Loughborough University
Browse
applsci-11-03852-v2 (2).pdf (2.28 MB)

Are torque-driven simulation models of human movement limited by an assumption of monoarticularity?

Download (2.28 MB)
journal contribution
posted on 2021-05-20, 09:24 authored by Martin GC Lewis, Fred YeadonFred Yeadon, Mark KingMark King
Subject-specific torque-driven computer simulation models employing single-joint torque generators have successfully simulated various sports movements with a key assumption that the maximal torque exerted at a joint is a function of the kinematics of that joint alone. This study investigates the effect on model accuracy of single-joint or two-joint torque generator representations within whole-body simulations of squat jumping and countermovement jumping. Two eight-segment forward dynamics subject-specific rigid body models with torque generators at five joints are constructed—the first model includes lower limb torques, calculated solely from single-joint torque generators, and the second model includes two-joint torque generators. Both models are used to produce matched simulations to a squat jump and a countermovement jump by varying activation timings to the torque generators in each model. The two-joint torque generator model of squat and countermovement jumps matched measured jump performances more closely (6% and 10% different, respectively) than the single-joint simulation model (10% and 24% different, respectively). Our results show that the two-joint model performed better for squat jumping and the upward phase of the countermovement jump by more closely matching faster joint velocities and achieving comparable amounts of lower limb joint extension. The submaximal descent phase of the countermovement jump was matched with similar accuracy by the two models (9% difference). In conclusion, a two-joint torque generator representation is likely to be more appropriate for simulating dynamic tasks requiring large joint torques and near-maximal joint velocities.

History

School

  • Sport, Exercise and Health Sciences

Published in

Applied Sciences

Volume

11

Issue

9

Publisher

MDPI AG

Version

  • VoR (Version of Record)

Rights holder

© The authors

Publisher statement

This is an Open Access Article. It is published by MDPI under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

Acceptance date

2021-04-20

Publication date

2021-04-24

Copyright date

2021

eISSN

2076-3417

Language

  • en

Depositor

Prof Mark King. Deposit date: 20 May 2021

Article number

3852

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC