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ABSTRACT

State-of-the-art searches for gravitational waves (GWs) in pulsar timing array (PTA) datasets model the signal as an isotropic, Gaus-
sian, and stationary process described by a power law. In practice, none of these properties are expected to hold for an incoherent
superposition of GWs generated by a cosmic ensemble of supermassive black hole binaries (SMBHBs). This stochastic signal is usu-
ally referred to as the GW background (GWB) and is expected to be the primary signal in the PTA band. We performed a systematic
investigation of the performance of current search algorithms, using a simple power-law model to characterise GW signals in realistic
datasets. We used, as the baseline dataset, synthetic realisations of timing residuals mimicking the European PTA (EPTA) second
data release (DR2). Thus, we included in the dataset uneven time stamps, achromatic and chromatic red noise, and multi-frequency
observations. We then injected timing residuals from an ideal isotropic, Gaussian, single power-law stochastic process and from a
realistic population of SMBHBs, performing a methodical investigation of the recovered signal. We found that current search models
are efficient at recovering the GW signal, but several biases can be identified due to the signal-template mismatch, which we identified
via probability-probability (P–P) plots and quantified using Kolmogorov-Smirnov (KS) statistics. We discuss our findings in light of
the signal observed in the EPTA DR2 and corroborate its consistency with a SMBHB origin.
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1. Introduction

Recently, the pulsar timing array (PTA) community has
announced the detection of a signal compatible with a gravita-
tional wave (GW) origin. The latest datasets from the European
PTA collaboration (EPTA, Antoniadis et al. 2023a), the Chinese
PTA collaboration (CPTA, Xu et al. 2023), the North American
Nanohertz Observatory for Gravitational Waves collaboration
(NANOGrav, Agazie et al. 2023), and the Parkes PTA collab-
oration (PPTA, Reardon et al. 2023) all show evidence of a red
noise process that is common among pulsars and shows corre-
lation properties expected for the long sought after stochastic
nano-Hertz (nHz) GW background (GWB, Hellings & Downs
1983).

Pulsar timing arrays are sensitive across the 10−9−10−7 Hz
frequency range, where the dominant signal is expected to
be an incoherent superposition of sinusoidal GWs emitted
by a cosmic population of supermassive black hole bina-
ries (SMBHBs, Rajagopal & Romani 1995; Jaffe & Backer
2003; Wyithe & Loeb 2003; Sesana et al. 2008; Rosado et al.
2015). Nonetheless, a correlated low-frequency signal in
PTA data can also arise from GWs generated by early
Universe phenomena, such as the non-standard inflationary
scenario breaking the slow-roll consistency relations (e.g.

Bartolo et al. 2007; Boyle & Buonanno 2008; Sorbo 2011), cos-
mic string networks (e.g. Damour & Vilenkin 2000), primor-
dial curvature perturbations (e.g. Tomita 1967; Matarrese et al.
1993), turbulence arising in the aftermath of quantum chro-
modynamics (QCD) phase transitions (e.g. Kosowsky et al.
1992; Hindmarsh et al. 2014), and cosmic domain walls (e.g.
Hiramatsu et al. 2014), or they might even originate from oscil-
lations of the Galactic potential in the presence of ultra-light
dark-matter (ULDM, Khmelnitsky & Rubakov 2014). Those
scenarios inspired numerous studies aiming to test new physics
in the early Universe (e.g. Vagnozzi 2023; Madge et al. 2023;
Guo et al. 2023; Kitajima et al. 2023; Ellis et al. 2023; Cai et al.
2023; Figueroa et al. 2023; Franciolini et al. 2023) and have
also been scrutinised by the EPTA+InPTA and NANOGrav
collaborations in two comprehensive interpretation articles
(Antoniadis et al. 2023b; Afzal et al. 2023). early Universe inter-
pretations sometimes stress that the detected signal has a higher
amplitude and flatter slope than what is expected from an astro-
physical population of SMBHBs. This is an observation that has
been challenged by Antoniadis et al. (2023b), who showed that
a signal with the detected properties can naturally arise from a
realistic ensemble of SMBHBs.

Under the hypothesis that the signal has an astrophysi-
cal, SMBHB origin, it is important to assess the performance
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of the state-of-the-art PTA GWB search and parameter esti-
mation algorithms as implemented in the PTA analysis suite
enterprise (Ellis et al. 2019) on realistic data. In fact, cur-
rent pipelines are searching for a stochastic GWB described as
a Gaussian, isotropic, and stationary process characterised by a
power-law Fourier spectrum, imprinting a correlated red signal
in PTA residuals. The peculiar feature that allows us to disen-
tangle those GW-induced delays from other noises is the inter-
pulsar spatial correlation, first derived by Hellings & Downs
(1983). Although pipelines searching for individual continuous
GWs (CGWs), anisotropy, and broken power-law spectra exist
(Babak & Sesana 2012; Ellis et al. 2012; Sampson et al. 2015;
Taylor et al. 2020), the evidence for a GW-signal claimed by
the different PTA collaborations is based on the aforementioned
default assumptions. Conversely, none of these statistical prop-
erties are expected to hold for a signal produced by a cosmic
ensemble of SMBHBs. Environmental effects and small num-
ber statistics are expected to produce spectra that significantly
deviate from a smooth single power law (Sesana et al. 2008;
Ravi et al. 2014). Furthermore, strong individual CGWs might
produce extra power at specific frequencies, also resulting in
highly anisotropic and non-Gaussian signals (Sesana et al. 2009;
Ravi et al. 2012; Kelley et al. 2018). Finally, the eccentricity of
SMBHBs might break the assumption of stationarity (Sesana
2013a).

In a nutshell, there is a clear signal-template mismatch sit-
uation, where single power-law, Gaussian, isotropic, stationary
templates are used to search for a signal that is unlikely to satisfy
any of these hypotheses. Assessing the influence of this basic
fact on the reliability of the analysis outcome is of paramount
importance, especially in light of the recent PTA claims and of
the numerous subsequent interpretation papers that rely on these
results.

These issues were first investigated in Cornish & Sampson
(2016), who demonstrated, using realistic GW models from
(Rosado et al. 2015), that the isotropy hypothesis has only a mild
effect on the detectability of the GW signal. Here we take a deci-
sive step forward by conducting a systematic investigation of sig-
nal recovery on mock data designed to capture all the complexity
of real PTA datasets. We generate mock versions of the EPTA
DR2new dataset, described in Antoniadis et al. (2023c), includ-
ing uneven time-stamps, white noise, chromatic and achromatic
red noise, and multi-frequency observations (Antoniadis et al.
2023d). We then inject in our mock dataset two types of sig-
nals: (i) a Gaussian, isotropic, stationary GWB created with the
libstempo (Vallisneri 2020)1 function createGWB, and (ii) an
incoherent superposition of the residuals induced by a popula-
tion of circular GW-driven SMBHBs. In this latter case, residu-
als from both the pulsar and Earth terms of each binary are added
one by one to the data. This results in a total GWB Fourier spec-
trum which on average is well fitted by a power-law function of
frequency, but is generally much more structured. In particular,
bright sources close to Earth can produce very pronounced peaks
in power, breaking signal Gaussianity and isotropy at higher fre-
quencies (Sesana et al. 2008). The rationale behind this choice
is to test for differences in the performance of the GWB detec-
tion pipeline implemented in enterprise when (i) the injected
signal matches the power-law template, and (ii) when there is
a clear mismatch between the injected signal and power-law
template.

