Loughborough University
Browse
manuscript_accepted.pdf (3.52 MB)

Ontology-based modelling of lifecycle underground utility information to support operation and maintenance

Download (3.52 MB)
journal contribution
posted on 2022-05-20, 08:21 authored by Mingzhu Wang
Operation and maintenance (O&M) of underground utilities is crucial to ensure normal functionality of utilities by performing different inspection and maintenance activities. A variety of data are required by maintenance staff to evaluate utility condition and make decisions in planning maintenance works. Nevertheless, data required for utility O&M are usually originated from different sources, with various formats or representations. Interpreting and integrating such heterogenous data for utility O&M remains a significant challenge. Therefore, this paper proposes an ontology-based framework for modelling lifecycle utility information such as to facilitate activities and support decision making during utility O&M. The framework consists of (1) a data layer to collect various types of utility lifecycle data, (2) a knowledge layer to extract common mechanisms and methods for utility O&M, (3) an ontology layer where a domain ontology, Utility Operation and Maintenance Ontology (UOMO), is developed with entities and semantic rules to represent different categories of information related to utility projects, (4) an application layer to automate manual tasks and support decision making by leveraging the query and reasoning capability of ontology. To validate the framework, a case study is performed using real-world inspection data where a user interface is developed to allow users to implement different functions without technical knowledge. The case study demonstrates that the framework can, efficiently and automatically, extract and integrate various information to assist different activities, e.g. defect rating, condition assessment and validation, as well as to support decision making in prioritizing maintenance works, and selecting appropriate maintenance methods. This study contributes by proposing the first ontology-based framework for improving efficiency in utility O&M, where the query and semantic reasoning capabilities of the ontology are fully utilized. The developed ontology with lifecycle utility information is expected to facilitate data interoperability in the utility domain and can be extended with other knowledge for large-scale infrastructure management.

History

School

  • Architecture, Building and Civil Engineering

Published in

Automation in Construction

Volume

132

Publisher

Elsevier

Version

  • AM (Accepted Manuscript)

Rights holder

© Elsevier

Publisher statement

This paper was accepted for publication in the journal Automation in Construction and the definitive published version is available at https://doi.org/10.1016/j.autcon.2021.103933

Acceptance date

2021-08-27

Publication date

2021-09-09

Copyright date

2021

ISSN

0926-5805

eISSN

1872-7891

Language

  • en

Depositor

Dr Mingzhu Wang. Deposit date: 19 May 2022

Article number

103933

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC