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Strong-field photoionization by circularly polarized light
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We demonstrate that strong-field ionization of atoms driven by circularly polarized light becomes
an adiabatic process when described in the frame rotating with the laser field. As a direct con-
sequence, a conservation law emerges: in the rotating frame the energy of the tunneling electron
is conserved for rotationally invariant potentials. This conservation law, arising from a classical
picture, is retrieved through a proper classical-quantum correspondence when considering the full
quantum system, beyond the Strong Field Approximation.

Introduction Tunnel ionization is a fundamental
quantum process which plays a key role in probing tech-
niques for measuring the real-time motion of electrons in-
side atoms and molecules [1–5]. In order to probe exper-
imentally this dynamics on an attosecond timescale, in-
frared and near-infrared laser pulses are most commonly
employed. When the laser intensity is strong enough [6–
8], a valence electron of an atom or molecule can tun-
nel ionize through the potential barrier induced by the
non-perturbative field. The subsequent photoelectron
dynamics, governed by field-driven rescattering [9], lead
to highly non-linear phenomena such as above-threshold
ionization [10] or high-harmonic generation [11] that have
been subsequently developed to design “self-probing”
spectroscopies with unprecedented time and space res-
olutions [12, 13]. Controlling the conditions under which
tunnel ionization occurs, predicting the phase-space con-
figuration of the photoelectron wavepacket after tunnel-
ing, and modelling the tunneling rates, are essential theo-
retical steps for interpreting and decoding the experimen-
tal measurements which allow one to retrieve attosecond-
resolved information on electron dynamics.

The essence of tunnel ionization is efficiently captured
by adiabatic, quasi-static, theories such as ADK [6, 14,
15]. However, in the infrared regime, the characteris-
tic tunneling time of the electron and the laser period
are on the same order of magnitude, such that energy
of the electron under the barrier are significantly af-
fected by nonadiabatic sub-cycle couplings [16–19]. As
a consequence, the energy of the electron during tun-
nel ionization is strongly influenced by the oscillations of
the laser field, and the tunneling electron gains energy
on the order of an electron-volt [20–22]. These energy
changes of the electron upon tunneling are called nona-
diabatic effects [19] and the energy of the electron right
after tunneling is hard to assess. In atoms, this is com-
monly achieved by neglecting the interaction between the
electron and the ion [16–18, 20] in the framework of the
so-called strong-field approximation [23, 24] (SFA). The
SFA not only provides analytic formulas for ionization
phenomena, it also unravels the classical behavior of the
electron subjected to strong-laser fields. It is thus an
essential ingredient for the design and interpretation of
time-resolved experiments using intense laser fields.

While the essential of strong-field physics can be ad-

dressed by considering linearly polarized pulses, circu-
larly polarized (CP) fields valuably offer additional ex-
perimental ways of probing ultrafast dynamics in atoms
and molecules, as demonstrated with the “Attoclock”
setup [25, 26]. There, information on the target and
on the tunneling process is directly encoded in the pho-
toelectron momentum distributions [27] since driving
tunnel-ionized electrons with CP fields dramatically re-
duces recollision. However, the semiclassical treatment of
quantum strong-field tunneling has raised several debates
on the time spent by the electron under the potential bar-
rier [27–30]. It is shown that the ion-electron interaction
plays a crucial role and cannot be overlooked. While in-
tense CP light presents a unique avenue for probing chi-
rality of molecules, a major obstacle remains to predict
and control the phase-space configuration of the electron
by fully taking into account the ion-electron interaction
and nonadiabatic effects during tunnel ionization.
In this letter, we show that tunnel ionization of elec-

trons by CP fields obeys a classical conservation law. By
choosing a proper reference frame and by fully taking into
account the ion-electron interaction, the nonadiabatic ef-
fects occuring on short timescales in the laboratory frame
(LF) are transformed into adiabatic ones. Making use of
this conservation law unravels the intrinsic link between
the angular momentum of the electron and its energy
variations in CP fields. We also show that this conserva-
tion law is, in fact, present in the SFA, and notably sup-
ports the classical picture of the process. Atomic units
are used unless stated otherwise.
Laboratory frame We consider a single-active electron

in an atom interacting with a classical electric field in
the dipole approximation within the length gauge. The
Hamiltonian governing the dynamics is

H(t) =
p2

2
+ V (r) + r ·F(t), (1)

where r is the electron position, V (r) is the ion-electron
energy potential and p=−i∇ is the momentum operator.
The Hamiltonian (1) is here expressed in the LF, i.e. the
frame in which the electrons are detected in experiments.
We consider ion-electron energy potentials which are in-
variant under rotations, which typically corresponds to
atomic potentials [31] (and to some extent to molecules
modeled by a continuous potential such as benzene [32]
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FIG. 1: Configuration of the electron after tunnel ionization
obtained by the backpropagation method [22, 29]. (a) and (c)
are the distributions in the LF. (b) and (d) distributions in
the RF. Left panels are the distributions of the energy after
tunneling (normalized with respect to their ionization prob-
ability), right panels are the distributions in energy and in

position along the field direction (F(t) or F̃(t)) after tunnel-
ing. The grey regions indicate the classically forbidden region
of the electron in the LF and in the RF at the peak amplitude
of the laser field (i.e., at time t=0). The upper panels are for
He for the initial state 1s (red) for I=8×1014 W cm−2, and
the lower panels are for Ne for the initial state 2p

−
(green)

and 2p+ (blue) for I=6×1014 W cm−2. The dotted curves are
complex trajectories of tunneling electron with initial (open
circles) and final conditions (solid circles).

and buckminsterfullerene [33]). We used soft-Coulomb
potentials [34] with parameters adapted to model He [35]
and Ne [36] in the single active electron approximation
(see Supplemental Material [37]). To address the speci-
ficities of CP driven dynamics, we performed simulations
for He initially in its 1s (m=0) state (with ionization
potential Ip=24.3 eV), or Ne initially in each of its 2p±
(m=±1) states (with ionization potential Ip=21.6 eV).
The time-dependent CP laser electric field is defined as
F(t)=−∂tA(t) where A(t) is the associated vector po-
tential

A(t) =
F

ω
f(t)

(
ex cos(ωt) + ey sin(ωt)

)
. (2)

Considering ez (orthogonal to the polarization plane) as
the quantification axis, a m=+1 (−1) electron is there-
fore co-rotating (counter-rotating) with the laser field.
The amplitude of the laser is F , its intensity is I=2F 2

and its frequency is ω. Here, we consider an IR of 800
nm and a 2-cycle sin4 envelop given as f(t)= cos(πt/τ)4

for |t|≤τ/2 and zero otherwise, with τ=4×2π/ω.
The (r,p) phase-space distributions, right after tunnel-

ing and fully taking into account the ion-electron interac-
tion, are obtained using the backpropagation method [22,
29]. For this, the wavefunction ψ(r, t), starting from the
initial state ψ0(r), is propagated forward quantum me-

Atom He 1s Ne 2p
−

Ne 2p+

e (eV) 1.642 2.362 0.958

∆e (eV) 2.064 1.839 2.070

ẽ (eV) −0.032 0.048 −0.013

∆ẽ (eV) +0.113 0.102 +0.120

θ (deg.) 0.452 1.331 0.205

∆θ (deg.) 6.728 7.561 6.632

TABLE I: Statistical quantities characterizing the energy and
angular distributions of the electron after tunneling in the lab-
oratory frame and in the rotating frame obtained by the semi-
classical backpropagation method (see text). In the former,
the distribution of E+Ip is fitted by a gaussian with mean
value e and standard deviation ∆e. In the latter, the distri-

bution of Ẽ+(Ip+mω) is fitted by a gaussian with mean value
ẽ and standard deviation ∆ẽ. The distribution of ∢(−r,F(t))
is fitted by a gaussian with mean value θ and standard devi-
ation ∆θ.

chanically using the time-dependent Schrödinger equa-
tion (TDSE) i∂tψ=H(t)ψ, until one cycle after the end
of the laser pulse, i.e. T=3×2π/ω. From ψ(r, T ), we can
extract the classical phase-space distribution at T , which
is then propagated backward, using Hamilton’s equations
until we match the tunneling condition, corresponding
to the vanishing of the longitudinal momentum [22, 29].
These equations are defined from the classical analog of H
(Eq. (1)), hereafter referred to as H(r,p, t) (all through
the text, calligraphic letters stand for classical analogs).
Figure 1 displays the reconstructed energy distribu-

tions in the He case [frames (a), red] and in the Ne cases
[frames (c), green (m=−1) and blue (m=+1)]. Four
main features emerge from this figure. First, we see in
frame (c1) that the ionization probability is larger for an
initially counter-rotating electron than for a co-rotating
one, in agreement with [20, 26]. Second, frames (a1) and
(c1) show that, starting from a delta-function at −Ip,
the energy distribution shifts towards higher energies (by
around 1 eV) and gets a width of about 2 eV during
the tunneling process. This is a clear signature of non-
adiabatic effects and was also observed in [22]. Third,
frame (c1) also shows that, for oriented initial states, the
photoelectron peak shifts towards higher energies roughly
twice more, and with a smaller width, form=−1 than for
m=+1. These three first features are supported by the
quantitative data reported in the first two lines of ta-
ble I. Finally, in frames (a2) and (c2) we observe that
the obtained comma-shaped electron distributions in the
energy-position plane lie close to the potential barrier at
the peak amplitude of the laser field (the classically for-
bidden regions are indicated by grey areas), regardless
of its initial energy and its magnetic quantum number.
These large energy variations during tunneling can be
assessed either using SFA [20], and thus neglecting the
ion-electron interaction, or going into the rotating frame
where we can interpret them on subcycle timescales.
Rotating frame perspective The rotating frame (RF)

has already been used either in the classical context for
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strong-field physics in [38, 39], or in the quantum context
for high-harmonic generation by bicirculary polarized
pulses [40] and for ionization by microwaves [41]. Switch-
ing to the frame which rotates with the laser field is for-
mally achieved by means of the time-dependent matrix
Rω(t) associated with the rotation of angle ωt around ez.
In the RF associated with the CP field, the vector poten-

tial is Ã(t)=Rω(t)A(t)=(F/ω)f(t)ex and the laser elec-

tric field is F̃(t)=Rω(t)F(t)=−(F/ω)(ḟ(t)ex + f(t)ωey).
The fast carrier oscillations at frequency ω present in the
LF disappear in the RF.

Wavefunctions ψ̃ in the RF frame are related to ψ in
the LF frame by the unitary transformation

ψ̃(r, t) = exp (iωtLz)ψ(r, t) ≡ ψ(R−1
ω (t)r, t), (3)

where Lz=r×p·ez is the angular momentum normal to

the polarization plane and ψ̃ is the wavefunction of
the electron in the RF. In the RF, the TDSE becomes

i∂tψ̃=H̃(t)ψ̃ with Hamiltonian

H̃(t) =
p2

2
+ V (r)− ωLz + r · F̃(t), (4)

where the Coriolis term ωLz results from the time-
dependent rotation (3) from the LF to the RF. Due
to the rotational invariance of Hamiltonian (4) in ab-
sence of laser field, it shares the same field-free eigen-
states as Hamiltonian H (1) but shifted in energy due to
the Coriolis term. Thus, the ionization potential in the

RF is Ĩp=Ip+mω with H̃(−∞)ψ0=−Ĩpψ0. The classi-

cal Hamiltonian in the RF is denoted H̃(r̃, p̃, t) where r̃

and p̃ are the phase-space variables of the electron in the

RF. Hamiltonian H̃ is obtained either by using the clas-
sical analogy of (4), or equivalently by performing the
time-dependent canonical transformation r̃=Rω(t)r and
p̃=Rω(t)p from H.
In the RF, the time-dependence of the electric field is

reduced to its envelop f(t), which (i) varies on timescales
longer than a laser cycle and (ii) can play the role of an
adiabatic parameter. Since tunnel ionization occurs on
timescales shorter than the laser cycle, the classical pic-
ture predicts that the energy of the electron is approxi-
mately conserved during tunnelling. Hence, we expect in
the RF after tunneling the energy