The paper is structured as follows. In Sect. 2 we describe the
simulated dataset, from the intrinsic pulsar noise to the realis-

1 https://github.com/vallis/libstempo

tic GWB modelling pipeline, and we present the signal recov-
ery model implemented in the enterprise package. Section 3
presents the results of our simulations, which include two sets
of createGWB injections (a strong and a weak signal), and a set
of injections from a realistic SMBHB population. In Sect. 4, we
discuss in detail selected realisations of the realistic injections,
which help in understanding biases and issues that can arise from
the signal-template mismatch. As we were completing this work,
Bécsy et al. (2023) presented an independent, parallel investi-
gation that touches on several points examined here. We sub-
sequently discuss similarities and differences between the two
works, together with further developments and future directions
in Sect. 5.

2. Simulated data and analysis methods

The main goal of this work is to test our ability to recover a
realistic GWB signal in a simulated data set with our exist-
ing model. To emulate the complexities of real data, we base
all our simulations on the second data release from the EPTA
collaboration (Antoniadis et al. 2023a,c,d). In particular, we use
the 25 best EPTA pulsars, selected following (Speri et al. 2022).
For these, we use the latest estimates of pulsar intrinsic red
noise (RN) and dispersion measure (DM) variations to gener-
ate different simulated copies of the recently released DR2new
dataset. DR2new is a reduced version of the entire second EPTA
data release (DR2full), which includes only the last 10.3 years
of observations, collected with the new generation wide-band
backends.

In the following, we describe how we simulate PTA data
using libstempo tools, a python wrapper around the TEMPO2
pulsar timing software (Hobbs et al. 2006; Edwards et al. 2006),
and how we obtain realistic GW-induced residuals from state of
the art population of SMBHBs.

2.1. Timing model and pulsar noise properties

The timing models (TM) of the 25 pulsars are defined by the
corresponding parameter files from the EPTA DR2new. We use
libstempo to simulate times of arrival (ToAs) for a total obser-
vation time of 10.3 years, with a cadence defined by the obser-
vations, taken by the five European radio telescopes: the 100m
Effelsberg radio telescope in Germany, the Lovell telescope at
Jodrell Bank Observatory in the United Kingdom, the Nançay
radio telescope operated by the Nançay Radio Observatory in
France, the Sardinia Radio Telescope in Italy, and the Wester-
bork Synthesis Radio Telescope in the Netherlands. ToAs are
simulated at two different frequency bands: 1400 and 2200 MHz.
Having ToAs at different frequencies allows us to disentangle
pulsar intrinsic RN from DM variations. We assume that an ini-
tial fit of the TM, obtained with libstempo, reduces it to a linear
model where the coefficients are given by a design matrix. Fol-
lowing Van Haasteren et al. (2009), we analytically marginalise
the likelihood over the TM parameter errors described by that
linear model.

To make our simulations as close as possible to the real data,
we include stochastic noise in our datasets. Stochastic noise in
pulsar observations is customarily divided into three compo-
nents: white noise, achromatic, and chromatic red noise. We
include all three components in our simulations, following the
analysis performed in Antoniadis et al. (2023d), based on the
optimisation procedure outlined by Chalumeau et al. (2021).

To model white noise, we distribute ToAs around the values
predicted by the TM with a root-mean-square (rms) uncertainty
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given by:

σ =

√
EFAC2σ2

ToA + EQUAD2 , (1)

where σToA is the uncertainty value due to template-fitting errors
obtained in EPTA DR2, the EFAC factor takes into account
the ToA measurement errors. The EQUAD, added in quadra-
ture, accounts for any other white noise, such as stochastic pro-
file variations, and possible systematic errors. These parameters
are specific for each observing backend. In our simulations, we
defined EFAC and EQUAD parameters to be constant, setting
EFAC = 1.0 and EQUAD = 10−6, and identical for all pulsars.
The ToA uncertainties, σToA, used in our simulated data sets
(see Table 1) are the maximum likelihood estimates obtained in
EPTA DR2 (Antoniadis et al. 2023a).

The single-pulsar stochastic achromatic and chromatic red
noises are time-correlated signals that can be modelled as a sta-
tionary Gaussian process with a power-law spectrum:

S RN/DM( f ; ARN/DM, γRN/DM) =
A2

RN/DM

12π2

(
f

yr−1

)γRN/DM

yr3 , (2)

where RN and DM refer to achromatic and chromatic red noise
respectively. The achromatic red noise does not depend on the
observing radio frequency and is commonly used in single-
pulsar noise models to characterise the long-term variability of
the pulsar spin. Conversely, chromatic red noise depends on
the observing radio frequency and is due to dispersion measure
(DM) variations. In fact, during its propagation, the pulsar radio
emission interacts with the ionised interstellar medium (IISM),
the Solar System interplanetary medium and the Earth’s iono-
sphere. These interactions lead to frequency-dependent delays
in the observed signal:

∆DM ∝ ν
−2DM , (3)

where ν is the radio observing frequency and DM is the path inte-
gral of the free-electron density along the line of sight to the pul-
sar. We take this effect into account in our timing model, which
considers the DM value at a reference epoch together with its
first and second derivatives. However, the inhomogeneous and
turbulent nature of the IISM also induces stochastic variations in
the DM value, which are modelled as chromatic red noise. DM
variations become more and more important on the decade-long
timescales of PTA data (see e.g. Keith et al. 2012).

We used the libstempo package to inject in each pulsar RN
and DM with spectra given by Eq. (2). In particular, for each
pulsar, we defined the values of ARN/DM and γRN/DM to be equal
to the recent maximum likelihood estimates from the EPTA DR2
(Antoniadis et al. 2023a). Those values were obtained from joint
analysis runs on the DR2new data set (Antoniadis et al. 2023a)
when an additional common red process was included alongside
individual pulsar noise terms. We report a complete summary of
the individual pulsar’s noise parameter values in Table 1.

As mentioned above, we simulate stochastic noise following
the results of the customised noise model analysis carried out in
Antoniadis et al. (2023d). Thus, for three pulsars J0030+0451,
J1455–3330 and J2322+2057, we simulate RN only. Five pul-
sars J0900–3144, J1012+5307, J1022+1001, J1713+0747, and
J1909–3744 have both RN and DM variations, and for the
remaining seventeen we include DM variations only.

2.2. GWB induced residuals: createGWB vs. realistic
SMBHB populations

Having addressed the system and pulsar-related properties of
real data, the only thing necessary to complete our data set is
the GW signal. Following Rosado et al. (2015), we generate the
stochastic GWB-induced signal from the incoherent superposi-
tion of individual sinusoidal GW signals emitted by inspiralling
SMBHBs.

2.2.1. Ideal signal with createGWB

As described in Phinney (2001), the characteristic strain of the
GW signal produced by a population of circular, GW-driven
SMBHBs is the integral of the energy emitted by each system
over the differential number density of sources per unit redshift
z, and chirp massesM2:

h2
c( f ) =

4
π f 2

∫ ∫ ∫
dz dM1 dq

d2n
dzdM

1
1 + z

dEgw(M)
dln fr

, (4)

where dEgw(M)/dln fr is the energy spectrum emitted by each
source (binary). In the circular GW-driven approximation, we
can rewrite the emitted energy spectrum as a function of the
binary chirp mass and GW rest-frame frequency fr:

dEgw(M)
dln fr

=
π2/3

3
M5/3 f 2/3

r . (5)

Here, fr is defined as fr = (1 + z) f and is twice the binary Kep-
lerian rest-frame frequency. By inserting Eq. (5) into Eq. (4), it
is straightforward to show that

hc( f ) = AGWB

(
f

1yr−1

)αGWB

, (6)

where AGWB is a model-dependent amplitude of the signal at the
reference frequency f = 1yr−1 and αGWB = −2/3. The corre-
sponding spectral density S GWB takes the form:

S GWB( f ) =
h2

c( f )
12π2 f 3 =

A2
GWB

12π2

(
f

1 yr−1

)−γGWB

yr3 , (7)

with γGWB = 3 − 2αGWB = 13/3. We note that the form of
Eq. (7) is very similar to that of the intrinsic RN spectra (Eq. (2)).
In fact, in a PTA dataset, a stochastic GWB appears as a red
noise that is common to all pulsars and induces a specific angu-
lar correlation among pulsar pairs. This correlation is expected to
follow, on average, the Hellings & Downs (1983) overlap reduc-
tion function. Other examples of red signals correlated over all
pulsars are clock and ephemeris errors, which produce, respec-
tively, a monopole and a dipole correlation in the pulsar residuals
(Tiburzi et al. 2016).

Using libstempo, it is possible to inject a GWB signal into
a PTA dataset through the function createGWB. By default, this
function simulates the GW-induced delays in a PTA dataset as
a common RN, HD-correlated over pulsars and with a smooth
power-law shaped spectrum with index α = 13/3 (Eq. (7)). The
only input parameter supplied is the amplitude of the GWB sig-
nal. See discussion in Chamberlin et al. (2015) for more details.

2 The chirp mass is defined asM = (M1 M2)3/5/(M1 + M2)1/5, where
M2 < M1 are the masses of the two black holes forming the binary.
In the circular GW-driven approximation, at the quadrupolar order, the
signal depends only on this combination of the two masses.
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Table 1. Values for the distance, timing, and noise parameters of the 25 best EPTA pulsars.

Pulsar d [kpc] cadence [days] σToA [µs] Noise model log10ARN γRN log10ADM γDM

J0030+0451 1.1 1.1240 4.7321 RN –16.2802 0.3401 – –
J0613–0200 1.2 2.1498 2.3190 DM – – –12.1099 2.2955
J0751+1807 0.9 1.5237 2.5138 DM – – –11.5769 2.1921
J0900–3144 1.3 0.6809 4.6006 RN+DM –12.7817 0.9483 –11.8937 4.5107
J1012+5307 2.1 0.8983 3.1012 RN+DM –12.9283 1.4274 –12.6575 3.9428
J1022+1001 0.3 2.0854 3.3792 RN+DM –17.3298 6.2477 –11.4570 0.2273
J1024–0719 0.2 1.7813 4.5679 DM – – –11.9266 2.6198
J1455–3330 1.1 1.5463 11.6450 RN –13.1206 1.4706 – –
J1600–3053 0.7 1.4481 0.8195 DM – – –12.8008 5.7666
J1640+2224 0.9 2.4334 5.7051 DM – – –11.4996 0.3000
J1713+0747 0.8 0.9403 0.9645 RN+DM –15.0142 3.0124 –12.1243 1.6056
J1730–2304 1.3 3.2348 3.4269 DM – – –11.6328 1.5792
J1738+0333 1.5 5.0228 6.7555 DM – – –11.2123 1.5681
J1744–1134 2.2 2.4413 1.9787 DM – – –11.7996 0.7458
J1751–2857 1.5 12.3347 8.4155 DM – – –11.0296 1.0261
J1801–1417 0.6 9.7971 6.0490 DM – – –11.0496 2.2886
J1804–2717 1.1 5.8057 8.6381 DM – – –11.2871 0.0786
J1843–1113 1.3 5.1115 2.3503 DM – – –11.0364 2.3694
J1857+0943 0.6 3.2544 2.6596 DM – – –12.4013 4.6670
J1909–3744 1.3 1.6435 0.5931 RN+DM –16.8142 1.8981 –11.9277 1.6375
J1910+1256 2.3 8.1784 4.1336 DM – – –11.9094 3.4703
J1911+1347 1.8 4.6388 2.0747 DM – – –12.1507 3.1562
J1918–0642 1.0 3.3059 2.8809 DM – – –12.3077 4.1191
J2124–3358 0.5 2.3498 6.6360 DM – – –11.4152 0.6247
J2322+2057 0.6 5.5817 13.8094 RN –15.1459 0.4594 – –

Notes. The final four columns list the maximum likelihood values obtained from the data set DR2new, using customised noise models when a
common red noise is also included in the recovery model (Antoniadis et al. 2023a). Thus, the missing RN and DM parameters refer to the fact
that, according to the customised noise model, there is no relevant evidence for the given process in the EPTA DR2new data set.

2.2.2. Realistic signal from an SMBHB population

Equation (4) models the characteristic strain of the GW signal
as a smooth continuous function of the frequency, as given by
Eq. (5). In reality, the expected astrophysical signal is the inco-
herent superposition of independent sinusoidal waves produced
by an ensemble of SMBHB systems. For this case, Eq. (4) takes
the form (Sesana et al. 2008)

h2
c( f ) =

∫ ∞

0
dz

∫ ∞

0
dM

d3N
dzdMdln fr

h2( fr) , (8)

where now d3N/(dzdMdln fr) is the number of emitting systems
per unit redshift, mass and logarithmic frequency interval, and
the strain h( fr) is given by:

h( fr) =
√

2(a2 + b2)
(GM)5/3(π fr)2/3

c4r
. (9)

Here, r is the co-moving distance to the source and the functions
a = 1 + cos2ι and b = −2cosι define the relative strength of the
two strain polarisations as a function of the binary inclination
angle ι (see Rosado et al. 2015, for details).

Equation (8) can be further manipulated by considering that
the signal comes from a finite collection of discrete sources, and
the spectrum is practically constructed in discrete frequency bins
∆ f = 1/T , where T = 10.3 yr is the duration of the PTA experi-
ment. The characteristic strain can be thus written as

h2
c( fi) =

∑
j∈∆ fi

h2
j ( fr) fr
∆ fi

, (10)

where fi is the central frequency of the bin ∆ fi, and the sum runs
over all the systems for which fr/(1 + z) ∈ ∆ fi.

To practically inject the signal from a cosmic population of
MBHBs in our PTA timing residual, we proceed as follows. The
list of emitting binaries is randomly sampled from the numer-
ical distribution d3N/(dzdMdln fr), which is obtained from
the empirical, observation-based models described in Sesana
(2013b). The starting point is the galaxy merger rate, expressed
as:

d3ng
dzdMgdqg

=
φ(Mg, z)
Mgln10

F (z,Mg, qg)
τ(z,Mg, qg)

dtr
dz

, (11)

where the subscript ‘g’ stands for ‘galaxy’. Here φ(Mg, z) and
F (z,Mg, qg) are the galaxy mass function and the galaxy differ-
ential pair fraction function at redshift z. Those quantities can be
directly measured from observations, while the typical merger
time scale τ(z,Mg, qg) can be inferred by detailed simulations of
galaxy mergers. The galaxy mass is then related to the SMBH
mass via scaling relations of the form:

log10MBH = α + β log10X , (12)

where X can be, depending on the model, the galaxy bulge mass,
or its mid-infrared luminosity or velocity dispersion. We refer
to Sesana (2013b) for a list of those relations. Finally, SMBHs
grow their mass through accretion in galaxy mergers. It is, how-
ever, unclear whether accretion mostly occurs before or after the
SMBHB coalesces and, in the former case, whether accretion
occurs preferentially on either of the two SMBHs.
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Fig. 1. Characteristic strain as a function of frequency for 100 differ-
ent realisations of a GWB with nominal amplitude 2.4 × 10−15. Each
orange line corresponds to a different realisation (SMBHB population).
The solid black line is the mean of those realisations, while the dashed
black line highlights the nominal f −2/3 spectrum. The sensitivity curve
is derived in The International Pulsar Timing Array Collaboration et al.
(2023).

