Loughborough University
Browse
Li-Puma_2016-AcostaEtAl - SFM-HG.pdf (1.07 MB)

Coupling the six flux absorption-scattering model to the Henyey-Greenstein scattering phase function: Evaluation and optimization of radiation absorption in solar heterogeneous photoreactors

Download (1.07 MB)
journal contribution
posted on 2016-08-18, 08:57 authored by Raul Acosta-Herazo, Jesus Monterroza-Romero, Miguel Angel Mueses, Fiderman Machuca-Martinez, Gianluca Li-Puma
© 2016 Elsevier B.V.Robust and practical models describing the radiation field in heterogeneous photocatalytic systems, used in emerging environmental, photochemical and renewable energy applications, are fundamental for the further development of these technologies. The six-flux radiation absorption-scattering model (SFM) has shown to be particularly suitable for the modeling of the radiation field in solar pilot-plant photoreactors. In this study, the SFM was coupled to the Henyey-Greenstein (HG) scattering phase function in order to assemble the model with a more accurate description of the scattering phenomenon provided by this phase function. This new version of SFM, named as SFM-HG, was developed through fitting the Local Volumetric Rate of Photon Absorption (LVRPA) determined in a flat photoreactor to the "pseudo-experimental" LVRPA calculated by a Monte Carlo (MC) approach, which included the HG expression. As a result, simple mathematical correlations describing the SFM-HG scattering probabilities as function of the HG scattering parameter were determined. The SFM-HG was validated through a comparison with the MC model predictions of the Total Rate of Photon Absorption (TRPA) in the slab photoreactor. A RMSE% of approximately 5% demonstrated satisfactory agreement between the models. The SFM-HG was further applied to evaluate the impact of selected scattering phase functions on the absorption of radiation in solar photoreactors, operated with commercial TiO2 photocatalyst. The results have established that, the apparent optical thickness, τapp (or τapp,max for tubes) a parameter derived from the SFM approach, is the most appropriate for the design and optimization of photocatalytic reactors. This parameter is insensitive to scattering albedos and phase functions. CPC, tubular and flat-plate photoreactors should be designed with τapp,max = 12, τapp,max = 7 and τapp = 4.5 respectively.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Chemical Engineering Journal

Volume

302

Pages

86 - 96

Citation

ACOSTA-HERAZO, R. ...et al., 2016. Coupling the six flux absorption-scattering model to the Henyey-Greenstein scattering phase function: Evaluation and optimization of radiation absorption in solar heterogeneous photoreactors. Chemical Engineering Journal, 302, pp. 86-96.

Publisher

© Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2016-04-24

Publication date

2016

Notes

This paper was accepted for publication in the journal Chemical Engineering Journal and the definitive published version is available at http://dx.doi.org/10.1016/j.cej.2016.04.127

ISSN

1385-8947

Language

  • en