Ẽ ≈ −
(
Ip +mω

)
. (5)

This is indeed confirmed by the results of the backprop-
agation method displayed in Fig. 2 where we show the
distribution of energy gained by the electron during tun-

nel ionization in the RF, i.e. ∆Ẽ=Ẽ+(Ip+mω). In ta-
ble I, we report for all initial states a shift of the pho-
toelectron peak position in the RF (ẽ) of a few tens of
meV, i.e. two orders of magnitude lower than in the
LF (e). The peak width in the RF (∆ẽ) is around 100
meV, i.e. one order of magnitude lower than in the LF
(∆e). We have checked that the conservation law given

FIG. 2: Distributions of the energy variation in the rotating

frame ∆Ẽ=Ẽ+(Ip+mω) (filled lines), in the laboratory frame
∆E=E+Ip (solid lines) and distribution of the inertial energy
variation ω∆Lz=ω(Lz−m) (dashed lines), corresponding to
the distributions of Fig. 1(.1) shifted by their initial energy
and normalized to unity. All the data were obtained by the
backpropagation method and normalized to unity. The gaus-

sian fit parameters of ∆E and ∆Ẽ are given in table I.

in Eq. 5, within the tunneling regime, is robust with re-
spect to field intensities and frequencies. This confirms
that tunnel ionization in the RF occurs adiabatically on

the energy isosurface H̃(r̃, p̃, t)=Ẽ in phase space, where

Ẽ results from the m- and ω-dependent electron-ion cou-
pling and laser interactions, see Eq. 5. Note that this is a
clear confirmation from TDSE calculations of the exten-
sion to the adiabatic regime of the ADK assumption that
tunnel ionization occurs on a constant energy surface.
In the RF we can define an effective potential [37] as

Ṽeff(r, t) = V (r)−
ω2

2
(ez × r)2 + r · F̃(t). (6)

The classically forbidden regions where tunnelling takes
place, at the peak of the pulse envelop (grey areas in

Figs. 1b and 1d), are bounded by Ṽeff(r, 0). These re-
gions dominate the tunneling dynamics. As observed in
Fig. 1d, the RF potential barrier is thinner and the en-

ergy gap between the top of the barrier and Ĩp is smaller

for a 2p+ electron (smaller Ĩp) than for a 2p− one (larger

Ĩp). Since tunneling is strongly suppressed with increas-
ing classically forbidden area, the ionization probability
for a counter-rotating electron is larger than for a co-
rotating one in strong CP fields in this typical regime, in
agreement with the SFA [20], numerical simulations [36]
and experimental measurements [26].
The last two lines of table I reveal that the electron

ionizes mainly along the laser electric field direction, as
predicted from tunneling theories [16–18, 20, 21, 42],
and that the position of the electron after tunneling

is approximately given by r̃=−r0F̃(t)/|F̃(t)|. The ra-
dius r0 can be determined using the conservation law
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FIG. 3: Distributions of the distance of birth of the elec-
tron from the origin obtained by the backpropagation method
and normalized to unity. The vertical dotted lines are the
position of the effective potential barrier r0 computed from

Ṽeff(r, 0)=−Ĩp (see Eq. (6)) with tunneling exit at the peak
amplitude of the laser field r=−r0F(0)/|F(0)|.

in the RF (Eq. 5). It corresponds to the position of
the outermost intersection between the effective poten-

tial Ṽeff(r, t) and the initial energy −Ĩp , i.e. the solution

of Ṽeff(−r0F̃(t)/|F̃(t)|, t)=−Ĩp. In Fig. 3, r0 at the peak
of the envelop is indicated by vertical dotted lines: it
quantitatively matches the minimum exit distance after
tunneling, given by the distributions plotted on the same
figure. Finally, in the RF, the momentum of the electron,
when exiting the potential barrier, is p̃=ωez×r̃ (zero ki-
netic energy, see also [43]). It is therefore perpendicular
to the electric field and non-zero, in agreement with tun-
neling theories [16–18, 20].
The knowledge gained from the RF perspective can

now be used to deepen our understanding of both the
phase-space configuration after tunneling in the LF, and
the classical-quantum correspondence of tunnel ioniza-

tion. As at each time H(r,p, t)=H̃(r̃, p̃, t)+ωLz and ac-
cording to Eq. (5), the angular momentum variations of
the electron during tunnel ionization are directly con-
verted into energy in the LF. Thus, we have

∆E ≈ ω∆Lz, (7)

with ∆E=E+Ip and ∆Lz=Lz−m the energy and angu-
lar momentum variations of the electron before and after
tunneling. Figure 2 shows a comparison between ∆E
and ω∆Lz, and the perfect agreement between the two
curves confirms our findings resulting in the conversion
law (7).
Strong-field approximation Finally, we aim to vali-

date the conservation law (5), originating from a classical
picture, with the commonly used SFA approach [23, 24,
44]. We start in the LF from Hamiltonian (1). Within
SFA , one uses an ansatz for the electronic wavefunction
as the sum of the initial bound state ψ0 and an ionized
wavepacket ϕ, i.e. ψ(r, t)= exp(iIpt)ψ0(r)+ϕ(r, t). After
substituting this approximation in the TDSE, one ob-
tains

(
i ∂t −

p2

2
− r · F(t)

)
ϕ(r, t) = s(r, t), (8a)

where the ion-electron interaction on the ionizing
wavepacket is neglected [23] and

s(r, t) =
(
r · F(t)

)
exp(iIpt)ψ0(r), (8b)

is the electron source of the ionizing wavepacket which
solely depends on the initial state [48]. In the Green func-
tion formalism, the dynamics of the ionizing wavepacket
is then governed by

ϕ(r, t) =

∫ t

−∞

dt′
∫

dr′ G(r, t; r′, t′) s(r′, t′). (9)

The Green function G(r, t; r′, t′) can be expressed exactly
in terms of the classical action S(r, t; r′, t′) solution of the
Hamilton-Jacobi equation since H is linear in position
for V=0 [37, 45, 46]. In the RF, the dynamics of ϕ is
obtained by performing the transformation (3)

ϕ̃(r, t) =

∫ t

−∞

dt′
∫

dr′ G̃(r, t; r′, t′) s̃(r′, t′), (10a)

with the source term s̃(Rω(t)r, t)=s
(
r, t

)
. There, the

initial state accumulates a time-dependent phase, i.e.
ψ0(R

−1
ω (t)r)= exp(imωt)ψ0(r). Hence the source term

becomes

s̃(r, t) =
(
r · F̃(t)

)
exp

(
iĨpt

)
ψ0(r). (10b)

The Green function becomes
G̃(Rω(t)r, t;Rω(t

′)r′, t′)=G
(
r, t; r′, t′

)
, or

equivalently the classical action becomes

S̃(Rω(t)r, t;Rω(t
′)r′, t′)=S

(
r, t; r′, t′

)
. Note that we

have numerically verified that Eq. (10a) (or equivalently
Eq. (9)) reproduces with great fidelity the ionization
probabilities of [20] and [36]. Analytic expressions can
be found in [47]. On short timescales, around the peak
amplitude of the laser field, the pulse envelop is f(t)=1,
and the Green function in the RF becomes invariant
under translation in time [37]

G̃(r, t; r′, t′) = G̃(r, t− t′; r′, 0), (11)

regardless of the interaction potential. This clearly in-
dicates that the energy of the ionizing wavepacket is
conserved during tunnel ionization. The time-integral
in (10a) can be substituted by the time-independent

Green function G̃(r, r′;−Ĩp) propagating the electron

from r′ to r on a constant energy level −Ĩp=−(Ip+mω).
The complex tajectories obtained by the saddle point ap-
proximation [23] are depicted by dotted lines in Figs. 1b
and 1d. They reproduce well the final energy in the LF
and in the RF, and show that the energy of the electron
in the RF does not change during tunneling.
As a final remark we would like to add, that the present

scheme of adiabatic time-dependent motion in the RF
can be extended to potentials which are not rotationally
symmetric, as long as the resulting time-dependence of
the potential in the rotating frame is slow, i.e. adiabatic.
Generally speaking, this will be the case for potentials
smoothly varying in space, which is the typical case for
molecules and more complex systems.
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Summary We have shown that electrons subjected to
strong CP laser pulses obey classical conservation laws,
confirmed by semiclassical treatments. These conserva-
tion laws offer a clear characterization of the tunnel ion-
ization process, and provide a powerful tool for deeper
analysis. In addition, analysis in the rotating frame to-
gether with the conservation laws offer a promising av-

enue for predicting and controlling the phase-space con-
figuration of the electron after tunnel ionization for more
complex systems, such as molecules.
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K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, Phys. Rev.
Lett. 111, 163004 (2013).

[4] L.-Y. Peng, W.-C. Jiang, J.-W. Geng, W.-H. Xiong, and
Q. Gong, Physics Reports 575, 1 (2015), tracing and con-
trolling electronic dynamics in atoms and molecules by
attosecond pulses.

[5] C. D. Lin, A.-T. Le, C. Jin, and H. Wei, Journal of
Physics B: Atomic, Molecular and Optical Physics 51,
104001 (2018).

[6] L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
[7] B. M. Smirnov and M. I. Chibisov, Sov. Phys. JETP 22,

585 (1966).
[8] H. R. Reiss, Phys. Rev. A 22, 1786 (1980).
[9] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

[10] G. G. Paulus, W. Becker, W. Nicklich, and H. Walther,
J. Phys. B: At. Mol. Opt. Phys. 27, L703 (1994).

[11] A. L’Huillier and P. Balcou, Phys. Rev. Lett. 70, 774
(1993).

[12] C. D. Lin, A.-T. Le, Z. Chen, T. Morishita, and R. Luc-
chese, Journal of Physics B: Atomic, Molecular and Op-
tical Physics 43, 122001 (2010).

[13] S. Haessler, J. Caillat, and P. Salières, Journal of Physics
B: Atomic, Molecular and Optical Physics 44, 203001
(2011).

[14] M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov.
Phys. JETP 64, 1191 (1986).

[15] L. Arissian, C. Smeenk, F. Turner, C. Trallero, A. V.
Sokolov, D. M. Villeneuve, A. Staudte, and P. B.
Corkum, Phys. Rev. Lett. 105, 133002 (2010).

[16] A. M. Perelomov, V. S. Popov, and M. V. Terent’ev,
Sov. Phys. JETP 23, 924 (1966).

[17] A. M. Perelomov, V. S. Popov, and M. V. Terent’ev,
Sov. Phys. JETP 24, 207 (1967).

[18] A. M. Perelomov and V. S. Popov, Sov. Phys. JETP 25,
336 (1967).

[19] R. Boge, C. Cirelli, A. S. Landsman, S. Heuser, A. Lud-
wig, J. Maurer, M. Weger, L. Gallmann, and U. Keller,
Phys. Rev. Lett. 111, 103003 (2013).

[20] I. Barth and O. Smirnova, Phys. Rev. A 84, 063415
(2011).

[21] M. Klaiber, K. Z. Hatsagortsyan, and C. H. Keitel, Phys.
Rev. Lett. 114, 083001 (2015).

[22] H. Ni, U. Saalmann, and J.-M. Rost, Phys. Rev. A 97,
013426 (2018).

[23] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier,

and P. B. Corkum, Phys. Rev. A 49, 2117 (1994).
[24] K. Amini, J. Biegert, F. Calegari, A. Chacón, M. F. Ciap-

pina, A. Dauphin, D. K. Efimov, C. F. de Morisson Faria,
K. Giergiel, P. Gniewek, A. S. Landsman, M. Lesiuk,
M. Mandrysz, A. S. Maxwell, R. Moszyński, L. Ortmann,
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