For this work, we model φ(Mg, z) from Muzzin et al. (2013),
F (z,Mg, qg) from de Ravel et al. (2009) and τ(z,Mg, qg) from
Kitzbichler & White (2008). The SMBH mass is related to the
galaxy mass via the M − σ relation given by Kormendy & Ho
(2013) and we assume that accretion occurs on the two black
holes prior to the final merger, with preferential accretion on
the secondary hole (Farris et al. 2014). These choices result in
a GWB with nominal amplitude AGWB = 2.4× 10−15 when com-
puted with Eq. (4) and expressed in the power-law form given
by Eq. (6); this value is consistent with the one inferred from the
EPTA DR2new analysis (Antoniadis et al. 2023a).

We use this observation-driven astrophysical model to
numerically construct the function d3N/(dzdMdln fr). We then
draw 100 Monte Carlo samples of this function in the appropri-
ate mass, redshift and frequency region of the parameter space.
Each draw results in ≈100 K binaries, which we refer to as a uni-
verse realisation. For each binary, we specify its chirp mass, red-
shift, and GW-signal amplitude (Eq. (9)) in the observer frame,
sky location coordinates, inclination and polarisation angles. All
binaries are assumed to be circular.

Once the population of SMBHBs is defined, we construct
the overall GW signal by directly injecting in the time domain
the deterministic residulas imprinted by each individual system
in the PTA dataset. To this end, we developed a custom injec-
tion pipeline, written partly in python (using libstempo func-
tions) and partly in fortran. The script allows the user to take
idealised pulsar timing models and produce ToAs for a given
observing time span, add to each pulsar specific source noise
as described in Sect. 2.1, and then add excess delays due to
each of the SMBHB in the specified population. We inject both
pulsar and Earth terms in the residuals, following the prescrip-
tion of Babak et al. (2016). Similar injection pipelines have been
applied to NANOGrav-like datasets in Bécsy et al. (2022) and
Bécsy et al. (2023).

We can visually verify how this GWB signal definition
method affects the spectra. The obtained characteristic strain
amplitude for each of the 100 mock realisations of universe
described above can be computed in the frequency domain from
Eq. (10), and is shown in Fig. 1. As expected, the signal is much

more structured than a plain f −2/3 nominal power law com-
puted through Eq. (4), with prominent spikes associated with
rare, massive and (or) nearby sources. We note that the square-
averaged signal sits on the theoretical curve, but there is consid-
erable variance among different universe realisations.

2.3. Recovery model and analysis methods

To test the performance of current PTA GWB search and param-
eter estimation pipelines, we perform a set of inference analy-
ses by using Bayes’ theorem on the realistic datasets defined in
Sect. 2. We search for individual and common noise parame-
ters estimating model parameters characterised by their poste-
rior probability distribution functions (PDFs), including those of
RN, DM, and common noise. We then carry out Bayes-factor
(BF) evaluations between HD-correlated and common, uncorre-
lated RN (CURN) models; and reconstruct the angular correla-
tion from the data.

We conducted an in-depth analysis of each dataset using
enterprise (Enhanced Numerical Toolbox Enabling a Robust
PulsaR Inference SuitE, Ellis et al. 2019), a pulsar timing anal-
ysis package including functionalities for timing model evalua-
tion, pulsar noise analysis, and GW searches. For each simulated
array of pulsars we defined a noise model including: (i) EFAC
and EQUAD parameters fixed respectively at 1.0 and 1e−6 for
all pulsars, (ii) RN and DM variations according to the cus-
tomised noise model used in EPTA DR2new (see Table 1), (iii)
a common red noise process. We set the number of coefficients
(i.e. the number of modes in the Fourier domain) for modelling
the RN and DM processes in each pulsar to be, respectively, 30
and 100. We modelled DM variations as a Gaussian process.

Using this recovery model, we carried out Bayesian infer-
ence of the model parameter space using the Markov Chain
Monte Carlo (MCMC) sampler included in enterprise:
PTMCMCSampler (Ellis & van Haasteren 2017). Since we fixed
the white noise parameters for each pulsar, the total number of
parameters for the sampling is 62: 60 from pulsar intrinsic noise
parameters and two parameters, log amplitude and slope, for the
common red noise.

To decrease computational costs, we employed the reweight-
ing method introduced in Hourihane et al. (2023). We first
computed approximate posteriors defining the common pro-
cess as an uncorrelated red noise. Thus, by temporarily ignor-
ing the cross-correlation terms, the covariance matrix becomes
block-diagonal, resulting in a much faster sampling. We then
reweighted the obtained chains of samples to get the exact pos-
teriors (corresponding to an HD-correlated common red pro-
cess) via importance sampling. Besides being much faster than a
direct search for an HD-correlated common signal, this method
also provides an accurate estimate of the Bayes factor between
the HD and the CURN models. In fact, the average of the
weights computed for all samples is equal to the ratio of the
marginal likelihood (or evidence) of the two considered mod-
els. While this method is mathematically exact, there are some
limitations when the likelihood changes significantly between
the two models. For example, as the GWB amplitude increases,
the weights distribution becomes broader and the sampling effi-
ciency of the method decreases. Hourihane et al. (2023) present
a very detailed study of the limits of this method and conclude
that the Bayes factor estimate stays robust up to BF > 106. See
Hourihane et al. (2023) for a more detailed description.

To test the limits imposed by the sensitivity of the dataset and
the consequences in the inference analysis, for some realisations
we repeated the parameter estimation runs considering different
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Table 2. Prior distributions for the Bayesian inference analyses.

Parameter Prior type Range

γRN, γDM, γCURN Uniform [0, 7]
ARN log-Uniform [10−18, 10−11]
ADM log-Uniform [10−18, 10−8]
ACURN log-Uniform [10−15.5, 10−13.5]

numbers of Fourier components for the common process (see
Sect. 4.2 for more details). The results presented in Sects. 3.1
and 3.2 are obtained considering only the first nine frequency
bins while searching for the common process.

We use uniform priors for the slope parameters and log-
uniform priors for the amplitudes of the noise components. The
prior ranges for the intrinsic noise and common process param-
eters are listed in Table 2.

For each simulated PTA dataset, we also computed the
induced angular correlation in the timing residuals between pul-
sar pairs. We followed the method used for the frequentist anal-
ysis in EPTA DR2new (Antoniadis et al. 2023a). We used the
Optimal Statistic (OS) framework developed by Anholm et al.
(2009), Demorest et al. (2012), and Chamberlin et al. (2015),
with the noise marginalisation described in Vigeland et al.
(2018). We also computed the mean correlation and variance
in the correlation recovery between different realisations of the
same GWB signal, and compared the results with the theoretical
predictions from Allen (2023). We followed the prescriptions in
Allen & Romano (2023) when computing the average over pul-
sar pairs.

3. Results

Using the framework described in the previous section, we gen-
erate three sets of 100 mock EPTA DR2new datasets, for a total
of 300 simulations. In each of these 300 simulations, the individ-
ual pulsar DM and RN are generated as a random realisation of a
stochastic process described by the power-law spectra of Eq. (2),
with amplitude and slope fixed to the ML value of the customised
noise analysis performed in Antoniadis et al. (2023d) as reported
in Table 1. The three sets of simulations differ for the injected
GW signal:

– LoudGWB_set. We use createGWB to inject a loud, stochas-
tic GWB with AGWB = 5 × 10−15. This signal is easily
detectable in the DR2new dataset and serves as a benchmark
to test our simulations and analysis pipeline.

– CreateGWB_set. We use again createGWB to inject a
stochastic GWB with AGWB = 2.4 × 10−15, consistent with
the signal observed in Antoniadis et al. (2023a). These sim-
ulations are meant to test the pipeline in the regime of a
relatively weak signal that matches the template used in the
likelihood evaluation.

– SMBHB_set. We inject individual residuals from an astro-
physically motivated SMBHB population producing a GWB
with a nominal average amplitude of AGWB = 2.4× 10−15. In
this case, however, the signal is very different from the tem-
plate used in the analysis pipeline, allowing us to investigate
limitations and biases due to a mismatch between the signal
present in the data and the model used in the analysis.
In Sect. 3.1 we discuss the performance of the pipeline

applied to the LoudGWB_set; we then move to the comparison
between the createGWB_set and the SMBHB_set in Sect. 3.2.
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Fig. 2. P–P plot for the GWB-amplitude recovery for the LoudGWB_set
of simulations. The dashed line refers to the inference runs where all the
intrinsic noise parameters are fixed in a noise dictionary and the ampli-
tude of the GWB is the only free parameter. The solid line is the result
of MCMC runs over all 62 noise parameters. The theoretical expecta-
tion for an unbiased recovery and the predicted variance of one- and
three- σ are represented in different shades of blue.

3.1. The LoudGWB_set of simulations: A benchmark for
recovery convergence

As already mentioned, this set of simulations aims to define a
benchmark for recovery convergence. In fact, the injected high
GWB amplitude (AGWB = 5 × 10−15) is expected to be relatively
easy to recover and disentangle from pulsar noise.

Some useful tools to validate the performance of our
model are the cumulative distributions of the number of times
the injected value lies within a credible interval, the so-
called probability-probability (P–P) plots (see Cook et al. 2006;
Talts et al. 2020; Wilk & Gnanadesikan 1968, and others). These
plots show on the y axis the fraction of times in which the nom-
inal value (in our case, the injected AGWB, normalised at the fre-
quency of 1/1yr) lies within the credible interval indicated on the
x axis. In the case of unbiased inference, the data points follow
the diagonal of the plot parameter space.

A P–P plot for the inferred amplitude of the recovered GWB
is shown in Fig. 2. The theoretical expectation and the predicted
variance (one-σ and three-σ levels) are shown in different shades
of blue. The dashed line is obtained from inference runs where
all the pulsar’s intrinsic noise parameters and the slope of the
GWB signal are fixed to the nominal injected values (Table 1,
γGWB = 13/3). Thus, the only free parameter is the amplitude
of the GWB signal. In this case, the obtained distribution fol-
lows the diagonal within the one-σ variance and there is no evi-
dent bias in the recovery of AGWB. This is expected since the
GWB signal is injected via the createGWB function, which sim-
ulates a background with a spectrum very close to the nomi-
nal power law. The solid line, instead, is obtained from the full
analysis sampling of all the 62 model parameters (the pulsars
intrinsic RN and DM variation parameters, see Table 1, and the
two GWB parameters). Although the recovered distribution is
always within the three-σ expected interval, it systematically lies
below the diagonal. This may indicate a slightly biased recov-
ery towards lower amplitudes (and, consequently, higher γGWB)
for the GWB spectrum. Although not particularly worrying, the
origin of this potential bias is unknown and it might be due to
leakage of power across different noise components.
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Fig. 3. log10BF distribution of HD vs. CURN for the 100 realisations of
the LoudGWB_set. The vertical lines show the median (solid) and the
16th and 84th percentile (dashed) of the distribution.
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Fig. 4. HD correlation recovery for the LoudGWB_set. Each data point
corresponds to the average of the optimal correlation estimators in that
bin over all realisations. The expected cosmic variance is derived in
Allen (2023).

Thanks to the reweighting method, we can also show the dis-
tribution of the obtained log10BF for the HD-correlated model
versus CURN. The results are shown in Fig. 3. The median of
the distribution (vertical solid line) is at log10BF = 1.91, which
corresponds to a BF∼ 81. The spread of the distribution high-
lights the impact of the stochastic nature of the pulsar noise in
the signal recovery. The central 68% of the BF distribution spans
more than three orders of magnitude, and depending on the spe-
cific realisation of the noise, the data can either provide decisive
evidence of a GWB or an inconclusive result.

Finally, we compute the angular correlation induced in the
residuals of each pulsar pair for all realisations. For an array of
25 pulsars, there are 300 independent pairs. For each realisation,
we define ten angular separation bins of 30 pulsar pairs each, and
compute the mean and variance of the correlation. The calcula-
tion follows the prescriptions in Allen & Romano (2023), taking
into account the covariance between different pulsar pairs in the
same angular separation bin. We then compute the mean over
the whole LoudGWB_set as the average, in each angular separa-
tion bin, of such optimised correlation estimators. We present
the result in Fig. 4, where each data point is computed over
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Fig. 5. P–P plot for the recovery of AGWB from the SMHBH_set (orange)
and createGWB_set (green). The solid lines are obtained from the
log10AGWB posteriors of the MCMC runs over all 62 noise parameters
of the pulsars array. The dashed lines are obtained by fixing all noise
parameters in the recovery model; thus, AGWB is the only free param-
eter. The dotted lines are also from posteriors obtained sampling only
over AGWB, but in a dataset where the realisations do not all have the
same spectral amplitude. Here, the injected background has an ampli-
tude value extracted from the prior distribution used in the recovery.

3000 pulsar pairs: 30 for each realisation. For comparison, we
also show the cosmic variance limit derived in Allen (2023; see
their Eq. (4.8) and (G11)). The pulsar variance contribution to
the expected variance of the HD recovery is minimised by the
weighted-average method described in Allen & Romano (2023);
thus, in this case the cosmic contribution is the only significant
one to compare our results with.

We note that the mean correlation estimated in each bin typ-
ically lies very close to the expected HD correlation. This is
expected for such a loud GWB signal (5 × 10−15). The only
exception is the very last bin, which is difficult to constrain due
to the limited number of pulsar pairs available at wide angular
separation, forcing an averaging procedure over a wide bin.

3.2. Ideal vs. real: Comparing the createGWB_set and the
SMBHB_set

Having assessed the performance of the analysis pipeline on a
loud, ideal signal, we now turn to the comparison of the signal
recovery for the createGWB_set and the SMBHB_set.

As in the previous section, we start by constructing the P–P
plot for the AGWB parameter, shown in Fig. 5. For both data sets,
the nominal value of AGWB for each realisation is 2.4 × 10−15,
at the reference frequency of 1/1 yr. In the SMBHB_set this
value corresponds to computing the GWB through Eq. (4) and
expressing it in the power-law form given by Eq. (6). The green
lines are for the createGWB_set, while the orange ones are for
the SMBHB_set. As in Fig. 2, the solid lines are computed
using the posterior distributions of the MCMC runs sampling
over all the 62 noise parameters of the array, while the dashed
lines are obtained by searching over AGWB keeping all other
noise parameters fixed to the nominal value. When fixing all
noise parameters, the createGWB_set closely follows the diag-
onal, indicating an unbiased recovery of the signal amplitude.
Conversely, the SMBHB_set tends to be consistently below the
diagonal, also crossing the three-σ confidence interval in the
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Table 3. KS statistic and correspondent p-values obtained from com-
parisons between different distributions shown in Fig. 5.

Model 1 Model 2 KS stat. p-value

SMBHB_set Diagonal 0.1707 0.5945
Noise fixed
createGWB_set Diagonal 0.0732 0.9999
Noise fixed
SMBHB_set Diagonal 0.3590 0.0125
Full analysis
createGWB_set Diagonal 0.1538 0.7523
Full analysis
SMBHB_set createGWB_set 0.1463 0.7789
Noise fixed Noise fixed
SMBHB_set createGWB_set 0.2821 0.0897
Full analysis Full analysis

Notes. With diagonal we refer to the theoretical prediction for unbiased
recoveries, which corresponds to the diagonal of the plot. The other
distributions analysed are the dashed and solid lines of that P–P plot.
The p-value in the second raw is almost perfect (0.9999); this confirms
the good fit between the AGWB recovery for the createGWB_set when
the other noise parameters are fixed.

upper-right corner. When sampling over all the noise parame-
ters, this bias is enhanced. As for the LoudGWB_set, the dis-
tribution for the createGWB_set (solid green) is still within the
three-σ confidence interval, although systematically below the
diagonal. The situation gets more extreme for the SMBHB_set
(solid orange), which is dramatically biased towards the lower
amplitude of the GWB spectra.

To quantify the distances between the different distri-
butions shown in Fig. 5, we used the scipy package
scipy.stats.kstest (Virtanen et al. 2020) to perform a
series of non-parametric Kolmogorov-Smirnov tests (KS test).
The test returns the maximum difference between two distribu-
tions and an estimate of the p-value under the null hypothesis
that the two distributions are identical. Results are summarised
in Table 3 and highlight the inconsistency of the signal recovery
in the SMBHB_set.

We note that in these analyses there is a difference between
the prior defined in the recovery model, log10AGWB uniform
in [−15.5,−13.5], and the one from which the injected val-
ues are selected (basically a delta function centred in AGWB =
2.4 × 10−15). Since the latter prior is much narrower and com-
pletely included in the former, the statistical significance of the
P–P plots are unaffected. To test this statement, we generated a
new set of simulations where the pulsar’s intrinsic noises are the
same as for the other datasets and fixed, but now the GWB signal
amplitudes have values which are randomly chosen from the uni-
form prior log10AGWB: [−15.5,−13.5]. The results are shown in
Fig. 5 as dotted lines (green for the createGWB_set, orange for
the SMBHB_set). As expected, there is no significant discrep-
ancy between those lines and the dashed ones (same analysis on
data where the GWB signal is the same in all realisations).

Since we have 100 simulations, each with a different real-
isation of population parameters but the same injected param-
eters of the GWB signal, we can utilise Bayes’ theorem to
obtain the combined and better constrained posterior PDFs for
log10AGWB and γGWB. In Fig. 6 we show the combined pos-
teriors for log10AGWB and γGWB for both the createGWB_set

(green) and the SMBHB_set (orange). The posterior for the
slope parameter is better constrained than that for the amplitude.
While both parameters are compatible with the nominal injected
value within ∼ one-σ for the createGWB_set, this is not the case
for the SMBHB_set. The orange posteriors are clearly biased
towards steeper spectra with lower amplitudes, consistent with
what is shown by the P–P plots.

Systematic biases in the signal recovery for the SMBHB_set
can be traced back to the hc distribution of the individual real-
isations shown by the orange lines in Fig. 1. These realisa-
tions lie preferentially below the expected f −2/3 line, featuring
a steeper spectrum. Only sporadically, loud individual sources
result in excess power at specific frequencies. When this hap-
pens, a power-law fit to the data can result in a flatter spec-
trum, above the f −2/3 line. This is a general feature of realis-
tic SMBHB populations characterised by a sparse, high-mass
tail of loud GW sources. Although most signal realisations show
a deficiency of power at high frequency, the few which feature
loud sources ensure that the average signal amplitude sits on the
expected f −2/3 power law. It follows that the typical realisation
of a nominal f −2/3 power-law signal has in reality, a steeper spec-
trum. There is, therefore, a mismatch between the theoretically
smooth GWB signal used in the recovery model and the real
signal produced by a discrete ensemble of SMBHBs, which can
lead to systematic biases in the signal recovery and erroneous
interpretation of the results.

We note that, during our whole analysis, we fixed the refer-
ence frequency for the recovery of the GWB amplitude to 1/1 yr.
Changing this frequency to a lower one would result in a weaker
dependence of AGWB upon γGWB, but the one-dimensional pos-
terior of the slope parameter remains unchanged. Reanalysing
our data sets with the reference frequency set at 1/10 yr shows
that, as expected, the average recovery is still biased to higher
γGWB values. In contrast, the AGWB recovery is now less affected
by the lack of power at higher frequencies, resulting in a com-
bined posterior that agrees very well with the nominal ampli-
tude value of the simulated GWB. The difference between the
SMBHB_set and the createGWB_set also becomes not statisti-
cally significant. We refer to Sect. 2 of Antoniadis et al. (2023b)
for further details on this point.

In this paper, we focus on testing the recovery of the GWB
signal from PTA datasets. However, pulsar’s intrinsic noise
parameters are also free parameters in our inference runs and,
thus, subject to possible biases in the recovery. We refer to
Appendix A for a brief discussion on the recovery of pulsar’s
intrinsic RN parameters.

From the parameter estimation analysis carried out on the
createGWB_set and on the SMBHB_set, we can build the distri-
bution of the BFs of HD vs. CURN obtained with the reweight-
ing method in each realisation (see Sect. 2.3 for more details).
Results are shown in Fig. 7. The median of the log10BF distribu-
tion for the createGWB_set is ∼0.5, while for the SMBHB_set
is ∼0.8. The estimated BF for EPTA DR2new is ∼60 and is rep-
resented in the plot by the black vertical line. We note that this
value is included in the 16th-84th percentile interval of the dis-
tribution for the SMBHB_set.

Finally, we also plot the recovered angular correlation in the
timing residuals, following the procedure described in the pre-
vious section. In Fig. 8 we compare the mean and variance of
the reconstructed correlation function to the HD curve and its
cosmic variance (Allen 2023). In both cases, not only the differ-
ent points are always compatible with the predicted HD correla-
tion, but also the computed mean in each angular bin is typically
included within the predicted cosmic variance.
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4. A close look at astrophysical variance: Notable
realisations of the SMBHB_set

So far, we focussed on the collective properties of the recov-
ered signal, highlighting possible systematic biases due to the
idealised model used in the analysis pipeline. It is also interest-
ing, however, to have a close look at the ‘zoology’ of signals
arising from a realistic SMBHB population, to get an idea of
how specific features are reflected in the outcome of the analysis.
We focus here on four selected realisations of the SMBHB_set,
stressing that all of them are independent statistical realisations
of the same underlying astrophysical model.

4.1. Case1 and Case2: Different spectra resulting in similar
posteriors

The first two selected cases are characterised by the spectra
shown in the left panel of Fig. 9. While Case1 (brown line) has

a flat, smooth bump in the lowest frequency bins, Case2 (orange
line) is characterised by a jagged behaviour due to few loud
sources. In the right panel of Fig. 9 we show the GWB param-
eter posteriors obtained for those two realisations. The recovery
model is the one described in Sect. 2.3. Although the two spec-
tra are very different, the inference runs produce very similar
posteriors for the GWB amplitude and slope. This can be qual-
itatively understood by comparing the spectra to the sensitivity
curve associated to the considered PTA (blue curve in Fig. 9, left
panel). In Case1, the array is mostly sensitive to the last couple of
frequency bins, where the signal is flatter than the nominal f −2/3

power law. This leads to a posterior with a slight preference for
small γ and high AGWB. Conversely, in Case2, besides detect-
ing the signal at the lowest frequency bin, the inference pipeline
picks some correlated power due to the marginally detectable
loud source at f ≈ 1.5 × 10−8 Hz. Since the built-in model is a
single power law, this extra high-frequency power also results in
a posterior with a slight preference for small γ and high AGWB.

