Laser wakefield and direct acceleration in the plasma bubble regime

Date

2017-08

Authors

Zhang, Xi, Ph. D.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Laser wakefield acceleration (LWFA) and direct laser acceleration (DLA) are two different kinds of laser plasma electron acceleration mechanisms. LWFA relies on the laser-driven plasma wave to accelerate electrons. The interaction of ultra-short ultra-intensive laser pulses with underdense plasma leads the LWFA into a highly nonlinear regime (“plasma bubble regime”) that attracts particular interest nowadays. DLA accelerates electrons by laser electromagnetic wave in the ion channel or the plasma bubble through the Betatron resonance. This dissertation presents a hybrid laser plasma electron acceleration mechanism. We investigate its features through particle-in-cell (PIC) simulations and the single particle model. The hybrid laser plasma electron acceleration is the merging concept between the LWFA and the DLA, so called laser wakefield and direct acceleration (LWDA). The requirements of the initial conditions of the electron to undergo the LWDA are determined. The electron must have a large initial transverse energy. Two electron injection mechanisms that are suitable for the LWDA, density bump injection and ionization induced injection, are studied in detail. The features of electron beam phase space and electron dynamics are explored. Electron beam phase space appears several unique features such as spatially separated two groups, the correlation between the transverse energy and the relativistic factor and the double-peak spectrum. Electrons are synergistically accelerated by the wakefield as well as by the laser electromagnetic field in the laser-driven plasma bubble. LWDA are also investigated in the moderate power regime (10 TW) in regarding the effects of laser color and polarization. It is found that the frequency upshift laser pulse has better performance on avoiding time-jitter of electron energy spectra, electron final energy and electron charge yield. Some basic characters that related to the LWDA such as the effects of the subluminal laser wave, the effects of the longitudinal accelerating field, the electron beam emittance, the electron charge yield and potentially applications as radiation source are discussed.

Department

Description

LCSH Subject Headings

Citation