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The design of advanced functionality in superconducting devices usually focuses on materials 

engineering, either in heterostructures or in compounds of unconventional quantum materials. Here 

we demonstrate a different strategy to bespoke behavior by controlling the 3D shape of 

superconductors on the micron-scale. As a demonstration, a large superconducting diode effect is 

engineered solely by 3D shape design of a conventional superconductor, ion-beam deposited tungsten. 

Its highly efficient diode behavior appears from its triangular cross-section when vortices break time-

reversal and all mirror symmetries. Yet reciprocity is observed at special field angles where the lack of 

symmetry would lead one to expect diode behavior. This can be understood as a topological mechanism 

that is robust against deformations of the triangle. Geometry and topology induce a rich internal 

structure due to the high-dimensional tuning parameter space of 3D structures, inaccessible to the 

conventional 2D design strategies in thin films.  

Currently superconducting electronics rise in attention of the research community as quantum 

information processing on superconducting platforms is looming on the horizon. With quantum 

coherence as the new benchmark of circuit design, their unique characteristics as macroscopically 

coherent systems may finally overcome the economical challenges of their cryogenic temperature 

requirements. When such qubits set (ultra-)low operation temperatures, exciting new opportunities 

even for classical superconducting circuit elements follow. In particular, the superconducting diode 

currently receives significant attention due to novel mechanisms of non-reciprocal charge transport 

compared to classical, single-electron electronics. 

Superconductors support lossless dc-current flow up to its critical current, Ic, above which resistance 

and dissipation set in. In a superconducting diode, the critical current magnitude depends on the current 

polarity, 𝐼𝑐+ ≠ 𝐼𝑐−. Such a device would offer ideal current rectification and direct signal propagation in 

superconducting electronics similar to diodes in ambient electronics. Fundamentally, superconductors 

that simultaneously break time-reversal and mirror symmetries may differentiate between forward and 

backward currents. Theory predicts these symmetry conditions in the bulk of exotic superconductors, 

for example in finite momentum pairing systems1–3 or chiral SC that inherently break time-reversal 

symmetry4. Experimental observations have been reported in non-centrosymmetric crystals, such as 

the Dirac semi-metal NiTe2 (ref.5), twisted trilayer graphene6, or heterostructures with varying spin-orbit 

coupling7. 

While here non-reciprocity heralds new insights into exotic superconducting states, their diode 

efficiency is typically too low for practical applications. The efficiency is quantified as the normalized 

difference between the magnitude of the critical currents, 𝜂 = 𝐼𝑐+−𝐼𝑐−𝐼𝑐++𝐼𝑐−, ranging from zero (reciprocal 

transport) to one (ideal rectification). Here, vortex matter offers an established and optimized platform 

for the design of high-efficiency diodes under an external magnetic field. When the macroscopic shape 

of the superconductor breaks the mirror symmetry along the channel and vortices break time-reversal 

symmetry, non-reciprocity is the norm and diode behavior has been routinely observed for decades8–

10. In this context, the term “asymmetric critical current” is used to denote SC diode behavior. Vortex 

entry and exit is highly dependent on the microscopic details of the surface barrier, such that minute 

and almost unavoidable fabrication imperfections suffice for diode behavior11,12. Thin-film devices with 

engineered asymmetry show sizable diode effects, for example due to engineered boundary 
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asymmetry, asymmetric anti-dot arrays13, superconductor/ferromagnet bilayers11, as well as Josephson 

junctions with individual trapped vortices14. The engineering challenge towards ideal vortex diodes thus 

is to create maximally left-right asymmetric channels, and to tailor the non-linearity to match the 

requirements of real applications. 

The physics of vortices and associated non-reciprocity is well established in thin-film (2D) and bulk (3D) 

geometries15–20. Here we report an alternative regime of superconductors on a scale of comparable to 

multiple penetration depths that are meaningfully three-dimensional. This denotes micron-sized wires 

with cross-section geometries that clearly differ from simple extrusions and thus truly are 3D objects. 

This concept is demonstrated in the specific case of a wire with a triangular cross-section, yet extensions 

to other geometric shapes naturally expand to further phenomena. Related triangular rods, hand-

polished on the mm-scale, have already in 1965 been demonstrated by Swartz and Hart8 to be excellent 

SC diodes, albeit operating in a different physical regime of surface current flow owing to their 

macroscopic size and bulk pinning impeding vortex motion. Utilizing state-of-the-art microfabrication, 

controlling the cross-section shape becomes a higher-dimensional tuning parameter for vortex matter, 

and concepts from geometry and topology naturally enter their physics as is here demonstrated in the 

triangular superconducting diode.  

For a vortex system to be dominated by the 3D shape of the superconductor, the dominant force acting 

on vortices should be the energy barrier associated with their entry and exit, the Bean-Livingston 

barrier21. Akin to mirror charges in electrostatics, the surface provides a repulsive force hindering 

vortices from crossing it. Commonly, however, bulk defect pinning provides the dominant force in 3D 

objects22. Local defects suppress the condensation energy, which define lower energy positions of 

vortices and thus impede their free motion and the associated dissipative voltage. Bulk pinning can 

either be minimized in ultra-clean crystals, or in ultra-disordered systems in which a high defect density 

compared to the vortex diameter effectively averages the pinning potential. We focus here on the 

recent observations of ultra-mobile vortices in Focused Ion Beam deposited superconductors23–25. W-C-

O is a highly carbon-rich amorphous superconducting deposit of tungsten26. It features a decent Tc~5K 

and upper critical field Hc2(0K)~9.5T, and accordingly one obtains the Ginzburg-Landau coherence length 𝜉(0𝐾)~6𝑛𝑚. The penetration depth is more difficult to infer in microstructures, yet using standard 

estimates from transport 𝜆(0𝐾)~650𝑛𝑚 has been reported27. This high penetration depth arises from 

the high normal state resistivity and is in line with the limited mean-free-path in this amorphous 

material. Tunneling spectroscopy28 unveils a fully gapped state with Δ(0𝐾) = 0.65𝑚𝑒𝑉, and a 

consistent picture of a conventional, strongly type-II superconductor deep in the dirty limit emerges. 

This material can be conveniently deposited in a maskless direct-write technique on any substrate which 

allows non-trivial shape control in 3D (see supplement for fabrication details). Here we focus on a 10𝜇𝑚 

long wire with a cross-section precisely shaped as an oblate isosceles triangle (2.8𝜇𝑚 wide, 7.0𝜇𝑚 tall, 

Fig. 1). The amorphous nature of the deposits is evidenced by the approximately temperature-

independent resistance, placing them close to a metal-insulator transition. The SC transition, however, 

is sharp and a noise-limited zero-resistance state is reached. We note a weak double-transition in the 

cooldown which follows from slightly different Tc in the current injection contacts compared to the wire 

itself (see methods). To avoid complications of Lorentz-force modulations or pinning effects at the 

contacts, we strictly keep the magnetic field perpendicular to the wire while rotating. The field-angle 𝜃 

parametrizes the field direction, where 𝜃 = 0° corresponds to fields aligned with the tip of the triangle 

(Fig. 1). 

When dominated by surface barrier pinning, such an object naturally acts as a highly efficient 

superconducting diode (Fig. 2), and the single current-polarity conserving mirror plane of the geometric 

object plays a crucial role. When the magnetic field is applied within this mirror plane, that is 𝜃 = 0°, 

symmetry dictates an entirely anti-symmetric current-voltage characteristics (IV-curve) as 



experimentally observed (black curve). Careful checks for self-heating have been performed such that 

in the presented current range overdriving and thermal effects are negligible. As the field is rotated out 

of this plane, the vortices explicitly and strongly break the mirror symmetry. Hence within a narrow 

angle range a massively asymmetric diode behavior emerges. This asymmetry finds a maximum at 𝜃 =11°, which corresponds to half of the geometric opening angle of the isosceles triangle studied here, 22°. Here the field is parallel to the left sidewall, which is a maximally asymmetric configuration of 

vortices entering either through a steep wall on one or through the knife-edge geometry on the other 

side. A large diode effect results as the current polarity sets the direction of the Lorentz force, 𝐹𝐿 ∝𝑗𝑠 × 𝐵,  and vortex velocity perpendicular to the channel, and thereby which physical edge vortices have 

to enter. Moving to 𝜃 = −11° aligns the field parallel with the opposite side, which inverts the diode 

from forward to backward. It is gratifying to see the nearly perfect asymmetry between these two 

directions, which evidences highly similar surface barriers on both faces as desired, which in turn 

demonstrates the achieved fabrication quality and reproducibility in this 3D structure. These results 

clearly demonstrate that vastly asymmetric vortex barriers, and hence SC diodes, can be achieved with 

3D shape control deterministically. Unlike thin-films in 2D, the field direction plays a crucial role which 

does not only set the magnitude but also the forward direction of the diode. It follows naturally that the 

diode strength and field angle behavior can be designed as desired by changing the triangle shape. This 

sets such systems apart from engineered surface asymmetries in 2D, which are only sensitive to the out-

of-plane component of the field when orbital effects are considered. Accordingly, in any 2D diode design 

a field polarity change (or 180° rotation) is necessary to reverse the forward direction at given current 

polarity. Control over arbitrary field angles for the diode strength and polarity reversal within a small 

angle range are new features uniquely enabled by the 3D nature of these devices. 

Another important distinction of 3D bulk-like superconductors, as compared to thin films, is the 

sustainable flux-flow without discrete avalanching or a thermal runaway induced transition into the 

normal state. The here reported IVs merge smoothly into a zero-voltage state, and thus are not 

necessarily characterized by a sharp critical current. It is instead useful to define a critical voltage, either 

given by experimental resolution or concrete application demands, that implicitly defines a critical 

current as 𝑉(𝐼𝑐) = 𝑉𝑐. For an initial glimpse at the data, one may trace the critical currents and the 

nominal 𝜂 as a rough measure of the diode strength over a full field rotation (Fig. 2b,c, 𝑉𝑐 = 1𝜇𝑉). 

Beyond the rapid increase of 𝜂 up to 11°, a broad region of smoothly weakening diode strength follows. 

Eventually at 90°, 𝜂 changes sign as now the field is parallel to the short bottom face of the triangle. Due 

to the high symmetries of the problem, one quadrant (0°-90°) fully characterizes the device. Time-

reversal symmetry ensures 𝑉(𝐼, 𝐵) = 𝑉(−𝐼, −𝐵) ≡ 𝑉(−𝐼, 𝜃 + 180°), hence 𝜂(𝜃) = −𝜂(𝜃 + 180°). 

Equally, the mirror symmetry enforces 𝜂(𝜃) = −𝜂(−𝜃), leading to symmetry-protected reciprocal 

transport (𝜂 = 0) for fields in the mirror plane, 𝜃 = 0°, 180°. 

Six zero-crossings of 𝜂 are observed over the full circle, and each of these zero crossings correspond to 

a configuration of reciprocal transport, four more than required by symmetry in this geometry. At any 

oblique field angle this symmetry is explicitly broken, thus nonreciprocity is allowed and indeed 

observed at all angles– except for the additional zero crossing at 𝜃𝑡𝑜𝑝 ∼ 72° (and its symmetry-related 

copies). This apparently accidental degeneracy is even more surprising given the large number of 

degrees of freedom that parametrize the non-linear IV-curves, which requires a discussion beyond a 

simple number 𝜂. Its value depends on an arbitrary voltage criterion and thus has little merit in assessing 

neither the physical situation nor the technical relevance of the diode for a certain application. For 

example, carefully adjusting the experimental parameters and 𝑉𝑐 would, close to 𝑇𝑐, technically allow 

us to report record numbers of 𝜂 well above 90% with little physical meaning.  

To better appreciate the non-reciprocity in these devices, we thus focus on the raw IV curves as 

customary in semiconducting diodes. Perfectly reciprocal conductance reflects in anti-symmetric IV 



curves, as 𝑉(𝐼) = −𝑉(−𝐼). Hence the symmetric voltage, 𝑉𝑠𝑦𝑚 = 12 (𝑉(𝐼) + 𝑉(−𝐼)), is a more nuanced 

measure that directly encodes the diode strength at a current level 𝐼. 

The angle dependence of 𝑉𝑠𝑦𝑚 further highlights the surprising robustness of reciprocity at 𝜃𝑡𝑜𝑝 (Fig.3), 

as the IV curve is highly symmetric over the entire current range. Equivalently, the efficiencies defined 

at any voltage criteria, 𝜂(𝜃, 𝑉𝑐), cross zero at the angle 𝜃𝑡𝑜𝑝. While it is a natural consequence of 

continuity of a sign-changing real function 𝜂(𝜃) to cross zero somewhere, one would not expect to tune 

a complex curve 𝑉𝑠𝑦𝑚(𝐼) to zero with a single parameter. In the case of the symmetry-protected zero-

crossings of 𝜂, this is enforced by conservation laws arising from time-reversal and mirror symmetry. At 

the oblique angle 𝜃𝑡𝑜𝑝, no symmetry argument can be made and reciprocity appears merely accidental. 

We note that 𝑉𝑠𝑦𝑚 does not vanish exactly at 𝜃𝑡𝑜𝑝 , with a similar residual magnitude compared to that 

in the symmetric orientation 𝜃 = 0°. This small residual signal points to experimental deviations from 

the idealized case, such as non-ideal triangular shapes, thermal effects from weak but asymmetric self-

heating or field precession due to slight deviations of the triangular wire from the axis of rotation. 

Nonetheless, the data clearly shows that a notable degree of reciprocity at the low-symmetry 

configuration 𝜃𝑡𝑜𝑝. 

There are two mechanisms that protect degeneracies in physical systems, symmetry and topology. 

Symmetry produces exact relations, which here force even terms in the IV-curve to vanish. In topology, 

objects are classified by invariants that are stable against smooth deformations. Unlike symmetry, they 

do not constrain exact locations of degeneracies but rather enforce their existence somewhere as seen 

for example in the low-symmetry location of Weyl nodes in k-space in topological electronic band 

structures. Here, we argue that the reciprocity at 𝜃𝑡𝑜𝑝 is based on topology, and generic to 

superconductors of triangular cross-section. 𝜂 is bound to exhibit six extrema alternating between 

minima and maxima in one full revolution. Due to time-reversal symmetry, these extrema are bound in 

pairs of one minimum and one maximum, separated by a half-rotation. As a result, it must always exhibit 

six zeros, and symmetries may further constrain their location on the circle. This is generic to arbitrary 

triangles, and in that sense the number of vertices of the triangle (𝑛 = 3) takes the role of a topological 

invariant. Any smooth deformation of the cross-section within the space of triangles may only move the 

zeros, but not remove them. 

To understand the geometric structure of the nonreciprocity from a vortex point-of-view, we first point 

to the importance of the special configurations when the magnetic field is parallel to one of the three 

faces of the triangle (Fig. 4). In the absence of bulk pinning, the well-controlled 3D shape results in a 

geometric force acting on the vortices. The flux lines are expected to follow the direction of the magnetic 

field given the microscopic wire geometry and hence the absence of notable demagnetization effects. 

Assuming straight vortices, their length depends linearly on the position within the triangle. This causes 

a position dependent potential energy of the vortex 𝑈(𝑥) = 𝛼𝜖 𝑥, given a constant line energy 𝜖 per 

unit length and 𝛼 = 𝑑𝑙𝑑𝑥 denoting the geometric length change of the vortex. From this argument, a 

purely geometric force results, 𝐹𝑔𝑒𝑜𝑚 = −𝛼(𝑥)𝜖, which acts in addition to the Lorentz force 𝐹𝐿 on the 

vortices. 

Any triangle decays into two regions of opposite sign of this geometric force (orange and yellow in 

Fig.4a). These regions evolve as the triangle rotates in the magnetic field. As the vortex lines follow the 

magnetic field, 𝛼 is tuned by the field angle. Importantly, 𝛼 and thus the geometric force diverges at the 

special angles when the field is parallel to a triangle face, providing the highest barrier for vortex 

penetration. This picture is well supported by the angle-dependence of 𝐼𝑐(𝜃), which shows pronounced 

spikes and sharp 𝐼𝑐 maxima at these geometric angles. In addition to an enhanced overall 𝐼𝑐 , also a 



maximum in the diode effect is expected as observed reflecting the maximal left-right asymmetry for 

vortices. 

The sixfold alternation of the diode sign reveals an interesting geometric hierarchy of generic IV-curves 

in triangular conductors. In the most symmetric case of an equilateral triangle, each of its three mirror 

planes pins two crossings at multiples of 60°, 𝜃 = 𝑖 60°, 𝑖 = {0,1, … 5} and symmetry exactly explains 

all reciprocal angles. Deforming the triangle into an isosceles one breaks two mirrors yet the left-right 

alternation still enforces six reciprocal directions. Hence the four zero crossings associated with the 

broken symmetries cannot be removed but may now slide on the circle away from the multiples of 60°. 

Further deforming the triangle to a general scalene one breaks all mirror symmetries, in which case all 

zero-crossings may fall on arbitrary angles yet are still protected by topology. As any triangle can be 

smoothly deformed into an equilateral one without leaving the space of triangles, these reciprocal 

topological angles are remnants of the higher symmetry in the equilateral triangle. 

The overall flower-shaped 𝜂(𝜃) can be well captured by a simple geometric model based on the shape 

of the triangle alone, supporting the notion that the geometric surface barrier dominates over bulk 

pinning (see supplement). While clearly microscopic modeling is required to explain the details of the 

nonreciprocity, the success of this outrageously oversimplified model further supports that geometry is 

the key factor in the device response. By design, the model predicts a zero crossing at the mirror-

symmetry enforced angles, yet it clearly fails to predict the location of the topological reciprocity which 

further supports that it has no geometric meaning in the triangle. This is also experimentally supported 

by the field and temperature-dependence of the topological angle (Fig. 4d) which varies substantially 

from 77° at (80mT,4K) to 50° at (40mT, 3K), while the symmetry-enforced degeneracies are constant 

within experimental resolution of the angle (±0.2°). Temperature tunes the vortex size and interaction, 

while the magnetic field sets their density. This not surprisingly impacts the non-linearity of conduction 

and thereby the IV curves. While these details move the location of the topological reciprocity, they do 

not lift this degeneracy. 

Arguments based on geometry, symmetry and topology suffice to capture the geometric properties of 

transport reciprocity and expose the underlying structure. In real materials, the topological arguments 

will naturally fail at the boundary of triangle space, such as when the triangle is deformed into a thin 

film by reducing one leg to zero or its cross-section is shrunk towards a nanowire. Further these 

considerations do not allow to model the IV curves or even the angular dependence of 𝜂, as microscopic 

ab-initio models are necessary to provide this. Time-dependent Ginzburg-Landau simulations in 3D 

mesoscopic structures are challenging yet present a straightforward pathway to the rational design of 

superconducting diodes with fine-tuned IV-characteristics. 

In combination, these results clearly demonstrate that non-trivial 3D geometries open a rich door for 

engineering of advanced electronic functionality even in traditional superconductors. Importantly, the 

3D cross-section is a powerful yet thus-far neglected tuning space. The most studied platforms of thin 

(2D) or thick planar films (rectangular cross-section) are of too high symmetry to exhibit non-trivial 

shapes. For example, the inversion symmetry in rectangular conductors as the most simple 3D shape 

does not support non-reciprocity at any field angle. With more complex 3D designs, diodes with bespoke 

field-angle response and desired current-voltage characteristics can be fabricated. In particular, the 

forward direction can be flipped by a small field-angle change, in stark contrast to the field polarity 

change required in 2D geometries. With 3D control providing a higher-dimensional geometric tuning 

space for these systems, non-trivial forms of topology emerge such as the topologically protected 

reciprocity within the space of triangles reported here.  

This observation provides a promising starting point for explorations of other shapes and topological 

transitions in search for new function, such as a pentagon or irregular polygon. At the same time, a 



convergence of the counterintuitive robustness of the degeneracy with microscopic models is needed 

to fully appreciate the topologically protected reciprocity. It will be very interesting to explore which 

other complex interacting systems can be imprinted with topology via precise geometric control, given 

they can be made clean enough such that their physical shape dominates their behavior. Clearly, 

geometric sources of topology in interacting systems deserve closer investigation. 
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Figures 

 

Fig. 1 Triangular mesoscopic superconductor. A) the active device is a straight wire with an isosceles 

triangular cross-section. Importantly, this shape features only one mirror symmetry that preserves the 

current polarity. The magnetic field angle, 𝜃, sets the direction of vortices and is measured from that 

mirror plane. B) Inset: False-color SEM image of the real wire. The 10𝜇𝑚 long active section (purple) 

terminates in much bigger, bulky superconducting terminals to ensure the smallest critical current takes 

place in the triangular section. The isosceles triangle is 2.8𝜇𝑚 wide and 7.0𝜇𝑚 tall, corresponding to an 

opening angle of 22°. Main: The resistance remains essentially independent down to Tc=5.25K. A weak 

double-transition appears due to a slightly higher Tc in the large SC contacts that were deposited at 

higher ion currents. 



 

Fig. 2: Superconducting vortex diode. a) The current-voltage characteristics in the symmetric 

configuration (𝜃 = 0°) is highly anti-symmetric while at shallow angles (±11°) pronounced diode effects 

are observed. In line with symmetry, the diode forward direction flips when rotating through 𝜃 = 0°. b) 

Over a full field rotation, the critical current is strongly modulated. The mirror symmetric appearance of 𝐼𝑐+ and 𝐼𝑐− reflects how close the device is to the idealized triangle. Strong peaks occurr at 6 angles with 

pronounced diode behavior. These correspond to special angles when the magnetic field is parallel to 

one of the triangle faces. c) The diode efficiency 𝜂 computed at a voltage criterion 𝑉𝑐 = 1𝜇𝑉 displays a 

distinct flower-shape associated with the triangle geometry. 𝜂 crosses zero (red circle) at 6 angles, two 

at the mirror symmetric directions 0°,180° and 4 times at low symmetry directions 𝜃𝑡𝑜𝑝 (and its 

symmetry copies). 

 



 

Fig. 3 Symmetry and topology. a) IV curve at the topological angle 𝜃𝑡𝑜𝑝~72° (@4K, 60mT) is highly anti-

symmetric over the entire current range, despite the lack of symmetry at this angle. The symmetric 

component 𝑉𝑠𝑦𝑚 is flat accordingly. b) Scanning IV curves at same conditions in 1° steps exposes the 

angular structure of 𝑉𝑠𝑦𝑚. The diode direction changes six times over a full revolution, with reciprocal 

cases found equivalently six times (black lines, 𝑉𝑠𝑦𝑚 = 0). c) and d) highlight the angular evolution of 𝑉𝑠𝑦𝑚 (@4K, 60mT) crossing through the topological and symmetry-governed reciprocal angles. We 

associate the subtle deviations of 𝑉𝑠𝑦𝑚 from zero at both angles with deviations of the real device from 

the idealized geometry. 

 

 

Fig. 4 Evolution of topology. a) The triangular cross-section renders the length of the vortices following 

the field direction position dependent, 𝑙(𝑥), which forms the basis of the geometric force. At any angle 

except for the critical ones, the triangles decay into two regions (yellow and oriange) with 𝐹𝑔𝑒𝑜𝑚 of 



different magnitude and opposite direction. b) Each mirror symmetry constrains a pair of zero crossings. 

While the equilateral triangle pins all six crossings at mirror symmetry protected angles (blue dot), in 

the isosceles only two are set by symmetry, and in the scalene case all six crossings fall into the 

topological category (red dot). Exemplary plots of 𝜂(𝜃) are sketched, using the model presented in the 

supplement. c) The alternating left-right asymmetry is a natural consequence of any triangle, 

irrespective of its symmetries. d) The topological angle is strongly field and temperature dependent, 

reflecting its decoupling from geometry. 

 

Supplement 

S1: Fabrication details 

The tungsten deposition was performed in a Ga-based focused ion beam (ThermoFisher Helios G4). The 

standard precursor gas W(CO)6 was introduced to the chamber via the micro-nozzle of the 

ThermoFisher gas injection system. The substrate is a sapphire chip with photolithographically 

patterned gold leads. The leads were grounded for effective charge removal during the charged beam 

operation. Optimal deposition conditions were found at 12kV beam energy and 50ns dwell time. A seed 

layer of ~10nm was deposited at low currents of 0.3nA to avoid distortions of the structure due to 

charging effects. Once the seed layer robustly connected to the electrodes, a clear discharge and sharp, 

well grounded image appeared. For the growth of the entire structure, a high current of 20nA was used 

to grow a 100𝜇𝑚 long, 5𝜇𝑚 wide and 7𝜇𝑚 tall rectangular deposit. In addition, side contacts that serve 

as four-probe voltage measurements were grown connecting further gold pads to a 10𝜇𝑚 long section 

in the center of the wire, that would later become the triangular wire. These connecting wires were 

grown at 45nA to accelerate the deposition, and as the superconducting parameters are known to be 

beam condition dependent, now show a slightly different Tc yielding the weak double-step appearance 

in main Fig. 1. 

The triangular wire was then FIB cut into the center section. The chip surface in this machine is normal 

to the ion beam at 52°. To achieve an opening angle of 20° for the isosceles triangle, the stage was tilted 

to 42° and polished using 300pA at 30kV. The targeted opening angle of 20° is in very good agreement 

with the experimentally determined opening angle of 22° from magnetotransport, with a slight increase 

due to the finite width of the beam and the opening angle of the cut. 

 

S2: Geometric model 

The full dynamics of the driven vortex system requires a 3D simulation of the time-dependent Ginzburg-

Landau model. This is complicated by the mesoscopic shape of the triangle (size ∼ 10 − 100𝜆) and the 

non-negligible role of the geometric boundary. These challenging calculations will be an important step 

towards unlocking the engineering potential of 3D vortex matter. At the same time, it is gratifying to 

see how far arguments purely based on geometry, topology and symmetry go in explaining the complex 

data. These arguments can only yield, however, understanding at and closely around specific angles 

such as 𝜃𝑡𝑜𝑝.  

Here we work out a geometric model to elucidate to what surprising degree the anisotropy over a full 

angle rotation can be understood based on geometry alone. The model is phenomenological, and 

microscopic simulations are necessary to fill in the details. In particular, the model fails to predict the 

location of the topological angle. This further reinforces the fact that its location is not based on 

geometry, which echoes in its temperature- and field-dependent value. 



To capture the triangle geometry, one may be tempted to use the ratio of the geometric forces. Any 

triangle at arbitrary field angle decays into two regions in which the geometric force takes a different 

value with opposite direction. It is a straightforward geometric exercise to compute these two areas 𝐴𝑟𝑖𝑔ℎ𝑡 and 𝐴𝑙𝑒𝑓𝑡. The scaled difference between these areas  𝜂̃ = 𝑐 (𝐴𝑙𝑒𝑓𝑡 − 𝐴𝑟𝑖𝑔ℎ𝑡)/(𝐴𝑙𝑒𝑓𝑡 + 𝐴𝑟𝑖𝑔ℎ𝑡) 

is a natural proxy for the degree of imbalance between the forces. It obeys all symmetry requirements, 

for example, in the isosceles triangle 𝜂̃ vanishes by design at the mirror symmetric configuration 𝜃 = 0° 

as both areas are equal.  

 

Fig. S2.1: Comparison of the geometric model to the measured 𝜂(1𝜇𝑉) at 60mT, 4K.  

This geometric construction reproduces the overall flower-shape remarkably well, supporting that the 

surface boundary following the geometry is the dominant factor setting the non-reciprocity.  


