Loughborough University
Browse
Perfect_quantum.pdf (1.05 MB)

Perfect quantum excitation energy transport via single edge perturbation in a complete network

Download (1.05 MB)
journal contribution
posted on 2017-07-27, 13:19 authored by Hassan Bassereh, Vahid Salari, Farhad Shahbazi, Tapio Ala-NissilaTapio Ala-Nissila
We consider quantum excitation energy transport (EET) in a network of two-state nodes in the Markovian approximation by employing the Lindblad formulation. We find that EET from an initial site, where the excitation is inserted to the sink, is generally inefficient due to the inhibition of transport by localization of the excitation wave packet in a symmetric, fully-connected network. We demonstrate that the EET efficiency can be significantly increased up to ≈100% by perturbing hopping transport between the initial node and the one connected directly to the sink, while the rate of energy transport is highest at a finite value of the hopping parameter. We also show that prohibiting hopping between the other nodes which are not directly linked to the sink does not improve the efficiency. We show that external dephasing noise in the network plays a constructive role for EET in the presence of localization in the network, while in the absence of localization it reduces the efficiency of EET. We also consider the influence of off-diagonal disorder in the hopping parameters of the network.

Funding

T.A-N. has been supported in part by the Academy of Finland through its COMP CoE Grant Nos. 251748 and 284621.

History

School

  • Science

Department

  • Mathematical Sciences

Published in

European Physical Journal B

Volume

90

Issue

6

Citation

BASSEREH, H. ... et al, 2017. Perfect quantum excitation energy transport via single edge perturbation in a complete network. European Physical Journal B, 90 (111).

Publisher

© EDP Sciences, Societa Italiana di Fisica, Springer-Verlag

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2017-04-19

Publication date

2017-06-14

Copyright date

2017

Notes

The final publication is available at Springer via http://dx.doi.org/10.1140/epjb/e2017-80048-1

ISSN

1434-6028

eISSN

1434-6036

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC