Article (Scientific journals)
Assessment of future wind speed and wind power changes over South Greenland using the MAR regional climate model
Lambin, Clara; Fettweis, Xavier; Kittel, Christoph et al.
2022In International Journal of Climatology
Peer Reviewed verified by ORBi
 

Files


Full Text
lambin_2022.pdf
Publisher postprint (15.94 MB) Creative Commons License - Attribution
Download
Annexes
lambin_2022_Supplement.pdf
(1.96 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
wind speed, wind power, future changes, MAR, Greenland
Abstract :
[en] Wind is an infinitely renewable energy source that is not evenly distributed in space and time. The interconnection of energy-demanding and energy-resourceful (yet remote) regions would help preventing energy scarcity in a world where fossil fuels are no longer used. Previous studies have shown that South Greenland and West Europe have complementary wind regimes. In particular, the southern tip of Greenland, Cape Farewell, has gained growing interest for wind farm development as it is one of the windiest places on Earth. In order to gain new insights about future wind speed variations over South Greenland, the Modèle Atmosphérique Régional (MAR), validated against in situ observations over the tundra where wind turbines are most likely to be installed, is used to built climate projections under the emission scenario SSP5-8.5 by downscaling an ensemble of CMIP6 Earth System Models (ESMs). It appeared that between 1981 and 2100, the wind speed is projected to decrease by ~-0.8 m/s at 100 m a.g.l. over the tundra surrounding Cape Farewell. This decrease is particularly marked in winter while in summer, a wind speed acceleration is projected along the ice sheet margins. An analysis of two-dimensional wind speed changes at different vertical levels indicates that the winter decrease is likely due to a large-scale circulation change while in summer, the katabatic winds flowing down the ice sheet are expected to increase due to an enhanced temperature contrast between the ice sheet and the surroundings. As for the mean annual maximum wind power a turbine can yield, a decrease of ~-178.1 W is projected at 100 m a.g.l. Again, the decrease is especially pronounced in winter. Considering the very high winter wind speeds occurring in South Greenland which can cut off wind turbines if too intense, the projected wind speed decrease might be beneficial for the establishment of wind farms near Cape Farewell.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Lambin, Clara ;  Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Fettweis, Xavier  ;  Université de Liège - ULiège > Sphères
Kittel, Christoph  ;  Université de Liège - ULiège > Sphères
Fonder, Michaël ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Ernst, Damien  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Language :
English
Title :
Assessment of future wind speed and wind power changes over South Greenland using the MAR regional climate model
Publication date :
31 August 2022
Journal title :
International Journal of Climatology
ISSN :
0899-8418
eISSN :
1097-0088
Publisher :
John Wiley & Sons, Hoboken, United States - New Jersey
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 03 March 2022

Statistics


Number of views
558 (61 by ULiège)
Number of downloads
412 (34 by ULiège)

Scopus citations®
 
8
Scopus citations®
without self-citations
4
OpenCitations
 
0

Bibliography


Similar publications



Contact ORBi