Effect of molecular Berry curvature on the dynamics of phonons

Date

2022-08-31

Authors

Saparov, Daniyar

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Under the Born-Oppenheimer approximation, the electronic ground state evolves adiabatically and can accumulate geometrical phases characterized by the molecular Berry curvature. In this work, we study the effect of the molecular Berry curvature on the lattice dynamics in a system with broken time-reversal symmetry. The molecular Berry curvature is formulated based on the single-particle electronic Bloch states. It manifests as a non-local effective magnetic field in the equations of motion of the ions that are beyond the widely adopted Raman spin-lattice coupling model. We employ the Bogoliubov transformation to solve the quantized equations of motion and to obtain phonon polarization vectors. We apply our formula to the Haldane model on a honeycomb lattice and find a large molecular Berry curvature around the Brillouin zone center. As a result, the degeneracy of the optical branches at this point is lifted intrinsically. The lifted optical phonons show circular polarizations, possess large phonon Berry curvature, and have a nearly quantized angular momentum that modifies the Einstein-de Haas effect.

Department

Description

LCSH Subject Headings

Citation