Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Artificial Neuron–Glia Networks Learning Approach Based on Cooperative Coevolution

Thumbnail
Ver/abrir
Mesejo_ArtificalNeuron.pdf (627.3Kb)
Use este enlace para citar
http://hdl.handle.net/2183/17502
Coleccións
  • Investigación (FIC) [1728]
Metadatos
Mostrar o rexistro completo do ítem
Título
Artificial Neuron–Glia Networks Learning Approach Based on Cooperative Coevolution
Autor(es)
Fernández-Blanco, Enrique
Cedrón, Francisco
Pazos, A.
Porto-Pazos, Ana B.
Mesejo, Pablo
Ibáñez, Oscar
Data
2015-04-06
Cita bibliográfica
Mesejo P, Ibáñez O, Fernández-Blanco F, et al. Artificial neuron–glia networks learning approach based on cooperative coevolution. Int J Neural Syst. 2015; 25(4):1550012
Resumo
[Abstract] Artificial Neuron–Glia Networks (ANGNs) are a novel bio-inspired machine learning approach. They extend classical Artificial Neural Networks (ANNs) by incorporating recent findings and suppositions about the way information is processed by neural and astrocytic networks in the most evolved living organisms. Although ANGNs are not a consolidated method, their performance against the traditional approach, i.e. without artificial astrocytes, was already demonstrated on classification problems. However, the corresponding learning algorithms developed so far strongly depends on a set of glial parameters which are manually tuned for each specific problem. As a consequence, previous experimental tests have to be done in order to determine an adequate set of values, making such manual parameter configuration time-consuming, error-prone, biased and problem dependent. Thus, in this paper, we propose a novel learning approach for ANGNs that fully automates the learning process, and gives the possibility of testing any kind of reasonable parameter configuration for each specific problem. This new learning algorithm, based on coevolutionary genetic algorithms, is able to properly learn all the ANGNs parameters. Its performance is tested on five classification problems achieving significantly better results than ANGN and competitive results with ANN approaches.
Palabras chave
Artificial neuron–glia networks
Artificial neural networks
Artificial astrocytes
Glial cells
Evolutionary algorithms
Cooperative coevolutionary genetic algorithm
Genetic algorithms
Parameter optimization
Classification
 
Versión do editor
http://dx.doi.org/10.1142/S0129065715500124
Dereitos
Electronic version of an article published at World Scientific

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións