of the endpoints of the interval [m,M].

Looking at the sensitivity of the modeling approach (Fig. 3b), we see
that the estimates are even more stable with regard to the endpoint of the

Fig. 1 | Experimental setup. Pulsed 400 nm light is used to pump parametric down-
conversion (PDC) in two cascaded barium borate (BBO) crystals. Depending on the
phase-matching angle of the crystals, either (a) bright squeezed vacuum (BSV) is
generated via degenerate PDC at 800 nm, or (b) thermal light is generated via non-
degenerate PDC at 710 nm. These two types of light are filtered by a band-pass filter
at 710 ± 5 nm for thermal light or at 800 ± 5 nm for BSV, and used to generate
supercontinuum in a single-mode fiber. The resulting intensity is measured (PD)
after spectrally filtering the supercontinuum by a monochromator.

Fig. 2 | Heavy tails in intensity fluctuations. We compare different fitting
approaches for (a) thermal, and (b) BSV pumping. The yellow line shows the
empirical exceedance probabilities (EEPF) from an experimental data set. The red
line shows the result of applying the traditional Hill estimator (3) combined with
Guillou & Hall’s estimator66 of the tail length k, the red dot marks the beginning of
the line. The light blue line (and its dashed extension) shows the result of the

generalized version (4) combined with a heuristic choice of the lower and upper
cutoff parameters m and M, the light blue dots mark the ends of the interval. The
dark blue line (and its dotted extension) show the result of fitting themodel (5) to the
sample; the value of the upper cutoff was the same as for the generalized Hill
estimator and is marked by a dark blue triangle.
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interval (in this case we only have an upper limit,M). More precisely, this
approach provides a similar range of estimates as the generalized Hill esti-
mator, but in addition, we can quantify the fit of the model with the esti-
mated parameters to themeasureddata, and one can reject the values which
are not a good fit (yellow points). And if we only look at the remaining,
accepted estimates (blue points), these range only between 1.33 and 1.38
(light blue area), which is a really narrow interval, especially comparing it to
the fluctuation of the traditional Hill estimates.

Of course, there is no guarantee that the given estimators are unbiased,
so even if they are stable they could give a wrong result. That is why it is
generally very useful to have at least two independent estimation methods
(which are biased in different ways) and check whether they provide con-
sistent results. We can compare the results of different estimators and can
conclude that the modeling approach provides estimates close to the gen-
eralized Hill estimator (see Supplementary Table 1). We were interested in
seeing if an extended analysis that enables us to use amuch larger part of the
data can provide an improvement over the generalized Hill estimator, which
discards both the smallest and largest observations. If we only look at the
estimation of the tail exponent, the answer to this question is no; however, the
results of fitting the detailed model provide an independent reference point
for the generalized Hill estimator. The fact that the two approaches provide
similar estimates increases the confidence in the results. So, in summary, the
two approaches are not necessarily meant to compete but rather to com-
plement eachother.Theadvantageof thegeneralizedHill estimator is that it is
easy to compute and is applicable in a broader range of situations as-is,
without needing to know the details of the process. The modeling approach,
on theotherhand, givesusmore insight into the specificsof thephenomenon,
but at the same time, the exact model applied here is only applicable in a
narrow context. This means that a new model should be worked out for the
specifics of the process of interest, while the direct approach is applicable out
of the box for any process that produces power-law tails.

Breakdown of power-law behavior
As Fig. 2 shows, power-law behavior eventually breaks down; using a semi-
logarithmic scale instead of the original log-log (Fig. 4) reveals exactly how:
the linear sections in the plots indicate exponential decay rather thanpower-
law (i.e., EEPF∝ e−λx for some λ > 0). This behavior can be attributed to
pump depletion: in the case of a fluctuating pump, the depletion manifests
itself not only in the power reduction and decrease of generation efficiency
but also in the change of pump statistics46,53. In the presence of pump
depletion, the most energetic bursts are not as strongly amplified as weaker
ones. The result is that the empirical variance of the intensities is smaller

than it would be in the absence of depletion. It is possible to account for this
effect in the black-box approach taken inTail exponent estimation as part of
a model fit by altering the response of the fiber (by exchanging the sinh2

function for a function that increases exponentially for small values but is
only linear for large values), but if one is only interested in the stretching
caused by exponential amplification, it is easier to discard the values affected
by it. This is what we have done in the previous section. Here, we will also
look at the description of the distribution beyond the validity of the power-
law functional form.

Furthermore, as Fig. 4b shows, if intensities are high enough (beyond
about M* = 106), the decay becomes even faster than exponential due to
detector saturation. It can be shown (see Supplementary Note 2) that
combining an exponential distribution with an exponentially saturating
detector results in a generalized Pareto distribution. More accurately, the
EEPF is / imax � x

� �γ
. Here, imax denotes the maximum output of the

detector, and γ > 0 the related exponent.
The parameters of the exponential (λ) and the generalized Pareto

distributions (imax and γ) can be estimated in a similar fashion to the tail
exponent via a conditional maximum likelihood approach (see Supple-
mentary Note 2). The results of the exponential fits are shown in blue in
Fig. 4, the result of the generalized Pareto fit is shown in Fig. 4b using a
browndashed line.Note that theparameter values obtained for Fig. 4b are in

Fig. 3 | Tail exponent estimates’ dependence on cutoff choices. a Direct fitting
methods: α̂H kðmÞ½ � and α̂gH kðmÞ; j ¼ 100

� �
. b Modeling approach results as a

function of the upper cutoffM (all observations belowM were taken into account).

The blue circles indicate the estimates that were accepted at a 5% significance level by
a binomial test, the estimates denoted by yellow circles were rejected (see Supple-
mentary Note 1).

Fig. 4 | Breakdown of power-law behavior. The plots show empirical exceedance
probabilities on a semi-logarithmic scale; the samples are the same as shown in Fig. 2,
with (a) thermal, and (b) BSV pumping. The same values for the power-law interval
[m,M] are indicated by vertical lines. The dark blue solid lines show exponential fits,
to observations above 5 ⋅ 104 in the thermal case, and between 2 ⋅ 105 andM* = 106 in
the BSV case, providing exponential rate parameter estimates of λ̂a ¼ 2:6 � 10�5 and
λ̂b ¼ 1:9 � 10�6, respectively. The browndashed line shows the generalized Pareto fit
of the observations beyond M*, with îmax ¼ 1:58 � 106 and γ̂ ¼ 1:59.
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line with the direct measurement of the detector response shown in Sup-
plementary Fig. 1: γ̂=λ̂b=̂imax ¼ 0:54 versus 0.62 in the directmeasurement.

As an interesting note, we mention that the generalized Pareto dis-
tribution (EEPF / 1þ ξxð Þ�1=ξ) includes the regular Pareto distribution
(ξ > 0), the exponential distribution (ξ = 0), and the distribution derived for
the observations beyond M* (ξ < 0) as well, so it should be possible to
introduce a decreasing ξ(x) function to treat the three types of behavior at
the same time.Moreover, in principle, one could include these aspects in the
modeling approach of estimating the tail exponent as well; however, as
the tail exponent has only little effect on the few observations beyond M,
doing so would not likely improve the tail exponent estimation. On the
contrary, introducing the extra parameters would negatively affect the sta-
bility of the numerical optimization.

Discussion
Optical rogue waves present an exciting direction of research and provide
excellent means to study extreme statistical behavior in a controllable and
reproducible fashion. In this study,weanalyzed intensity data gathered from
supercontinuum generation experiments fed by thermal light and bright
squeezed vacuum. Even though optical experiments provide large amounts
of data, they are highly affected by noise, pump depletion, and detector
saturation. As a result, the effective sample size (observations that are not or
are little affected by either issue) is much smaller than the total sample size,
which makes the estimation problem non-trivial.

The rogueness of the observed intensity distributions comes from the
fact that they display a power-law decay. We used two different, advanced
methods to estimate the related exponent. Accurately estimating the rate of
power-law decay is of both theoretical and practical importance. Knowing
whether the theoretical distribution (unaffected by saturation issues) has a
finite second moment or not determines whether, for example, calculating
the correlation function g(2) is meaningful, and having a proper estimate of
the tail exponent also helps with designing further experiments.

The first method estimates the value of the tail exponent directly
and is the generalization of the well-known Hill estimator. As pump
depletion and detector saturation have an effect on the largest values
only, the estimation of the tail is much more precise if we discard these
affected observations. This requires a modification of the Hill estimator
but is otherwise quite straightforward. The second approach consists of
devising a simplified physical model of the process (including noises and
further limitations), and performing a maximum likelihood fit of its
parameters based on the data. This approach is, of course, tailored to the
specific problem at hand, and in a different context, requires setting up a
different model. The largest values are discarded similarly to the first
approach, whichmeans that instead of having to add extra parameters to
the model to describe pump depletion and the saturation curve of the
detector, we only need to choose a limit beyond which values are dis-
carded. Since the fit is quite good, this means we not only accurately
estimated the parameters (including the tail exponent), but we also have
a reasonably good grasp of the imperfections in the system. Using the
two approaches in parallel is useful as well since they produce inde-
pendent estimates. Consistent values indicate that our view of the pro-
cess, and our implementation of the estimators are appropriate.

This dual approach is especially useful in the case of pumping with
bright squeezed vacuum. We have a fundamental problem in both our
estimation schemes: the direct method is better suited for an underlying
exponential distribution than for gamma, while themodeling approach has
problems with the fit as the physical process is more complex. Nevertheless,
either method provides similar tail exponents, meaning that albeit the
estimation procedures are more sensitive in the BSV case, we can still
perform a consistent tail estimation.

Other than estimating the exponent of the power-law decay, we also
showed how power-law behavior breaks down for the largest observations.
The primary cause of this is pump depletion, turning the power-law decay
into exponential. Furthermore, especially in the case of pumpingwith bright
squeezed vacuum, high intensities beyond the detector’s linear response

rangewere achieved,whichadditionally distorted the empirical distribution.
We were able to provide a model to characterize this post-power-law range
of observations through an exponential and a generalized Pareto
distribution.

In summary, we have extensively addressed the problem of accurately
describing rogue waves. In contrast to most publications related to rogue
waves, we did not attempt to introduce amicroscopicmodel to explain why
our system produces extreme behavior. Instead, we applied a top-down
approach: we used advanced statistical analysis of the available data, and
from that, we obtained a quantitative description of the extreme behavior
that also takes into account different physical imperfections of the system.
Through investigating theparticular case of supercontinuumgeneration,we
provided a practical toolkit to analyze similar highly volatile processes that
result in rogue waves.

Methods
Experiment
In the experiment (Fig. 1), the radiation of a titanium-sapphire laser is fre-
quency doubled to generate pulses at 400 nmwith a 1.4 ps pulse duration and
up to 200 μJ of energy per pulse. This 400 nm radiation is used to pump two
cascaded 3mm BBO crystals in a type-I collinear parametric down-
conversion (PDC) scheme. Depending on the crystal orientation, we can
implement twoprocesses54: (i) degenerate PDC, forwhich the signal and idler
radiations have the same central wavelength (800 nm), (ii) non-degenerate
PDC, for which the signal and idler radiations have different central wave-
lengths (signal 710 nm, idler 916 nm). To stress the different intensity sta-
tistics of these two types of light, in the following, we will call the signal
radiation of the non-degenerate PDC at 710 nm thermal light and the result
of the degenerate PDC at 800 nm bright squeezed vacuum (BSV). The
radiation of non-degenerate PDChas intensity fluctuations identical to those
of thermal light, larger than laser light55,56. The radiation of degenerate PDC
(BSV)has even stronger intensityfluctuations46.The energyperpulse forBSV
and thermal lightwas a few tens of nJ. These two light sourceswerefiltered by
bandpassfilters: (i) at 710 ± 5 nmfor thermal light, (ii) at 800 ± 5 nmforBSV,
andwere subsequentlyused topumpa5msingle-modefiber (SMF)withGe-
doped silica core (Thorlabs P3-780A-FC-5 patch cable with 780HP fiber) to
generate a supercontinuum centered at 710 nm for thermal light pumping,
and at 800 nm for BSV pumping. The fiber had normal dispersion in the
studied range of wavelengths (from 700 –900 nm)57, and a nonlinear
refractive index n2 around 3 × 10

−20 m2/W58,59.
At the output of thefiber, the supercontinuumwas spectrallyfilteredby

a monochromator with 1 nm resolution and measured by a photodetector
(PD) to reduce the averaging of statistics by the detector over different
wavelengths. The filtering was performed at the extreme red part of the
supercontinuum(830 nm) for thermal light and the extremeblue part of the
supercontinuum (760 nm) for BSV. The photodetector was calibrated to
convert its output voltage signal into the number of photons per pulse,
which is the data used in our analysis. The upper limit to the detector’s linear
response was ~106 photons per pulse, with a maximum output ~2 ⋅ 106
photons per pulse. Note that in some measurements, the data were post-
selected to avoid pump intensity fluctuations in the right polarization for
PDC generation. This means that the laser power was monitored con-
tinuously, and data corresponding to the power falling outside a certain
windowwere discarded. In other cases, no post-selection was done in order
to be able to check for temporal correlations. In either case, data was col-
lected until the sample size of 105 was reached. Importantly, the decrease in
pump power fluctuations did not have a large effect on the distribution of
measured intensities, and, therefore, the applicability of our approach.

Rogue wave generation
In opticalfibers, roguewaves are typically associatedwith solitons appearing
under anomalous dispersion. However, the measurements by Manceau
et al.46 (and also by Hammani et al.60 in a somewhat different regime) were
done at wavelengths in the normal-dispersion regime. Moreover, the non-
linear refractive index of the fiber was also relatively low. Therefore, the
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appearance of very high-magnitude events was unexpected. The explana-
tion, however, is simple: the super-Poissonian statistics of thepumpingPDC
light played the dominant role in the appearance of roguewaves under these
conditions. Inotherwords, the amplification effect ismuchmoreprominent
if the pumping light is already highly fluctuating (compared to coherent
pumping).

Asa simpledemonstrationof roguebehavior, let us lookatFig. 5a,which
shows a typical outcome of an experiment. The yellow points correspond to
the top 1%of observations, the blue points to the bottom99%.Thehistogram
of the lower 99% is shown in Fig. 5b. From the histogram, one might mis-
takenly conclude that the interesting part of the distribution ends at about
5 × 103 photons per pulse. For example, for an exponential sample of 105

observations, the expectancy of the samplemaximum is only about 2.6 times
larger than the 99th percentile. In contrast, for the particular measurement
depicted in Fig. 5, many observations are above this value, and the actual
maximal value is about 41 times larger than the 99th percentile (i.e., an order
higher than expected). This is the behavior that distinguishes these rogue
waves from quieter processes, for which not much of interest happens
regarding the largest observations. If one takes a look at the traditional cri-
terion, namely an event whose magnitude exceeds twice the significant wave
height, about 2% of observations in the sample shown in Fig. 5 are rogue.

Regarding the origin of rogue waves, the spectral broadening in the
regime of normal group velocity dispersion with picosecond pulsing is
usually explained by the combination of self- and cross-phase modulation
(SPM and XPM) together with the four-wave-mixing (FWM) processes61.
Similar to Takushima et al.62, our spectral broadening is symmetrical with
respect to pump wavelength, see Fig. 6 (see also Manceau et al.46, Fig. 4

depicting similar spectra), which suggests that the stimulated Raman scat-
tering should not dominate in our case.

We are observing roguewaveswell-detuned from the pump frequency;
therefore, we can use four-wave mixing to explain the amplification effect.
For normal group velocity dispersion, the main question is whether it is
possible to get for our detuning Ω a positive parametric gain G and the
corresponding sinh2G power dependence, respectively. Indeed, following
the works of Stolen63 and Wang64, the parametric gain is equal to

G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πn2Pp

λpAeff

 !2

� β2Ω
2

2

� �2
vuut × Lcoh; ð2Þ

where Pp and λp are the pumping peak power and wavelength, Aeff and β2
are effectivemode area and group velocity dispersion of the fiber, Lcoh = 2π/
∣β2Ω2∣ is the coherence length of the interaction. Taking into account the
parameters of our fiber at λp = 800 nm, β2 = 40 fs2/mm and Aeff = 20 μm2,
for the observation of FWM from BSV at 760 nm (Fig. 2b), we obtain a
positive gain for BSV energy per pulse >33 nJ. It is somewhat smaller than
themean energy used for Fig. 2b (40 nJ), for whichwe are getting G around
2.1, taking into account Lcoh = 1.1 cm. However, the gain is much larger for
more energetic pulses from the fluctuating BSV pump. Note that these
estimates do not take into account the shift of the amplification band, which
happens due to SPM and XPM.

In agreement with this estimate, the experiment demonstrates an
exponential dependenceof the outputnumber of photons on the inputpulse
energy. Figure 7 shows the mean number of photons generated at 780 nm
(blue points) as a function of the pulse energy of BSV pumping at 800 nm
fitted by sinh2ðC × PpÞ function (red curve), where C is a constant. The
estimate of parametric gain using Eq. (2) in this case gives a positive gain for
BSV pump energies of >8 nJ per pulse, which is where we start observing
some converted photons. The fit gives us the gain G = 3.4, which is close to
the number estimated from Eq. (2).

Direct estimation of the tail exponent
In the supercontinuum intensity data to be analyzed, power-law behavior
has both a lower and anupper limit. This upper limit is not considered in the
statistical literature of tail exponent estimation because, in the usual con-
texts, it is much harder to attain. For example, as there is a finite amount of
water on Earth, flood sizes are, of course, limited; however, no recorded
flood size has ever come close to that limit. In our case, an upper limit exists
because the values of the largest observations are affected by detector
saturation and pump depletion. In other words, even though the observed
data is strictly speaking not heavy-tailed, we posit that this is due only to
experimental limitations and would like to minimize their effect on expo-
nent estimates.

Fig. 5 | Sample time series. a Sample time series of the number of photons per pulse
observed in an experiment. Time is shown in the number of observations; the
sampling frequency was 5 kHz. The bottom 99% of photon number observations are
colored blue, and the top 1% are colored yellow. bHistogram based on the blue dots
in (a).

Fig. 6 | Typical single-pulse spectra of the gener-
ated supercontinuum. The violet, blue, yellow,
orange, and red lines correspond to output spectra at
a BSVpumping power of about 50 nJ; the BSVpump
spectrum is shown in green. The supercontinuum
spectra are symmetric with respect to pump wave-
length and demonstrate high fluctuations at
both edges.
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We refer to the first estimation approach as direct because it estimates
the value of the tail exponent directly, supposing that there is afinite interval
within the range of observed values in which the density of the intensity
observations shows a power-law decay. The advantages of this approach are
that it is straightforward and it is also more generally applicable than the
current context of supercontinuum generation (it only assumes that there is
an interval where the exceedance probability function decays at a power-law
rate). However, it does not take into account deviations from exact power-
law behavior (e.g., which might cause some bias for BSV source); never-
theless, it is an easy-to-implement tool that, in our case, has only little bias.

The standard option for directly estimating the value of the tail
exponent is the Hill estimator34, defined as

α̂�1
H ðkÞ ¼ 1

k

Xk
i¼1

ln xðiÞ � ln xðkþ1Þ; ð3Þ

with x(i) denoting the ith largest element of the sample. Note that this
formula is based on the k+ 1 largest observations. However, since we have
data that clearly do not decay at a power-law rate for large values, this
method provides unreliable results (see Fig. 2, red line). Even if the tail of the
distributiondecays asymptotically at a power-law rate, forfinite samples, the
problem of choosing k is non-trivial and has an extensive literature65–68. The
basic approach is visual and is referred to as theHill plot: onehas to look for a
range of values of kwhere α̂�1

H ðkÞ is flat, that is, it is insensitive to the choice
of k. Note that choosing the tail length is equivalent to choosing a lower limit
m beyondwhich observations are taken into account. That is, the tail length
k can be expressed as kðmÞ ¼ maxfi : xðiÞ >mg. We prefer plotting the
parameter estimate as a function of the limitm because it makes for an easy
comparison of different estimators (see Fig. 3a).

In our previous work50, we proposed a generalization of (3) for dis-
tributions for which power-law behavior has both a lower limit m and a
finite upper limitM. With k ¼ maxfi : xðiÞ>mg and j ¼ maxfi : xðiÞ >Mg,
this generalized Hill estimator can be given as

α̂�1
gH ðk; jÞ ¼

j
k� j

ðln xðjþ1Þ � ln xðkþ1ÞÞ

þ 1
k� j

Xk
i¼jþ1

ðln xðiÞ � ln xðkþ1ÞÞ:
ð4Þ

That is, out of the top k+ 1 observations, one discards the j largest
elements, and uses the remaining k+ 1− j observations to estimate the tail
exponent; note that α̂�1

H ðkÞ � α̂�1
gHðk; 0Þ.

Clearly, with no prior information onm andM, choosing their values
based on the sample only ismore involved than choosing the lower limit for
the Hill estimator. We adapted an approach similar to the Hill plot, namely
looking for an area where α̂gH is not sensitive to the choice of [m,M]. This
can, for example, be done by plotting the value of α̂gH for severalfixed values
ofM as a function ofm. The likely ranges for the limits can be pinpointed by
looking at the EEPF on a log-log scale. This visual approach is, of course, not
feasible if one has a large number of samples to evaluate, but can be auto-
mated, for example, similarly to the heuristic algorithm proposed by Neves
et al.69.

Tail exponent estimation as part of a model fit
The second approach, which we will refer to as the modeling approach,
consists of fitting a multi-parameter model to the whole process, where the
tail exponent is only one parameter out of a few.

As opposed to simulating the evolution of the non-linear Schrödinger
equation, we take an opposite approach: we treat the process as a black box
and fit a physically motivated functional form to the empirical distribution
obtained from the measured data. This simplest model is based on four-
wave mixing46, which we think is at the root of the amplification effect
during the process.Due to the simplicity of themodel, we can obtain a semi-
analytic goodness of fit function, which helpswith the stability and accuracy
of thefit. Even though, similarly to the previously discussed direct approach,
this procedure still takes a birds-eye view of the process, it also quantifies
major experimental limitations. The model is the following:

IOUT ¼ R K � sinh2 IIN þ ω1

� �� �þ ω2; ð5Þ

with
• IOUT denoting the measured intensity at the end of the fiber;
• IIN standing for the incoming intensitywith a constantmean μ (further

details on incoming light statistics are in Supplementary Note 3),
which is
– exponentially distributed for thermal(PDF / expf�x=μg),
– gamma-distributed for a BSV source(PDF/ x�1=2 exp �x=2μ

	 

);

• K: constant factor related to choosing the unit;
• ωi ∼N 0; σ2i

� �
: independent Gaussian noises;

• R( ⋅ ): detector response function.The noiseω1 corresponds to additive
noises that affect the incoming intensity even before the light enters the
fiber (due to the sinh2ð�Þ transformation, this is essentially a multi-
plicative noise), whereas ω2 is an additive detection noise. In order to
avoid introducing extra parameters for the response function, we did
not fit the model to the observations affected by detector saturation.
This amounted to only taking into account the non-linearity of
detector response about the noise floor l, through RðxÞ ¼ max l; xf g,
and discarding the largest observations.
In order to have a better understanding of how the individual para-

meters affect the output intensity distribution, let us look at the asymptotic
exceedance probability for the thermal case in the absence of detection noise
(σ2 = 0)50:

P IOUT>x
� � ¼ e�

σ2
1
μ � 4x

K

� �� 1
2μ

× 1� K
4xμ

þO x�2
� �� �

:

This shows that the decay exponent is solely determined by the mean input
intensity, whereas x0 ¼ K � eσ21=μ=4 is a scaling factor.

This model can, of course, be further refined, but we were interested in
the simplest version able to describe the observed process. This simplest
version has five parameters: ϑ = (μ, l,K, σ1, σ2). The tail exponent of the

Fig. 7 | Exponential input-output relation. Number of photons at 780 nm as a
function of BSV pump energy per pulse (blue points) together with the corre-
sponding fit (red curve).
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output of this model is α = (2μ)−1 for the thermal, and α = (4μ)−1 for the
BSV case.

The advantage of the model defined by (5) is that its density and
distribution functions can be calculated semi-analytically. This gives us the
opportunity to relatively easily perform a conditional (only observations
below a pre-specified limitM are taken into account) maximum likelihood
fit of its parameters. After the parameters are estimated, a simple binomial
test can be performed to determine whether the fit should be rejected or not
(further details of the method are discussed in Supplementary Note 1).

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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