University of Leicester
Browse
2015ZALESKICJPhD.pdf (6.93 MB)

Electrochemical concentration gradients in deep eutectic solvents

Download (6.93 MB)
thesis
posted on 2015-05-07, 14:22 authored by Christopher John Zaleski
Concentration gradients present in the solution during the redox chemistry of selected metals and conducting polymer (poly(3,4ethylenedioxythiophene) (PEDOT)) films redox cycled in Deep Eutectic Solvents (DES) were observed for the first time through the application of the Probe Beam Deflection (PBD) technique combined with the Electrochemical Quartz Crystal Microbalance (EQCM). Suitability of choline chloride (ChCl) based DES for applications as electrolytes in PEDOT based charge storage devices has also been investigated using EQCM. The combination of carefully optimized experimental parameters (temporally extended chronoamperometry and slow scan rate voltammetry) with modified design of the instrument (reduced probe’s distance of approach) allowed for in-situ observations of electrochemically induced concentration gradients in DES based systems. During the studies of electroactive polymer films, complete determination of mobile species transfers in PEDOT/Ethaline and PEDOT/Propaline systems has been achieved. The application of PBD-EQCM technique in studies of metal electrodeposition from DES allowed for monitoring metal speciation in dynamic and quantitative fashion. EQCM study of ChCl based DES indicated Ethaline as the most promising potential electrolyte for PEDOT based charge storage devices. Additionally, an unusual mass exchange process has been detected in PEDOT/Propaline and PEDOT/Acetaline processes. This work has shown a novel, affordable and non-invasive route for observation of electrode/electrolyte interface processes in DES. The experimental protocol developed can potentially be implemented in further studies of DES as well as Ionic Liquids.

History

Supervisor(s)

Ryder, Karl; Hillman, Rob

Date of award

2015-05-01

Author affiliation

Department of Chemistry

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC