
Supporting Information: Investigating apparent differences

between standard DKI and axisymmetric DKI and its

consequences for biophysical parameter estimates

Jan Malte Oeschger1 Karsten Tabelow2 Siawoosh Mohammadi1,3,4,∗

January 12, 2024

1 University Medical Center Hamburg-Eppendorf, Institute of Systems Neuroscience, Hamburg,

Germany

2 Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany

3 Max Planck Research Group MR Physics, Max Planck Institute for Human Development,

Berlin, Germany

* Corresponding author:

Name Siawoosh Mohammadi

Institute Max Planck Institute for Human Development, Max Planck Research Group MR Physics

Address Lentzeallee 94, 14195, Berlin

E-mail mohammadi@mpib-berlin.mpg.de

Phone +49 30 82406-0

1



Supporting Information

S1.1 Standard DKI signal representation

For a given diffusion weighting b and diffusion gradient g⃗ = (g1, g2, g3)
T, the noise-free DKI signal

can be represented as in1;2:

Sb,g⃗(S0, D,W ) = S0 exp

[
−bD +

b2

6

(
Tr(D)

3

)2

W

]
[S1.1a]

D =
3∑

i,j=1

gigjDij [S1.1b]

W =

3∑
i,j,k,l=1

gigjgkglWijkl [S1.1c]

where Dij are the diffusion tensor entries, Wijkl are the kurtosis tensor entries and S0 is the non-

diffusion-weighted signal (b = 0 s
mm2 ).

From the tensors metrics in D and W, the AxTM can be directly computed: D∥ = λ1 where λ1 is

the first eigenvalue of the diffusion tensor D, D⊥ = λ2+λ3
2 . W∥ and W⊥ can be computed from the

fitted W tensor according to formulas 11 and 12 from4: W∥ = W (ν1) = W1111, where ν1 is the first

eigenvector of the corresponding diffusion tensor and W⊥ = 3/8(W2222+W3333+2W2233). W can be

computed according to Eq. 10 from5: W = 1/5(W1111+W2222+W3333+2W1122+2W1133+2W2233)

(in5: 1=x, 2=y, 3=z).
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S1.2 Axisymmetric DKI

Axisymmetric DKI4 assumes symmetric diffusion around an axis of symmetry c⃗ inside an imaging

voxel. Mathematically, this assumption leads to axisymmetric diffusion and kurtosis tensors with a

drastically reduced number of independent tensor parameters compared to standard DKI (from 15

to 3 parameters for the kurtosis tensor and from 6 to 2 parameters for the diffusion tensor). Apart

from the tensors, axisymmetric DKI additionally contains two parameters for the axis of symmetry.

With the axis of symmetry c⃗ parameterized by the inclination θ and azimuth ϕ: c⃗ =


sin θ cosϕ

sin θ sinϕ

cos θ

,

the diffusion and kurtosis tensors can be determined according to4:

D = D⊥I + (D∥ −D⊥)c⃗ c⃗
T [S1.2]

and

W =
1

2
(10W⊥ + 5W∥ − 15W )P +W⊥Λ+

3

2
(5W −W∥ − 4W⊥)Q

where Ψ = {D∥, D⊥,W∥,W⊥,W , S0, θ, ϕ} are the 8 framework’s parameters (S0 is the non diffusion-

weighted signal) and I =


1 0 0

0 1 0

0 0 1

 is the identity matrix. The tensors P,Λ and Q can be

computed with the Kronecker delta δxy and the components of the axis of symmetry cx (x, y ∈
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1, 2, 3) as: Pijkl = cicjckcl, Qijkl =
1
6(cicjδkl + cickδjl + ciclδjk + cjckδil + cjclδik + ckclδij) and

Λijkl =
1
3(δijδkl + δikδjl + δilδjk)

4. The according noise-free signal Sb,g⃗(Ψ) can then be computed

and fitted to dMRI data based upon the axisymmetric tensors6:

Sb,g⃗(Ψ) = S0 exp (−BijDij +
1

6
D

2
BijBklWijkl) [S1.3]

where

BijDij = Tr(B)D⊥ + (D∥ −D⊥)c⃗
TBc⃗ [S1.4]

and

BijBklWijkl =
1

2
(10W⊥ + 5W∥ − 15W )(c⃗TBc⃗)2 [S1.5]

+
1

2
(5W −W∥ − 4W⊥)(c⃗

TBc⃗Tr(B) [S1.6]

+ 2c⃗TBBc⃗) +
W⊥
3

(Tr(B)2 + 2Tr(B ⊗B)) [S1.7]

with

B = b


g2x gxgy gxgz

gxgy g2y gygz

gxgz gygz g2z



Note that the AxTM can also be computed from the standard DKI tensor metrics assuming axial

symmetry, see Section S1.1.
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S1.3 Derivation of the relationship between the axisymmetric DKI tensor met-

rics and the biophysical parameters

The derivation of the relationship between the axisymmetric DKI tensor metrics and the biophysical

parameters is based upon the work by7;8. Starting point for the derivation are the formulas found

in7 that establish a connection between the axisymmetric DKI tensor metrics and the biophysi-

cal parameters, based upon the assumption of an axially symmetric fiber orientation distribution

function (ODF):

M1 = 3D0 = AWF ·Da + (1−AWF )(2De,⊥ +De,∥)

M2 =
3

2
D2

1

p2
= AWF ·Da + (1−AWF )(De,∥ −De,⊥)

M3 = D2
2 + 5D2

0(1 +
W0

3
) = AWF ·D2

a + (1−AWF )[5D2
e,⊥ + (De,∥ −De,⊥)

2 +
10

3
De,⊥(De,∥ −De,⊥)]

M4 =
1

2
D2(D2 + 7D0)

1

p2
+

7

12

1

p2
W2D

2
0 = AWF ·D2

a + (1−AWF )((De,∥ −De,⊥)
2 +

7

3
De,⊥(De,∥ −De,⊥))

M5 =
9

4
D2

2 +
35

24
W4D

2
0 = p4(AWF ·D2

a + (1−AWF )(De,∥ −De,⊥)
2)

M1, M2, M3, M4 and M5 only depend on the biophysical parameter κ via the functions p2 and p4

and the axisymmetric DKI tensor metrics W,W∥,W⊥, D∥, D⊥:

D0 =
1

3
(2D⊥ +D∥) D2 =

2

3
(D∥ −D⊥)

W0 = W W2 =
1

7
(3W∥ + 5W − 8W⊥)

W4 =
4

7
(W∥ − 3W + 2W⊥)
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p2 =
1

4
(

3√
κF (

√
κ)

− 2− 3

κ
)

p4 =
1

32κ2
(105 + 12κ(5 + κ) +

5
√
κ(2κ− 21)

F (
√
κ)

)

here, F is Dawsons function. A quadratic equation for AWF can be found (for detailed derivation

see8):

0 = a ·AWF 2 − (a+ c− 40

3
)AWF + c [S1.8]

where a and c are:

a = (∆m)2 − (
7

3
+ 2d2)∆m+m2 [S1.9]

and:

c = (∆m− 5− d2)
2 [S1.10]

that depend on d2, m2, D and ∆m which can be computed with the axisymmetric DKI tensor

metrics and κ:

D =
1

3
(M1 −M2) ∆m =

M3

D
2 − M4

D
2

d2 :=
M2

D
m2 :=

M4

D
2

Eq. (S1.8) has two solutions referred to as "branches", which, in turn, can be computed with a and
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c:

AWF− =
−40

3 + a+ c−
√

−4ac+ (403 − a− c)2

2a
[S1.11]

AWF+ =
−40

3 + a+ c+
√

−4ac+ (403 − a− c)2

2a
[S1.12]

The solution for AWF (either branch "+" or "−") can then be used to compute the diffusivities

De,⊥, De,∥ and Da analytically.

De,⊥ =
D

(1−AWF )
Da = (

∆m(1−AWF )− 5− d2
−AWF

)D

De,∥ = (
d2 −AWF · Da

D

(1−AWF )
)D +De,⊥

However, at this point κ is still unknown and needed to estimate p2 and p4. All the biophysical

diffusion parameters and AWF can now be expressed in terms of κ and the axisymmetric DKI

tensor metrics. This is used to define an objective function where κ is the only unknown parameter,

since the axisymmetric DKI tensor metrics have previously been estimated:

0 = [p4(AWF ·D2
a + (1−AWF )(De,∥ −De,⊥)

2)]−M5 [S1.13]

This objective function is then minimized to find κ with which first AWF and then the biophysical

diffusivites can be found as described. It was feasible to optimize this problem over a discrete,

linearly sampled range of [0 ≤ κ ≤ 50] because it depends on one non-negative parameter κ. This

procedure was faster and more precise compared to using the available MATLAB solvers. There

are at least two solutions9;8 ("branches") to the optimization problem, but in the main paper only

the results of the branch labeled "+" is reported. This branch choice corresponds to assuming
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4 −
√

40
3 <

Da−De,∥
De,⊥

< 4 +
√

40
3 associated with Da > De,∥ and also labeled η = 1 in7 or ζ = +

in8 and is in line with existing literature7;10;11;12 on the branch selection using the intra-axonal

diffusivity as a deciding factor, see Section 4.2, main document, for a further discussion.
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Figure S1: Histograms of underlying A-PE distribution for the AxTM and biophysical parameters.
The pink vertical lines indicate the threshold after which axisymmetric DKI parameter estimation
results were considered "substantially differing" (A-PE ≥ 5%), the blue vertical lines indicate the
median difference in the population of substantially differing voxels. The x-axis was confined to [0
30].

S1.4 Histograms of A-PE for the AxTM and biophysical parameters

Because the main document cites the summary measures number of substantially differing voxels

(SDV) and median bias in the population of SDV for brevity, Figure S1 shows the actual distributions

of A-PE of the AxTM and biophysical parameters.

S1.5 Comparison of fit of log of signals with NLLS fit

An earlier work13 has analytically shown that axisymmetric DKI and standard DKI should produce

the same results if two pre-conditions are fulfilled: a) the log of the signals is being fitted and b) the

axis of symmetry (c⃗) and the first eigenvector (v⃗1), two measures for the main fiber orientation in
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both DKI models, are identical. To rule out the possibility that the observed differences as measured

by the A-PE between standard DKI and axisymmetric DKI in this study are caused by fitting the

non-linear signals (pre-condition a)), a log-of-signals fit was implemented for both standard DKI and

axisymmetric DKI and used to fit the same dMRI data described in Section 2.1 (main document).

Figure S2 shows the difference between standard DKI and axisymmetric DKI when fitting the log-

of-signals (orange histograms) versus the differences when using the NLLS fit implementation (blue

histograms) at the top and the scatter density plots between the results obtained with both methods

at the bottom.

Fitting the log of the signals still went along with substantial differences between both DKI models

that in some cases, e.g., W⊥, showed a close relation with the NLLS fit results. It can therefore be

ruled out that the observed differences in the main study are purely caused by not fitting the log of

the signals.
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Figure S2: A-PE estimated based on a log-of-signals fit and the non-linear least sqaures (NLLS) fit
used for this study. Top: histograms of A-PE distributions when fitting the log-of-signals (orange
histograms) versus the NLLS fit implementation (blue histograms). Bottom: Scatter density plots
of the A-PE estimated with a log-of-signals fit (y-axis) versus the NLLS fit (x-axis).
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S1.6 Inter-dependence of A-PE and difference in main fiber orientation

It was analytically shown in13 that standard DKI and axisymmetric DKI produce the same results

under two conditions (see Section S1.5). Here, the pre-condition b) from Section S1.5 is investi-

gated. To investigate a possible inter-dependency between the A-PE and the difference between v⃗1

and c⃗, the angle ϕ between v⃗1 and c⃗ was calculated according to: ϕ = cos−1(abs( v⃗1 ·⃗c
|v⃗1||⃗c|)) and plotted

against the A-PE as a scatter density plot for each parameter, see Figure S3.

In almost all AxTM voxels the angle ϕ was greater 0◦ degree, see x-axes of Figure S3, indicating

that the main fiber orientations estimated by both DKI models were almost never identical. This

violates one of the necessary presumptions named in13. The scatter density plots in Figure S3

indicate that the kurtosis metrics W⊥ and W∥ had the highest inter-dependency between A-PE and

ϕ allowing to establish at least a partial causality in this case.
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Figure S3: Scatter density plots between A-PE and angle ϕ computed for voxels in the white matter
mask.
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Figure S4: Voxel positions of the simulated voxels in the "single voxel analysis" corresponding to
the parameters listed in Table S1 and Table S2. Top left image shows a sagittal overview of a
fractional anisotropy image identifying the slices from which the voxels were extracted. The other
images show the concrete voxel position in the according coronal slices.

S1.7 Ground truth datasets, single voxel analysis

Here, the ground truth datasets used to simulate the data of the single voxel analysis (see Section 2.4,

main manuscript) are documented. Figure S4 shows the 12 selected voxels in the FA image of the

human brain data used in this study. Table S1 and Table S2 document the corresponding ground

truth diffusion and kurtosis tensor components and ground truth AxTM values.
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Table S1: Ground truth datasets for the voxels simulated in the single voxel analysis (see Section 2.4,
main document), shown are the diffusion and kurtosis tensor components and S0, the diffusivities
are in [µm

2

ms ].

Parameter Voxel 1 Voxel 2 Voxel 3 Voxel 4 Voxel 5 Voxel 6

D11 0.52518 0.73186 1.47547 1.59281 0.94294 1.35323
D22 0.78697 0.74288 1.04926 0.28458 0.90303 0.00005
D33 1.23249 1.18773 0.81426 0.42473 1.31293 0.66199
D12 −0.11517 −0.03012 0.71930 0.19176 0.01800 0.11456
D13 0.07573 0.17281 0.46296 0.54313 0.06349 −0.69321
D23 −0.63971 −0.24029 0.17883 0.05975 0.17136 −0.10751
S0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
W1111 0.67775 1.07929 1.22721 3.92558 1.16881 4.03335
W2222 0.65740 0.93806 0.61860 0.51298 0.69336 −1.23230
W3333 1.71966 1.25306 0.60559 −0.00206 1.34117 1.08392
W1112 0.00302 0.06835 0.56475 0.30247 −0.02502 0.11231
W1113 −0.02877 0.16450 0.25254 0.95462 0.21085 −2.10340
W2221 −0.16901 −0.09296 0.48807 0.07772 0.04203 0.13599
W3331 0.05064 0.04273 0.30247 0.38988 0.10736 −0.96426
W2223 −0.21847 0.01396 0.02596 −0.00270 0.11575 0.30162
W3332 −0.79489 −0.40981 0.13169 0.18746 0.19683 −0.26582
W1122 0.27296 0.37678 0.69557 0.59812 0.18333 0.09223
W1133 0.37894 0.17585 0.36908 0.50056 0.40884 1.18587
W2233 0.63105 0.52844 0.42591 0.02421 0.48544 −0.12350
W1123 −0.15648 −0.12087 0.11193 −0.00798 0.00510 −0.40817
W2213 0.06741 0.20863 0.21401 0.14025 0.00056 0.06386
W3312 −0.07199 −0.14695 0.18450 0.06740 0.14811 0.21569

Parameter Voxel 7 Voxel 8 Voxel 9 Voxel 10 Voxel 11 Voxel 12

D11 0.70021 0.37055 0.45038 0.71309 0.68214 0.62777
D22 1.23004 1.09191 0.91982 0.67809 0.73508 1.18568
D33 0.74326 1.01422 1.48194 1.29819 1.65466 0.64001
D12 −0.03462 0.07976 0.02886 −0.08694 −0.14949 −0.00692
D13 −0.05384 −0.09113 0.14072 −0.33201 −0.08331 0.16751
D23 −0.14196 −0.35298 −0.62415 −0.24086 −0.40065 0.06892
S0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
W1111 0.25736 0.29625 0.59465 0.61617 0.90990 0.72413
W2222 1.29478 1.19521 0.79010 0.94335 0.57185 1.94369
W3333 0.84182 1.13021 2.11612 1.71149 2.21282 0.89254
W1112 −0.20589 −0.15870 −0.07156 −0.20480 −0.10260 −0.45005
W1113 −0.09519 0.04410 0.11754 0.06422 −0.11515 0.23148
W2221 0.08161 0.12204 0.14148 −0.00514 −0.15031 0.09221
W3331 0.08907 −0.08658 0.16565 −0.48564 −0.10745 0.04541
W2223 0.04681 −0.45644 −0.15422 −0.18872 −0.09809 0.17618
W3332 −0.00168 −0.30874 −0.67320 −0.12712 −0.45940 0.09544
W1122 0.48547 0.30077 0.17656 0.23455 0.26919 0.26294
W1133 0.16228 0.17903 0.30837 0.44797 0.22822 0.04977
W2233 0.19544 0.81838 0.57202 0.34830 0.49117 0.54980
W1123 −0.07992 0.01297 −0.12377 −0.09888 −0.05498 −0.10805
W2213 −0.11182 −0.16823 −0.01215 −0.06127 0.07760 0.10235
W3312 −0.07009 0.00660 0.01548 −0.17444 −0.12436 0.00486
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Table S2: Ground truth AxTM of the single voxel analysis, corresponding to the tensor components
listed in Table S1, the diffusivities are in [µm

2

ms ].

Voxel D⊥ D∥ W⊥ W∥ W

Voxel 1 0.42174 1.70116 0.58537 2.86371 1.12414
Voxel 2 0.66092 1.34064 0.90280 1.96013 1.08651
Voxel 3 0.57898 2.18102 0.45733 2.90384 1.08651
Voxel 4 0.23493 1.83226 0.09464 4.54115 1.33646
Voxel 5 0.88698 1.38493 0.82815 1.70754 1.07171
Voxel 6 0.10993 1.79541 −0.43832 6.96149 1.23884
Voxel 7 0.70221 1.26909 0.49554 1.14350 0.81607
Voxel 8 0.52738 1.42193 0.71850 2.65236 1.04360
Voxel 9 0.47971 1.89272 0.56223 2.78642 1.12295
Voxel 10 0.59895 1.49148 0.72198 2.03711 1.06653
Voxel 11 0.63328 1.80533 0.73628 2.56648 1.13435
Voxel 12 0.62942 1.19462 0.67564 2.03629 1.05708
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