It is also interesting to notice that the recovered GWB param-
eters for these two selected realisations are quite consistent to
the DR2new posteriors presented in Fig. 1 of Antoniadis et al.
(2023a). This just exemplifies that there is no conflict between
the signal observed in the latest PTA data and astrophysical
expectations.

4.2. Case2 and Case3: Loud and louder sources.

To further demonstrate the impact of sparse, particularly mas-
sive and (or) nearby SMBHBs on the GWB signal recovery, we
selected two realisations featuring some prominent loud sources.
Those are Case2, already introduced in the previous subsection,
and Case3. The characteristic strain frequency spectra of those
two realisations are presented in the top panel of Fig. 10. The
loud source at f ≈ 2 × 10−8 present in Case3 produces a peak in
the power that is marginally above the nominal sensitivity of the
simulated PTA, we can therefore expect a strong impact on the
recovered signal.

This is shown in the central and bottom panels of Fig. 10.
When modelling the signal with the nine lower Fourier com-
ponents (frequency bins) in the GWB search, the presence of
this peak biases the recovery towards low values of γGWB and
high amplitudes (red posterior in the central panel). If, instead,

A201, page 9 of 14



Valtolina, S., et al.: A&A, 683, A201 (2024)

0 25 50 75 100 125 150 175
ab

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(
ab

)

HD function
cosmic  theory

0 25 50 75 100 125 150 175
ab

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(
ab

)

HD function
cosmic  theory

Fig. 8. Mean and variance of the angular correlation in the timing residuals of the createGWB_set (left panel) and for the SMBHB_set (right
panel). Each data point corresponds to the average of the optimal correlation estimators in that bin over all realisations. We also show the expected
cosmic variance derived in Allen (2023).
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we consider only the first four frequency bins, the bright source
falls outside the frequency domain of the model and, as expected,
the recovered posteriors are much closer to the nominal values
for the injected SMBHB population (red posterior in the bot-
tom panel). A similar effect, although to a lesser extent, is seen
for Case2. In this case, the loud source is less prominent, con-
tributing only marginally to the overall detected power. Still, by
comparing the orange posteriors in the central and bottom pan-
els of Fig. 10, we can see a significant shift of the posterior to
the lower right when restricting the model from nine to four fre-
quency bins. The possible bias towards a flatter GWB spectrum
due to a particularly bright GW source has been recently dis-
cussed also in Bécsy et al. (2023). Here we provided concrete
examples of the effect on the recovery of the GWB spectra when
bright sources are involved.

4.3. Case4: A familiar HD correlation recovery

Finally, we present a fourth interesting realisation. In Case4
the characteristic strain as a function of frequency does not
present any particularly pronounced peak (see the left panel in

Fig. 11). The interesting feature observed while analysing this
PTA dataset is the induced angular correlation in the residuals.
In Fig. 11, right panel, we show the results obtained with the OS
packages (as described in Sect. 2.3) for this specific realisation
(light blue points), and compare them with the results obtained
for the EPTA DR2new dataset (red points). Each data point of the
plot represents the average correlation in a bin containing 30 pul-
sar pairs. The averages over pulsar pairs are computed following
the prescriptions in Allen & Romano (2023).

The reconstructed angular correlation closely follows the HD
prediction. What caught our attention is the close resemblance
between the right panel of Fig. 11 and the results from the
EPTA DR2new dataset (see Fig. 6 of Antoniadis et al. 2023a).
In both plots, the considered pulsars are the same (EPTA best
25 pulsars) and the correlation is computed following the same
procedure.

The similarity in the reconstructed HD is also reflected in
the estimated BF for HD correlated common signal vs. CURN.
Using the reweighting technique in the inference run, we obtain
BF ≈ 62 for Case4, which is very consistent with the BF ≈ 60
found in EPTA DR2new (Antoniadis et al. 2023a).
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Fig. 10. Notable realisations Case2 (orange) and Case3 (red).
Top panel: GWB spectra. The dashed black line represents
the f −2/3 trend. The sensitivity curve is the one presented in
The International Pulsar Timing Array Collaboration et al. (2023). The
central and bottom panels show corner plots of the GWB parameter
posteriors inferred from the analysis using nine (central panel) and four
(bottom panel) frequency bins for the GWB recovery.

The BF (HD vs. CURN) of those four notable cases are sum-
marised in Table 4 for completeness, and they give a flavour of
the role played by stochasticity in the estimate of signal signif-

icance and parameters. For example, the spectra of Case1 and
Case4 look very similar, with perhaps Case1 showing a bit more
power in the lowest frequency bins. Still, in this case, the result
of the analysis is inconclusive (BF = 1.179 for HD vs. CURN),
whereas in Case4 there is strong evidence of an HD correlated
process (BF = 62.5). This is because, in these early stages of
detection, the output of the analysis is very sensitive to the spe-
cific realisation of the noise processes and to the specific sky
locations of the loudest systems contributing to the GWB with
respect to the best pulsars in the array. The key role played by
the stochastic realisation of the noise processes involved is also
demonstrated by the BF distributions shown in Fig. 7; even when
we inject a nearly ideal signal with createGWB, the distribution
of Bayes factors returned by the analysis spans several orders of
magnitudes.

5. Discussion and conclusions

In this paper, we carried out an extensive investigation of the
performance of current PTA GW analyses on simulated PTA
datasets injected with different types of GW signals. Our simula-
tions included realistic levels of white noise, red noise, and DM
variations, that were gauged to create mock data equivalent to
the recently published EPTA DR2new. We injected in those data
either a stochastic, stationary, Gaussian GWB with a standard
f −2/3 power-law spectrum (the createGWB_set of simulations)
or the incoherent superposition of sinusoidal signals from a cos-
mic population of SMBHBs (the SMBHB_set of simulations),
paying particular attention to possible limitations and biases aris-
ing from the mismatch between the signal present in the data
and the model used for the inference. The injected signals were
calibrated on the results of Antoniadis et al. (2023a), where the
amplitude of the signal was estimated to be AGWB ≈ 2.4×10−15

for a power-law spectrum with γGWB = −13/3.
We quantified the performance of the analysis model by con-

structing P–P plots for the amplitude of the recovered signal for
each set of simulations. The createGWB_set demonstrates that,
when the model matches with the injected signal, the outcome
of the analysis is reliable, although some mild bias can arise
due to the complex multi-dimensional nature of the parameter
space that needs to be searched over. In fact, when fixing all the
parameters but the GWB amplitude, the estimate of this param-
eter is unbiased; conversely, when performing a joint search on
the GWB and noise parameters (including RN and DM) the sig-
nal amplitude is slightly biased towards lower amplitudes and
steeper spectra. Such bias has also been seen in simulations of
individual pulsar noise analysis (Antoniadis et al. 2023d), and
although it is still between the one- and two-σ level (Figs. 5, 6),
it requires further investigation.

In the case of the more realistic SMBHB_set, where there is
a mismatch between the injected signal and the simplified recov-
ery model, the bias is much more prominent and the recovered
spectra for the common noise tend to be steeper (higher γGWB)
and with lower amplitude than the injected signal (Figs. 5, 6).
This is due to the nature of the SMBHB population, which fea-
tures a large number of weak sources with a tail of sparse, loud
systems, as discussed in Sect. 3.2. When one of these loud sys-
tems is present in the SMBHB population, the recovered GWB
spectra can appear flatter (lower γGWB) and with a higher ampli-
tude.

Using the reweighting method, we were also able to build
a distribution of BF from the different realisations of both the
createGWB_set and the SMBHB_set (see Fig. 7). We found no
significant difference between the two distributions, although
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Fig. 11. Case4 analysis. The left panel shows the characteristic strain spectrum compared to the f −2/3 trend (dashed black line). The sensitivity
curve is the one presented in The International Pulsar Timing Array Collaboration et al. (2023). Right panel: comparison between the recovered
angular correlation in the residuals for this specific realisation (light blue points) and the results for the EPTA DR2new dataset (red). The expected
variance of the optimal correlation estimator, for the EPTA 25 best pulsars array, is derived from prescriptions in Allen & Romano (2023).

the SMBHB_set results on average in slightly higher BFs. We
note that in both sets, the logBF distribution has a large scat-
ter, with one-σ confidence interval spanning index covering the
[0, 2] interval. We also computed the induced angular correla-
tion in the timing residuals of the different datasets and showed
that they agree, within the predicted variance, with the HD
correlation.

These results allow us to make several interesting considera-
tions. First, as already shown in Cornish & Sampson (2016) the
mismatch between the model and the data does not seem to affect
our ability to recover the GW signal. This is probably because
the detection significance is based on the intra-pulsar correlation
properties of the signal (i.e. the HD overlap reduction function)
which is a feature that emerges for any collection of GW signal,
regardless on its specific properties (e.g. stationarity, Gaussian-
ity, isotropy, spectral shape). Conversely, the reconstruction and
interpretation of the observed signal can be severely biased by
the use of a simplified GWB model. For example, while loud
individual sources can cause a flattening of the spectrum which
might erroneously misinterpreted as environmental effects or
high eccentricity, the lack of them might result in a steep inferred
spectrum which can be (again erroneously) claimed to be incon-
sistent with an astrophysical origin. Finally, the stochastic nature
of the noise has a major impact on the outcome of the analysis.
Even for the createGWB_set, where we effectively always inject
the same signal, the analysis can either return a detection sup-
ported by strong evidence or an inconclusive result, just depend-
ing on different realisation of the stochastic process describing
the noise.

Within this diverse and complex phenomenology, we high-
lighted also some notable realisations that exemplifies some of
the possible analysis outcomes. In particular, we highlighted
that: (i) little astrophysical information can be drawn from an
inference run using a simple power-law GWB model, by show-
ing that very different GW signals can result in similar inferred
GWB parameters, (ii) the presence of loud sources can introduce
a bias in the recovery of the common process, (iii) some realisa-
tions of our simulations result in a recovered HD correlation and
BF completely in line with what observed in EPTA DR2.

Finally, Bécsy et al. (2023) presented a similar set of sim-
ulations based on the NANOGrav 15 yr dataset. They also use
astrophysically motivated SMBHB populations to generate the

Table 4. BF obtained from the reweighted nine-frequency bins infer-
ence runs (Hourihane et al. 2023) for the four notable cases analysed in
Sect. 4.

Case n. BFHD
CURN

1 1.179
2 12.358
3 70.133
4 62.503

Notes. The BF is computed for an HD-correlated signal over a common
uncorrelated red noise.

GW signal and carry out a thorough analysis of a realistic dataset
including unevenly sampled data and pulsar red noise. They
perform Bayesian inference from the data, computing HD vs.
CURN Bayes factors and conclude that the simple GWB model
implemented in the current analysis is able to recover a realistic
GW signal, although they stress that loud sources might affect
the inference. Compared to their work, our investigation adds
several layers of sophistication. Our simulated data also include
observations at two frequencies per epoch, allowing the inclu-
sion of DM as a further source of noise, which allows as to test
the analysis performance on a more complicated situation, closer
to the real data. We cast our results in terms of P–P plots, and we
compute combined posteriors of several realisations of the same
dataset, which allowed us to identify some interesting system-
atic biases in the recovered signal. Finally, we carried out a sys-
tematic comparison on the analysis performed on realistic signal
injections vs. an ideal GWB generated by the createGWB func-
tion, which allowed us to identify potential difficulties due to the
signal vs. template mismatch.

Now that evidence of a GW signal is emerging independently
from several PTA data, it is important to assess the reliability
of our analysis methods, in order to maximise the astrophysi-
cal potential of the PTA experiments. The present work, along
with Bécsy et al. (2023), represents an important first step in
this direction, which needs to be extended to include increas-
ingly realistic situations. For example, in this article, we did not
investigate complex signal spectra due to environmental effects
or binary eccentricity. Likewise, we used the exact same model
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for noise injection and recovery. As shown in Antoniadis et al.
(2023b), the excess or mis-modelled noise in the data can be
absorbed within the common correlated signal in the analy-
sis, leading to further biases and interpretation issues. Finally,
including single sources along with a GWB in the recovery
model might significantly improve the quality of the inference,
especially when prominent peaks are present in the GW spec-
trum.

The main scripts used to analyse the data sets here described
can be found online3. The SMBHB_set is also available on
zenodo under the following Digital Object Identifier4: In par-
ticular, for each universe realisation we uploaded: the SMBHBs
specifications, the chain file obtained from the inference runs
(while sampling for each pulsar intrinsic noise parameters and a
common uncorrelated red noise), each pulsar .par and .tim files.
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Appendix A: Intrinsic noise parameters recovery

While we focussed on testing the viability and robustness of the
recovery of the GWB signal, it is also interesting to briefly look
at the recovered values for the pulsar’s intrinsic RN when a com-
mon signal is included in the model. In particular, we choose the
pulsars J1455-3330 and J1012+5307 (see Table 1 for the injected
noise). We used the posteriors obtained from the MCMC runs
over the createGWB and the SMBHB_set (see Sect. 3.2) to build
the P–P plots for the inferred RN amplitude and slope for those
two pulsars. The results are shown in Fig. A.1.

In this case there is no obvious distinction between the results
from the createGWB and the SMBHB_set. In fact, the intrinsic
pulsars RN is modelled in the same way in both of them and the
different GWB injected does not seem to affect the RN inference.
However, in both cases, the recovered distributions are slightly
biased. Even if they all lie in a range comparable with the three-σ
confidence interval, the distributions for logARN are constrained
below the diagonal, while the ones for γRN are always above.
This means that, for both pulsars, on average the recovered RN
has spectra biased towards lower amplitudes and higher slopes;
the same type of bias that we obtained for the GWB recovery.

Antoniadis et al. (2023d) carried out a similar test on the
RN recovery. In their Fig. 6, they show a P–P plot test on their
noise parameter estimation from simulated data containing pul-
sar intrinsic noise only. Interestingly, they observe a bias in the
opposite direction with respect to our results. Their conclusion
is that, when the spectral slope of RN is greater than ∼ 4, the
recovery is, on average, biased towards flatter spectra with higher
amplitudes. In our case, the spectral slope of the tested pulsars
was much lower than that threshold (about 1.4 for both pulsars,
see Table 1). This may be the at the root of the different results.
We defer a deeper investigation of those mild biases to future
studies.
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Fig. A.1. P–P plots for the recovery of pulsars J1455-3330 and
J1012+5307 RN parameters from the MCMC inference runs performed
on the createGWB (top panel) and SMBHB_set (bottom). Dashed lines
are for the power-law slope, while the solid lines refer to the RN ampli-
tude.
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